Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Pyroptosis is a recently discovered type of lytic-programmed cell necrosis. The process involves cells assembling an inflammasome and cleaving gasdermin (GSDM) to trigger the release of pro-inflammatory cytokines that eventually induce inflammatory cell death. Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus, which leads to end-stage renal disease. Podocyte damage or loss is an important feature of diabetic kidney injury. Pyroptosis involvement in podocyte injury is closely associated with DN progression, manifesting as increased renal fibrosis, glomerulosclerosis, and tubular injury. The study aims to elucidate the mechanism of pyroptosis and summarize the pathways and potential inhibitors related to pyroptosis activation in DN podocytes. We undertook a search of bibliographic databases for peer-reviewed research literature on various aspects of pyroptosis. Multiple different pathways mediate podocyte pyroptosis to promote DN progression. Inhibition of pyroptosis can reduce podocyte damage and improve renal function in DN, suggesting that pyroptosis may help identify potential new therapeutic targets for DN treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673304627240525135453
2024-05-28
2025-09-06
Loading full text...

Full text loading...

References

  1. JorgensenI. MiaoE.A. Pyroptotic cell death defends against intracellular pathogens.Immunol. Rev.2015265113014210.1111/imr.1228725879289
    [Google Scholar]
  2. XuY.J. ZhengL. HuY.W. WangQ. Pyroptosis and its relationship to atherosclerosis.Clin. Chim. Acta2018476283710.1016/j.cca.2017.11.00529129476
    [Google Scholar]
  3. Fernandes-AlnemriT. WuJ. YuJ-W. DattaP. MillerB. JankowskiW. RosenbergS. ZhangJ. AlnemriE.S. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation.Cell Death Differ.20071491590160410.1038/sj.cdd.440219417599095
    [Google Scholar]
  4. LuF. LanZ. XinZ. HeC. GuoZ. XiaX. HuT. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases.J. Cell. Physiol.202023543207322110.1002/jcp.2926831621910
    [Google Scholar]
  5. YangF. BettadapuraS.N. SmeltzerM.S. ZhuH. WangS. Pyroptosis and pyroptosis-inducing cancer drugs.Acta Pharmacol. Sin.202243102462247310.1038/s41401‑022‑00887‑635288674
    [Google Scholar]
  6. WangQ. WuJ. ZengY. ChenK. WangC. YangS. SunN. ChenH. DuanK. ZengG. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease.Clin. Chim. Acta2020510627210.1016/j.cca.2020.06.04432622968
    [Google Scholar]
  7. Al MamunA. Ara MimiA. WuY. ZaeemM. Abdul AzizM. Aktar SuchiS. AlyafeaiE. MunirF. XiaoJ. Pyroptosis in diabetic nephropathy.Clin. Chim. Acta202152313114310.1016/j.cca.2021.09.00334529985
    [Google Scholar]
  8. DaiC. YangJ. BastackyS. XiaJ. LiY. LiuY. Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice.J. Am. Soc. Nephrol.200415102637264710.1097/01.ASN.0000139479.09658.EE15466268
    [Google Scholar]
  9. ToyodaM. NajafianB. KimY. CaramoriM.L. MauerM. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy.Diabetes20075682155216010.2337/db07‑001917536064
    [Google Scholar]
  10. FogoA.B. The targeted podocyte.J. Clin. Invest.201112162142214510.1172/JCI5793521606599
    [Google Scholar]
  11. LvD. JiangS. ZhangM. ZhuX. YangF. WangH. LiS. LiuF. ZengC. QinW. LiL. LiuZ. Treatment of membranous nephropathy by disulfiram through inhibition of podocyte pyroptosis.Kidney Dis.20228430831810.1159/00052416436157258
    [Google Scholar]
  12. BrozP. DixitV.M. Inflammasomes: mechanism of assembly, regulation and signalling.Nat. Rev. Immunol.201616740742010.1038/nri.2016.5827291964
    [Google Scholar]
  13. ZindelJ. KubesP. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation.Annu. Rev. Pathol.202015149351810.1146/annurev‑pathmechdis‑012419‑03284731675482
    [Google Scholar]
  14. ShekarianT. Valsesia-WittmannS. BrodyJ. MichalletM.C. DepilS. CauxC. MarabelleA. Pattern recognition receptors: immune targets to enhance cancer immunotherapy.Ann. Oncol.20172881756176610.1093/annonc/mdx17928444111
    [Google Scholar]
  15. ZhengD. LiwinskiT. ElinavE. Inflammasome activation and regulation: toward a better understanding of complex mechanisms.Cell Discov.2020613610.1038/s41421‑020‑0167‑x32550001
    [Google Scholar]
  16. ShiJ. ZhaoY. WangK. ShiX. WangY. HuangH. ZhuangY. CaiT. WangF. ShaoF. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.Nature2015526757566066510.1038/nature1551426375003
    [Google Scholar]
  17. KovacsS.B. MiaoE.A. Gasdermins: Effectors of Pyroptosis.Trends Cell Biol.201727967368410.1016/j.tcb.2017.05.00528619472
    [Google Scholar]
  18. EvavoldC.L. RuanJ. TanY. XiaS. WuH. KaganJ.C. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages.Immunity20184813544.e610.1016/j.immuni.2017.11.01329195811
    [Google Scholar]
  19. RühlS. ShkarinaK. DemarcoB. HeiligR. SantosJ.C. BrozP. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation.Science2018362641795696010.1126/science.aar760730467171
    [Google Scholar]
  20. VietriM. RadulovicM. StenmarkH. The many functions of ESCRTs.Nat. Rev. Mol. Cell Biol.2020211254210.1038/s41580‑019‑0177‑431705132
    [Google Scholar]
  21. KayagakiN. WarmingS. LamkanfiM. WalleL.V. LouieS. DongJ. NewtonK. QuY. LiuJ. HeldensS. ZhangJ. LeeW.P. Roose-GirmaM. DixitV.M. Non-canonical inflammasome activation targets caspase-11.Nature2011479737111712110.1038/nature1055822002608
    [Google Scholar]
  22. ShiJ. ZhaoY. WangY. GaoW. DingJ. LiP. HuL. ShaoF. Inflammatory caspases are innate immune receptors for intracellular LPS.Nature2014514752118719210.1038/nature1368325119034
    [Google Scholar]
  23. HagarJ.A. PowellD.A. AachouiY. ErnstR.K. MiaoE.A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.Science201334161511250125310.1126/science.124098824031018
    [Google Scholar]
  24. KayagakiN. StoweI.B. LeeB.L. O’RourkeK. AndersonK. WarmingS. CuellarT. HaleyB. Roose-GirmaM. PhungQ.T. LiuP.S. LillJ.R. LiH. WuJ. KummerfeldS. ZhangJ. LeeW.P. SnipasS.J. SalvesenG.S. MorrisL.X. FitzgeraldL. ZhangY. BertramE.M. GoodnowC.C. DixitV.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.Nature2015526757566667110.1038/nature1554126375259
    [Google Scholar]
  25. QiuY. TangL. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy.Pharmacol. Res.201611425126410.1016/j.phrs.2016.11.00427826011
    [Google Scholar]
  26. YangD. HeY. Muñoz-PlanilloR. LiuQ. NúñezG. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock.Immunity201543592393210.1016/j.immuni.2015.10.00926572062
    [Google Scholar]
  27. RogersC. Fernandes-AlnemriT. MayesL. AlnemriD. CingolaniG. AlnemriE.S. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death.Nat. Commun.2017811412810.1038/ncomms1412828045099
    [Google Scholar]
  28. KirazY. AdanA. Kartal YandimM. BaranY. Major apoptotic mechanisms and genes involved in apoptosis.Tumour Biol.20163778471848610.1007/s13277‑016‑5035‑927059734
    [Google Scholar]
  29. WangY. GaoW. ShiX. DingJ. LiuW. HeH. WangK. ShaoF. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin.Nature201754776619910310.1038/nature2239328459430
    [Google Scholar]
  30. TsuchiyaK. NakajimaS. HosojimaS. Thi NguyenD. HattoriT. Manh LeT. HoriO. MahibM.R. YamaguchiY. MiuraM. KinoshitaT. KushiyamaH. SakuraiM. ShiroishiT. SudaT. Caspase-1 initiates apoptosis in the absence of gasdermin D.Nat. Commun.2019101209110.1038/s41467‑019‑09753‑231064994
    [Google Scholar]
  31. OrningP. WengD. StarheimK. RatnerD. BestZ. LeeB. BrooksA. XiaS. WuH. KelliherM.A. BergerS.B. GoughP.J. BertinJ. ProulxM.M. GoguenJ.D. KayagakiN. FitzgeraldK.A. LienE. Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death.Science201836264181064106910.1126/science.aau281830361383
    [Google Scholar]
  32. HouJ. ZhaoR. XiaW. ChangC.W. YouY. HsuJ.M. NieL. ChenY. WangY.C. LiuC. WangW.J. WuY. KeB. HsuJ.L. HuangK. YeZ. YangY. XiaX. LiY. LiC.W. ShaoB. TainerJ.A. HungM.C. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis.Nat. Cell Biol.202022101264127510.1038/s41556‑020‑0575‑z32929201
    [Google Scholar]
  33. ZhouZ. HeH. WangK. ShiX. WangY. SuY. WangY. LiD. LiuW. ZhangY. ShenL. HanW. ShenL. DingJ. ShaoF. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells.Science20203686494eaaz754810.1126/science.aaz754832299851
    [Google Scholar]
  34. ZhangZ. ZhangY. XiaS. KongQ. LiS. LiuX. JunqueiraC. Meza-SosaK.F. MokT.M.Y. AnsaraJ. SenguptaS. YaoY. WuH. LiebermanJ. Gasdermin E suppresses tumour growth by activating anti-tumour immunity.Nature2020579779941542010.1038/s41586‑020‑2071‑932188940
    [Google Scholar]
  35. MotonishiS. NangakuM. WadaT. IshimotoY. OhseT. MatsusakaT. KubotaN. ShimizuA. KadowakiT. TobeK. InagiR. Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in injured podocytes.J. Am. Soc. Nephrol.20152681939195910.1681/ASN.201403028925424328
    [Google Scholar]
  36. HeY. ZhangM. WuY. JiangH. FuH. CaiY. XuZ. LiuC. ChenB. YangT. Aberrant activation of Notch-1 signaling inhibits podocyte restoration after islet transplantation in a rat model of diabetic nephropathy.Cell Death Dis.201891095010.1038/s41419‑018‑0985‑z30237561
    [Google Scholar]
  37. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  38. HaydenM.S. GhoshS. NF-κB, the first quarter-century: remarkable progress and outstanding questions.Genes Dev.201226320323410.1101/gad.183434.11122302935
    [Google Scholar]
  39. ShahzadK. BockF. DongW. WangH. KopfS. KohliS. Al-DabetM.M. RanjanS. WolterJ. WackerC. BiemannR. StoyanovS. ReymannK. SöderkvistP. GroßO. SchwengerV. PahernikS. NawrothP.P. GröneH.J. MadhusudhanT. IsermannB. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy.Kidney Int.2015871748410.1038/ki.2014.27125075770
    [Google Scholar]
  40. YiH. PengR. ZhangL. SunY. PengH. LiuH. YuL. LiA. ZhangY. JiangW. ZhangZ. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy.Cell Death Dis.201782e258310.1038/cddis.2016.45128151474
    [Google Scholar]
  41. TangS.C.W. YiuW.H. Innate immunity in diabetic kidney disease.Nat. Rev. Nephrol.202016420622210.1038/s41581‑019‑0234‑431942046
    [Google Scholar]
  42. WeiM. LiZ. XiaoL. YangZ. Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury.Mol. Immunol.20156822 Pt A26127110.1016/j.molimm.2015.09.00226364141
    [Google Scholar]
  43. YangS. ZhangJ. WangS. ZhaoX. ShiJ. SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway.Oncotarget2017853911859119810.18632/oncotarget.2043429207635
    [Google Scholar]
  44. LiuY. XuZ. MaF. JiaY. WangG. Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway.Biomed. Pharmacother.20181071393140110.1016/j.biopha.2018.08.13430257355
    [Google Scholar]
  45. ShenJ. DaiZ. LiY. ZhuH. ZhaoL. TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy.Diabetol. Metab. Syndr.20221412610.1186/s13098‑021‑00780‑y35120573
    [Google Scholar]
  46. Sahan-FiratS. Temiz-ResitogluM. GudenD.S. KucukkavrukS.P. TunctanB. SariA.N. KocakZ. MalikK.U. Protection by mTOR inhibition on zymosan-induced systemic inflammatory response and oxidative/nitrosative stress: contribution of mTOR/MEK1/ERK1- /2/IKKβ/IκB-α/NF-κB signalling pathway.Inflammation201841127629810.1007/s10753‑017‑0686‑229110153
    [Google Scholar]
  47. WangT. GaoY. YueR. WangX. ShiY. XuJ. WuB. LiY. Ginsenoside Rg1 alleviates podocyte injury induced by hyperlipidemia via targeting the mTOR/NF- κ B/NLRP3 axis.Evid. Based Complement. Alternat. Med.2020202011410.1155/2020/273571433133213
    [Google Scholar]
  48. LiF. ChenY. LiY. HuangM. ZhaoW. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway.Eur. J. Pharmacol.202088617344910.1016/j.ejphar.2020.17344932758570
    [Google Scholar]
  49. ChenJ. YangY. LvZ. ShuA. DuQ. WangW. ChenY. XuH. Study on the inhibitive effect of Catalpol on diabetic nephropathy.Life Sci.202025711812010.1016/j.lfs.2020.11812032693244
    [Google Scholar]
  50. XuX. ZhangL. HuaF. ZhangC. ZhangC. MiX. QinN. WangJ. ZhuA. QinZ. ZhouF. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy.Exp. Cell Res.2021408211286310.1016/j.yexcr.2021.11286334626587
    [Google Scholar]
  51. SuiC. ZhouD. ADAM metallopeptidase domain 10 knockdown enables podocytes to resist high glucose stimulation by inhibiting pyroptosis via MAPK pathway.Exp. Ther. Med.202325626010.3892/etm.2023.1195937153901
    [Google Scholar]
  52. ThandavarayanR.A. GiridharanV.V. SariF.R. ArumugamS. VeeraveeduP.T. PandianG.N. PalaniyandiS.S. MaM. SuzukiK. GurusamyN. WatanabeK. Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-ĸB signaling pathways after streptozotocin-induced diabetes mellitus.Cell. Physiol. Biochem.201128591192210.1159/00033580522178943
    [Google Scholar]
  53. XuM. HuJ. ZhouB. ZhongY. LinN. XuR. TRIM29 prevents hepatocellular carcinoma progression by inhibiting Wnt/β-catenin signaling pathway.Acta Biochim. Biophys. Sin. (Shanghai)2018511687710.1093/abbs/gmy15130566565
    [Google Scholar]
  54. XuX. QinZ. ZhangC. MiX. ZhangC. ZhouF. WangJ. ZhangL. HuaF. TRIM29 promotes podocyte pyroptosis in diabetic nephropathy through the NF-kB/NLRP3 inflammasome pathway.Cell Biol. Int.20234761126113510.1002/cbin.1200636841942
    [Google Scholar]
  55. ZhaoY. ZengC.Y. LiX.H. YangT.T. KuangX. DuJ.R. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer’s disease.Aging Cell20201910e1323910.1111/acel.1323932964663
    [Google Scholar]
  56. WangN. MaJ. RenY. XiangS. JiaR. Secreted klotho from exosomes alleviates inflammation and apoptosis in acute pancreatitis.Am. J. Transl. Res.20191163375338331312351
    [Google Scholar]
  57. LiX. LiZ. LiB. ZhuX. LaiX. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway.Life Sci.201923411677310.1016/j.lfs.2019.11677331422095
    [Google Scholar]
  58. ZhangL. LiuT. Clinical implication of alterations in serum Klotho levels in patients with type 2 diabetes mellitus and its associated complications.J. Diabetes Complications2018321092293010.1016/j.jdiacomp.2018.06.00230042059
    [Google Scholar]
  59. HeJ. CuiJ. ShiY. WangT. XinJ. LiY. ShanX. ZhuZ. GaoY. AstragalosideI.V. Astragaloside IV attenuates high-glucose-induced impairment in diabetic nephropathy by increasing klotho expression via the NF-κB/NLRP3 axis.J. Diabetes Res.2023202312210.1155/2023/742366137261217
    [Google Scholar]
  60. YangX. ChenZ. LuoZ. YangD. HaoY. HuJ. FengJ. ZhuZ. LuoQ. ZhangZ. LiangW. DingG. STING deletion alleviates podocyte injury through suppressing inflammation by targeting NLRP3 in diabetic kidney disease.Cell. Signal.202310911077710.1016/j.cellsig.2023.11077737329999
    [Google Scholar]
  61. ZangN. CuiC. GuoX. SongJ. HuH. YangM. XuM. WangL. HouX. HeQ. SunZ. WangC. ChenL. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease.iScience2022251010514510.1016/j.isci.2022.10514536176590
    [Google Scholar]
  62. TianX. ZengY. TuQ. JiaoY. YaoS. ChenY. SunL. XiaQ. LuoY. YuanL. JiangQ. Butyrate alleviates renal fibrosis in CKD by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway.Int. Immunopharmacol.2023124Pt B11101010.1016/j.intimp.2023.111010
    [Google Scholar]
  63. ChenY. LiT. TanP. ShiH. ChengY. CaiT. BaiJ. DuY. FuW. Kaempferol from penthorum chinense pursh attenuates hepatic ischemia/reperfusion injury by suppressing oxidative stress and inflammation through activation of the Nrf2/HO-1 signaling pathway.Front. Pharmacol.20221385701510.3389/fphar.2022.85701535431932
    [Google Scholar]
  64. ChenY. ZhuL. MengH. SunX. XueC. Ferulic acid protects human lens epithelial cells against ionizing radiation-induced oxidative damage by activating Nrf2/HO-1 signal pathway.Oxid. Med. Cell. Longev.2022202211110.1155/2022/693218835592532
    [Google Scholar]
  65. ChangT.T. ChiangC.H. ChenC. LinS.C. LeeH.J. ChenJ.W. Antioxidation and Nrf2-mediated heme oxygenase-1 activation contribute to renal protective effects of hydralazine in diabetic nephropathy.Biomed. Pharmacother.202215111313910.1016/j.biopha.2022.11313935623171
    [Google Scholar]
  66. AntarS.A. AbdoW. TahaR.S. FarageA.E. El-MoselhyL.E. AmerM.E. Abdel MonsefA.S. Abdel HamidA.M. KamelE.M. AhmedaA.F. MahmoudA.M. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats.Life Sci.202229112026010.1016/j.lfs.2021.12026034968466
    [Google Scholar]
  67. ZouY. LuoX. FengY. FangS. TianJ. YuB. LiJ. Luteolin prevents THP-1 macrophage pyroptosis by suppressing ROS production via Nrf2 activation.Chem. Biol. Interact.202134510957310.1016/j.cbi.2021.10957334217685
    [Google Scholar]
  68. XiaoL. DaiZ. TangW. LiuC. TangB. AstragalosideI.V. Astragaloside IV alleviates Cerebral Ischemia-Reperfusion Injury through NLRP3 Inflammasome-Mediated Pyroptosis Inhibition via Activating Nrf2.Oxid. Med. Cell. Longev.2021202111410.1155/2021/992556135003524
    [Google Scholar]
  69. ZhangY. ZhaoZ. ZhaoX. XieH. ZhangC. SunX. ZhangJ. HMGB2 causes photoreceptor death via down-regulating Nrf2/HO-1 and up-regulating NF-κB/NLRP3 signaling pathways in light-induced retinal degeneration model.Free Radic. Biol. Med.2022181142810.1016/j.freeradbiomed.2022.01.01835091064
    [Google Scholar]
  70. LvC. ChengT. ZhangB. SunK. LuK. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway.Ren. Fail.2023451216510310.1080/0886022X.2023.216510336938748
    [Google Scholar]
  71. ZhangK. LinL. ZhuY. ZhangN. ZhouM. LiY. Saikosaponin d alleviates Liver Fibrosis by Negatively Regulating the ROS/NLRP3 Inflammasome Through Activating the ERβ Pathway.Front. Pharmacol.20221389498110.3389/fphar.2022.89498135694250
    [Google Scholar]
  72. ZuoY. ChenL. HeX. YeZ. LiL. LiuZ. ZhouS. Atorvastatin regulates MALAT1/miR-200c/NRF2 activity to protect against podocyte pyroptosis induced by high glucose.Diabetes Metab. Syndr. Obes.2021141631164510.2147/DMSO.S29895033880049
    [Google Scholar]
  73. SemenzaG.L. Hypoxia-inducible factor 1 and cardiovascular disease.Annu. Rev. Physiol.2014761395610.1146/annurev‑physiol‑021113‑17032223988176
    [Google Scholar]
  74. DieboldI. PetryA. HessJ. GörlachA. The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1.Mol. Biol. Cell201021122087209610.1091/mbc.e09‑12‑100320427574
    [Google Scholar]
  75. HanC. ZhaiL. ShenH. WangJ. GuanQ. Advanced glycation end-products (AGEs) promote endothelial cell pyroptosis under cerebral ischemia and hypoxia via HIF-1α-RAGE-NLRP3.Mol. Neurobiol.20236052355236610.1007/s12035‑023‑03228‑836652049
    [Google Scholar]
  76. TianY. LuoQ. HuangK. SunT. LuoS. Long noncoding RNA AC078850.1 induces NLRP3 inflammasome-mediated pyroptosis in atherosclerosis by upregulating ITGB2 transcription via transcription factor HIF-1α.Biomedicines2023116173410.3390/biomedicines1106173437371830
    [Google Scholar]
  77. LuH. LinJ. XuC. SunM. ZuoK. ZhangX. LiM. HuangH. LiZ. WuW. FengB. LiuZ. Cyclosporine modulates neutrophil functions via the SIRT6–HIF-1α-glycolysis axis to allevia te severe ulcerative colitis.Clin. Transl. Med.2021112e33410.1002/ctm2.33433634990
    [Google Scholar]
  78. YangZ. YuW. HuangR. YeM. MinZ. SIRT6/HIF-1α axis promotes papillary thyroid cancer progression by inducing epithelial–mesenchymal transition.Cancer Cell Int.20191911710.1186/s12935‑019‑0730‑430675128
    [Google Scholar]
  79. ZhangM. LiuW. LiuY. ZhangZ. HuY. SunD. LiS. FangJ. AstragalosideI.V. Astragaloside IV Inhibited Podocyte Pyroptosis in Diabetic Kidney Disease by Regulating SIRT6/HIF-1α Axis.DNA Cell Biol.2023421059460710.1089/dna.2023.010237751175
    [Google Scholar]
  80. AppelbergS. GuptaS. Svensson AkusjärviS. AmbikanA.T. MikaeloffF. SacconE. VégváriÁ. BenfeitasR. SperkM. StåhlbergM. KrishnanS. SinghK. PenningerJ.M. MirazimiA. NeogiU. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells.Emerg. Microbes Infect.2020911748176010.1080/22221751.2020.179972332691695
    [Google Scholar]
  81. ZhongW.J. LiuT. YangH.H. DuanJ.X. YangJ.T. GuanX.X. XiongJ.B. ZhangY.F. ZhangC.Y. ZhouY. GuanC.X. TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury.Int. J. Biol. Sci.202319124225710.7150/ijbs.7730436594089
    [Google Scholar]
  82. CassavaughJ.M. HaleS.A. WellmanT.L. HoweA.K. WongC. LounsburyK.M. Negative regulation of HIF-1α by an FBW7-mediated degradation pathway during hypoxia.J. Cell. Biochem.2011112123882389010.1002/jcb.2332121964756
    [Google Scholar]
  83. MennerichD. DimovaE. KietzmannT. Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β.Hypoxia (Auckl.)20142354510.2147/HP.S6070327774465
    [Google Scholar]
  84. WangF. WangL. SuiG. YangC. GuoM. XiongX. ChenZ. ZhangQ. LeiP. Inhibition of miR-129 improves neuronal pyroptosis and cognitive impairment through IGF-1/GSK3β signaling pathway: An in vitro and in vivo study.J. Mol. Neurosci.202171112299230910.1007/s12031‑021‑01794‑x33484421
    [Google Scholar]
  85. WangS.H. CuiL.G. SuX.L. KomalS. NiR.C. ZangM.X. ZhangL.R. HanS.N. GSK-3β-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts.Eur. J. Pharmacol.202292017483010.1016/j.ejphar.2022.17483035182545
    [Google Scholar]
  86. AlmomenS. GuanQ. LiangP. YangK. SidiqiA. LevinA. DuC. Daily intake of grape powder prevents the progression of kidney disease in obese type 2 diabetic ZSF1 rats.Nutrients20179434510.3390/nu904034528362355
    [Google Scholar]
  87. TanS.M. ZhangY. CoxA.J. KellyD.J. QiW. Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in an experimental model of diabetic nephropathy.Nephrol. Dial. Transplant.201126110011010.1093/ndt/gfq35520573806
    [Google Scholar]
  88. SiddiqiF.S. MajumderS. ThaiK. AbdallaM. HuP. AdvaniS.L. WhiteK.E. BowskillB.B. GuarnaG. dos SantosC.C. ConnellyK.A. AdvaniA. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes.J. Am. Soc. Nephrol.20162772021203410.1681/ASN.201409089826534922
    [Google Scholar]
  89. De MarinisY. CaiM. BompadaP. AtacD. KotovaO. JohanssonM.E. Garcia-VazE. GomezM.F. LaaksoM. GroopL. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney.Kidney Int.201689234235310.1016/j.kint.2015.12.01826806835
    [Google Scholar]
  90. SamraY.A. SaidH.S. ElsherbinyN.M. LiouG.I. El-ShishtawyM.M. EissaL.A. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome.Life Sci.201615718719910.1016/j.lfs.2016.06.00227266851
    [Google Scholar]
  91. ZouD.M. ZhouS.M. LiL.H. ZhouJ.L. TangZ.M. WangS.H. Knockdown of long noncoding RNAS of maternally expressed 3 alleviates hyperoxia-induced lung injury via inhibiting thioredoxin-interacting protein–mediated pyroptosis by binding to miR-18a.Am. J. Pathol.20201905994100510.1016/j.ajpath.2019.12.01332084370
    [Google Scholar]
  92. DingR. OuW. ChenC. LiuY. LiH. ZhangX. ChaiH. DingX. WangQ. Endoplasmic reticulum stress and oxidative stress contribute to neuronal pyroptosis caused by cerebral venous sinus thrombosis in rats: Involvement of TXNIP/peroxynitrite-NLRP3 inflammasome activation.Neurochem. Int.202014110485610.1016/j.neuint.2020.10485632980492
    [Google Scholar]
  93. MaH. XieC. ChenZ. HeG. DaiZ. CaiH. ZhangH. LuH. WuH. HuX. ZhouK. ZhengG. XuH. XuC. MFG-E8 alleviates intervertebral disc degeneration by suppressing pyroptosis and extracellular matrix degradation in nucleus pulposus cells via Nrf2/TXNIP/NLRP3 axis.Cell Death Discov.20228120910.1038/s41420‑022‑01002‑835440086
    [Google Scholar]
  94. GaoP. MengX.F. SuH. HeF.F. ChenS. TangH. TianX.J. FanD. WangY.M. LiuJ.S. ZhuZ.H. ZhangC. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy.Biochim. Biophys. Acta Mol. Cell Res.20141843112448246010.1016/j.bbamcr.2014.07.00125017793
    [Google Scholar]
  95. GaoP. HeF.F. TangH. LeiC.T. ChenS. MengX.F. SuH. ZhangC. NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia.J. Diabetes Res.2015201511210.1155/2015/50476125834832
    [Google Scholar]
  96. GrossinN. AugerF. Niquet-LeridonC. DurieuxN. MontaigneD. SchmidtA.M. SusenS. JacolotP. BeuscartJ.B. TessierF.J. BoulangerE. Dietary CML-enriched protein induces functional arterial aging in a RAGE-dependent manner in mice.Mol. Nutr. Food Res.201559592793810.1002/mnfr.20140064325655894
    [Google Scholar]
  97. VlassaraH. StrikerG.E. Advanced glycation endproducts in diabetes and diabetic complications.Endocrinol. Metab. Clin. North Am.201342469771910.1016/j.ecl.2013.07.00524286947
    [Google Scholar]
  98. ThiemeK. PereiraB.M.V. da SilvaK.S. FabreN.T. CatanoziS. PassarelliM. Correa-GiannellaM.L. Chronic advanced-glycation end products treatment induces TXNIP expression and epigenetic changes in glomerular podocytes in vivo and in vitro.Life Sci.202127011899710.1016/j.lfs.2020.11899733453249
    [Google Scholar]
  99. AbaisJ.M. XiaM. LiG. ChenY. ConleyS.M. GehrT.W.B. BoiniK.M. LiP.L. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia.J. Biol. Chem.201428939271592716810.1074/jbc.M114.56753725138219
    [Google Scholar]
  100. ZhangC. BoiniK.M. XiaM. AbaisJ.M. LiX. LiuQ. LiP.L. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia.Hypertension201260115416210.1161/HYPERTENSIONAHA.111.18968822647887
    [Google Scholar]
  101. DaiX. LiaoR. LiuC. LiuS. HuangH. LiuJ. JinT. GuoH. ZhengZ. XiaM. LingW. XiaoY. Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy.Redox Biol.20214510203310.1016/j.redox.2021.10203334119876
    [Google Scholar]
  102. SongS. QiuD. WangY. WeiJ. WuH. WuM. WangS. ZhouX. ShiY. DuanH. TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy.Exp. Cell Res.2020388211186210.1016/j.yexcr.2020.11186231982382
    [Google Scholar]
  103. Abd El-KhalikS.R. NasifE. ArakeepH.M. RabahH. The prospective ameliorative role of zinc oxide nanoparticles in STZ-induced diabetic nephropathy in rats: mechanistic targeting of autophagy and regulating Nrf2/TXNIP/NLRP3 inflammasome signaling.Biol. Trace Elem. Res.202220041677168710.1007/s12011‑021‑02773‑434241775
    [Google Scholar]
  104. KeR. WangY. HongS. XiaoL. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy.Exp. Cell Res.2020396211229310.1016/j.yexcr.2020.11229332950473
    [Google Scholar]
  105. CaoS.S. KaufmanR.J. Unfolded protein response.Curr. Biol.20122216R622R62610.1016/j.cub.2012.07.00422917505
    [Google Scholar]
  106. CaoY. HaoY. LiH. LiuQ. GaoF. LiuW. DuanH. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose.Int. J. Mol. Med.201433480981610.3892/ijmm.2014.164224503896
    [Google Scholar]
  107. Sheikh-AliM. SultanS. AlamirA.R. HaasM.J. MooradianA.D. Hyperglycemia-induced endoplasmic reticulum stress in endothelial cells.Nutrition20102611-121146115010.1016/j.nut.2009.08.01920080028
    [Google Scholar]
  108. LeeE.S. KimH.M. KangJ.S. LeeE.Y. YadavD. KwonM.H. KimY.M. KimH.S. ChungC.H. Oleanolic acid and N -acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model.Nephrol. Dial. Transplant.201631339140010.1093/ndt/gfv37726567248
    [Google Scholar]
  109. LiQ. ZhangK. HouL. LiaoJ. ZhangH. HanQ. GuoJ. LiY. HuL. PanJ. YuW. TangZ. Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy.Life Sci.202332212165610.1016/j.lfs.2023.12165637011874
    [Google Scholar]
  110. ZhangT. ZhangY. XuH. LanJ. FengZ. HuangR. GengJ. ChiH. BaiX. LINC00355 mediates CTNNBIP1 promoter methylation and promotes ER stress-induced podocyte injury in diabetic nephropathy.Antioxid. Redox Signal.2023394-622524010.1089/ars.2021.022736738224
    [Google Scholar]
  111. FanY. ZhangJ. XiaoW. LeeK. LiZ. WenJ. HeL. GuiD. XueR. JianG. ShengX. HeJ.C. WangN. Rtn1a-mediated endoplasmic reticulum stress in podocyte injury and diabetic nephropathy.Sci. Rep.20177132310.1038/s41598‑017‑00305‑628336924
    [Google Scholar]
  112. ZhouX.Y. LuoB. JiangZ.K. XieY.K. WuF.C. HuangJ.Q. ChenJ.S. Non-coding RNAS and colorectal cancer liver metastasis.Mol. Cell. Biochem.20204751-215115910.1007/s11010‑020‑03867‑832767228
    [Google Scholar]
  113. RenH. WangQ. Non-coding RNA and diabetic kidney disease.DNA Cell Biol.202140455356710.1089/dna.2020.597333733861
    [Google Scholar]
  114. WangX. GaoY. YiW. QiaoY. HuH. WangY. HuY. WuS. SunH. ZhangT. Inhibition of miRNA-155 alleviates high glucose-induced podocyte inflammation by targeting SIRT1 in diabetic mice.J. Diabetes Res.2021202111110.1155/2021/559739433748285
    [Google Scholar]
  115. WangC. LiuJ. ZhangX. ChenQ. BaiX. HongX. ZhouL. LiuY. Role of miRNA-671-5p in mediating Wnt/β-catenin-triggered podocyte injury.Front. Pharmacol.20221278448910.3389/fphar.2021.78448935111054
    [Google Scholar]
  116. DingX. JingN. ShenA. GuoF. SongY. PanM. MaX. ZhaoL. ZhangH. WuL. QinG. ZhaoY. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20.J. Endocrinol. Invest.20214461175118410.1007/s40618‑020‑01401‑732930981
    [Google Scholar]
  117. KitagawaM. KitagawaK. KotakeY. NiidaH. OhhataT. Cell cycle regulation by long non-coding RNAs.Cell. Mol. Life Sci.201370244785479410.1007/s00018‑013‑1423‑023880895
    [Google Scholar]
  118. BallarinoM. MorlandoM. FaticaA. BozzoniI. Non- coding RNAs in muscle differentiation and musculoskeletal disease.J. Clin. Invest.201612662021203010.1172/JCI8441927249675
    [Google Scholar]
  119. BrazãoT.F. JohnsonJ.S. MüllerJ. HegerA. PontingC.P. TybulewiczV.L.J. Long noncoding RNAs in B-cell development and activation.Blood20161287e10e1910.1182/blood‑2015‑11‑68084327381906
    [Google Scholar]
  120. SireyT.M. RobertsK. HaertyW. Bedoya-ReinaO. Rogatti-GranadosS. TanJ.Y. LiN. HeatherL.C. CarterR.N. CooperS. FinchA.J. WillsJ. MortonN.M. MarquesA.C. PontingC.P. The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity.eLife20198e4505110.7554/eLife.4505131403403
    [Google Scholar]
  121. LiJ. YangC. LiY. ChenA. LiL. YouZ. LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation.Biosci. Rep.2018382BSR2017115010.1042/BSR2017115029229673
    [Google Scholar]
  122. ZhangY. LiuX. BaiX. LinY. LiZ. FuJ. LiM. ZhaoT. YangH. XuR. LiJ. JuJ. CaiB. XuC. YangB. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis.J. Pineal Res.2018642e1244910.1111/jpi.1244929024030
    [Google Scholar]
  123. HanY. QiuH. PeiX. FanY. TianH. GengJ. Low- dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis.J. Cardiovasc. Pharmacol.201871210411210.1097/FJC.000000000000055029095793
    [Google Scholar]
  124. ZhangC. GongY. LiN. LiuX. ZhangY. YeF. GuoQ. ZhengJ. Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3.Am. J. Physiol. Cell Physiol.20213203C355C36410.1152/ajpcell.00403.202033296289
    [Google Scholar]
  125. ChengQ. PanJ. ZhouZ. YinF. XieH. ChenP. LiJ. ZhengP. ZhouL. ZhangW. LiuJ. LuL. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy.Acta Pharmacol. Sin.202142695496310.1038/s41401‑020‑00525‑z32968210
    [Google Scholar]
  126. ItoM. DucasaG.M. MolinaJ.D. SantosJ.V. MallelaS.K. KimJ.J. GeM. MitrofanovaA. SloanA. MerscherS. MimuraI. FornoniA. ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease.Sci. Rep.2023131961610.1038/s41598‑023‑35499‑537316538
    [Google Scholar]
  127. ShenX. WangH. WengC. JiangH. ChenJ. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity.Cell Death Dis.202112218610.1038/s41419‑021‑03458‑533589596
    [Google Scholar]
  128. LiY. YuanY. HuangZ. ChenH. LanR. WangZ. LaiK. ChenH. ChenZ. ZouZ. MaH. LanH.Y. MakT.W. XuY. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy.Cell Death Differ.20212882333235010.1038/s41418‑021‑00755‑633664482
    [Google Scholar]
  129. XiaW. LiY. WuM. JinQ. WangQ. LiS. HuangS. ZhangA. ZhangY. JiaZ. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation.Cell Death Dis.202112213910.1038/s41419‑021‑03431‑233542198
    [Google Scholar]
  130. LiS. FengL. LiG. LiuR. MaC. WangL. GaoA. LiuC. CuiY. JiangZ. XieY. WuQ. WangX. YangL. QiZ. ShenY. GSDME-dependent pyroptosis signaling pathway in diabetic nephropathy.Cell Death Discov.20239115610.1038/s41420‑023‑01452‑837169767
    [Google Scholar]
  131. LiX. JiangX. JiangM. WangZ. ZhaoT. CaoS. LiQ.M. GLP-1RAs inhibit the activation of the NLRP3 inflammasome signaling pathway to regulate mouse renal podocyte pyroptosis.Acta Diabetol.202361222523410.1007/s00592‑023‑02184‑y37847379
    [Google Scholar]
  132. ZhangZ. NiP. TangM. SongY. LiuC. ZhaoB. Dapagliflozin alleviates renal podocyte pyroptosis via regulation of the HO-1/NLRP3 axis.Mol. Med. Rep.202328520010.3892/mmr.2023.1308737711056
    [Google Scholar]
  133. LiuB.H. TuY. NiG.X. YanJ. YueL. LiZ.L. WuJ.J. CaoY.T. WanZ.Y. SunW. WanY.G. Total flavones of Abelmoschus manihot ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting METTL3-dependent m6A modification-mediated NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling.Front. Pharmacol.20211266764410.3389/fphar.2021.66764434335245
    [Google Scholar]
  134. ZhuW. LiY. Y. ZengH. X. LiuX. Q. SunY. T. JiangL. XiaL. L. WuY. G. Carnosine alleviates podocyte injury in diabetic nephropathy by targeting caspase-1- mediated pyroptosis.Int. Immunopharmacol.2021101Pt B10823610.1016/j.intimp.2021.108236
    [Google Scholar]
  135. LiG. LiuC. YangL. FengL. ZhangS. AnJ. LiJ. GaoY. PanZ. XuY. LiuJ. WangY. YanJ. CuiJ. QiZ. YangL. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway.Cell Biol. Toxicol.202339362163910.1007/s10565‑023‑09790‑036640193
    [Google Scholar]
  136. QiaoJ. MaH. ChenM. BaiJ. Vitamin D alleviates neuronal injury in cerebral ischemia-reperfusion via enhancing the Nrf2/HO-1 antioxidant pathway to counteract NLRP3-mediated pyroptosis.J. Neuropathol. Exp. Neurol.202382872273310.1093/jnen/nlad04737403613
    [Google Scholar]
  137. WengX. LuoX. DaiX. LvY. ZhangS. BaiX. BaoX. WangY. ZhaoC. ZengM. HuS. LiJ. JiaH. YuB. Apigenin inhibits macrophage pyroptosis through regulation of oxidative stress and the NF-κB pathway and ameliorates atherosclerosis.Phytother. Res.202337115300531410.1002/ptr.796237526050
    [Google Scholar]
  138. ChuL.H. IndramohanM. RatsimandresyR.A. GangopadhyayA. MorrisE.P. MonackD.M. DorfleutnerA. StehlikC. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages.Nat. Commun.20189199610.1038/s41467‑018‑03409‑329520027
    [Google Scholar]
  139. ChoiY.J. KimS. ChoiY. NielsenT.B. YanJ. LuA. RuanJ. LeeH.R. WuH. SpellbergB. JungJ.U. SERPINB1-mediated checkpoint of inflammatory caspase activation.Nat. Immunol.201920327628710.1038/s41590‑018‑0303‑z30692621
    [Google Scholar]
  140. LiL. AbudurehemanZ. ZhongX. GaoL. GongH. HeC. YangB. RenJ. AlimuA. YilamujiangS. YangF. ZouX. Astaxanthin prevents tuberculosis-associated inflammatory injury by inhibiting the caspase 4/11- gasdermin-pyroptosis pathway.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/477897636523416
    [Google Scholar]
  141. TanH.B. ZhaoQ. ChenL. Penehyclidine hydrochloride suppresses inflammation response and reduces podocyte injury in diabetic nephropathy by targeting fibrinogen-like protein 2.Int. Immunopharmacol.202210710868010.1016/j.intimp.2022.10868035303505
    [Google Scholar]
  142. SunL. DingM. ChenF. ZhuD. XieX. Breviscapine alleviates podocyte injury by inhibiting NF-κB/NLRP3-mediated pyroptosis in diabetic nephropathy.PeerJ202311e1482610.7717/peerj.1482636815984
    [Google Scholar]
  143. WangM.Z. WangJ. CaoD.W. TuY. LiuB.H. YuanC.C. LiH. FangQ.J. ChenJ.X. FuY. WanB.Y. WanZ.Y. WanY.G. WuG.W. Fucoidan alleviates renal fibrosis in diabetic kidney disease via inhibition of NLRP3 inflammasome-mediated podocyte pyroptosis.Front. Pharmacol.20221379093710.3389/fphar.2022.79093735370636
    [Google Scholar]
  144. ZhangQ. HuY. HuJ.E. ZhangM. Solasonine alleviates high glucose-induced podocyte injury through increasing Nrf2-medicated inhibition of NLRP3 activation.Drug Dev. Res.20228371697170610.1002/ddr.2198836048966
    [Google Scholar]
  145. KimD. BanK.Y. LeeG.H. JunH.S. Lysophosphatidic acid induces podocyte pyroptosis in diabetic nephropathy by an increase of Egr1 expression via downregulation of EzH2.Int. J. Mol. Sci.20232412996810.3390/ijms2412996837373116
    [Google Scholar]
  146. GaoY. MaY. XieD. JiangH. ManNAc protects against podocyte pyroptosis via inhibiting mitochondrial damage and ROS/NLRP3 signaling pathway in diabetic kidney injury model.Int. Immunopharmacol.202210710871110.1016/j.intimp.2022.10871135338958
    [Google Scholar]
  147. WangC. HouX. RuiH. LiL. ZhaoJ. YangM. SunL. DongH. ChengH. ChenY.P. Artificially cultivated Ophiocordyceps sinensis alleviates diabetic nephropathy and its podocyte injury via inhibiting P2X7R expression and NLRP3 inflammasome activation.J. Diabetes Res.2018201811610.1155/2018/139041830534570
    [Google Scholar]
  148. YuQ. ZhangM. QianL. WenD. WuG. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway.Life Sci.20192251710.1016/j.lfs.2019.03.07330935950
    [Google Scholar]
  149. LiJ. WangB. ZhouG. YanX. ZhangY. Tetrahydroxy stilbene glucoside alleviates high glucose-induced MPC5 podocytes injury through suppression of NLRP3 inflammasome.Am. J. Med. Sci.2018355658859610.1016/j.amjms.2018.03.00529891042
    [Google Scholar]
  150. DongW. JiaC. LiJ. ZhouY. LuoY. LiuJ. ZhaoZ. ZhangJ. LinS. ChenY. Fisetin attenuates diabetic nephropathy-induced podocyte injury by inhibiting NLRP3 inflammasome.Front. Pharmacol.20221378370610.3389/fphar.2022.78370635126159
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673304627240525135453
Loading
/content/journals/cmc/10.2174/0109298673304627240525135453
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetic nephropathy; drugs; inflammasome; pathogenesis; podocyte; pyroptosis; signal pathways
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test