Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The clinical effectiveness of the available anticancer drugs has been reduced due to the development of drug resistance and serious adverse effects, which have restricted chemotherapy for cancer. Therefore, there is a persistent need for new anticancer medications with reduced side effects. Medical researchers are pursuing various methods to find new, potent, specifically targeted molecules for cancer treatment. Through various techniques, numerous molecules are discovered. However, among them, acridine stands out as a promising heterocycle that has captured the interest of medicinal chemists and acquired significant pharmacological value. The synthetic adaptability of acridine has enabled the creation of numerous derivatives with a wide range of architectural properties, further accelerating this broad spectrum of pharmacological activities. Recent studies have looked at the mechanisms by which acridine and its analogs inhibit tyrosine kinases, topoisomerases, telomerase, and DNA repair interaction. We have compiled our knowledge of acridine compounds for their anticancer activities, mechanisms of action, structure-activity relationship (SAR), and selective, specific activity against different cancer drug targets, as well as and anticancer activities of acridine and its analogs from the perspective of cancer drug discovery, in this review.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673310987240610091522
2024-06-26
2025-10-23
Loading full text...

Full text loading...

References

  1. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp263 19934210
    [Google Scholar]
  2. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  3. HenkeE. NandigamaR. ErgünS. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy.Front. Mol. Biosci.2020616010.3389/fmolb.2019.00160 32118030
    [Google Scholar]
  4. KrzyszczykP. AcevedoA. DavidoffE.J. TimminsL.M. Marrero-BerriosI. PatelM. WhiteC. LoweC. SherbaJ.J. HartmanshennC. O’NeillK.M. BalterM.L. FritzZ.R. AndroulakisI.P. SchlossR.S. YarmushM.L. The growing role of precision and personalized medicine for cancer treatment.Technology2018603n047910010.1142/S2339547818300020 30713991
    [Google Scholar]
  5. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.041 29071215
    [Google Scholar]
  6. Van NormanG.A. PhaseI.I. Phase II trials in drug development and adaptive trial design.JACC Basic Transl. Sci.20194342843710.1016/j.jacbts.2019.02.005 31312766
    [Google Scholar]
  7. WoutersO.J. McKeeM. LuytenJ. Estimated research and development investment needed to bring a new medicine to market, 2009-2018.JAMA2020323984485310.1001/jama.2020.1166 32125404
    [Google Scholar]
  8. PavlovskyA.G. LiuX. FaehnleC.R. PotenteN. ViolaR.E. Structural characterization of inhibitors with selectivity against members of a homologous enzyme family.Chem. Biol. Drug Des.201279112813610.1111/j.1747‑0285.2011.01267.x 22039970
    [Google Scholar]
  9. WangX. LinZ. BustinK.A. McKnightN.R. ParsonsW.H. MatthewsM.L. Discovery of potent and selective inhibitors against protein-derived electrophilic cofactors.J. Am. Chem. Soc.2022144125377538810.1021/jacs.1c12748 35235319
    [Google Scholar]
  10. dos SantosJ.C. AlvesJ.E.F. de AzevedoR.D.S. de LimaM.L. de Oliveira SilvaM.R. da SilvaJ.G. da SilvaJ.M. de Carvalho CorreiaA.C. do Carmo Alves de LimaM. de OliveiraJ.F. de MouraR.O. de AlmeidaS.M.V. Study of nitrogen heterocycles as DNA/HSA binder, topoisomerase inhibitors and toxicological safety.Int. J. Biol. Macromol.2024254Pt 312765110.1016/j.ijbiomac.2023.127651 37949265
    [Google Scholar]
  11. HunterW.N. Structure-based ligand design and the promise held for antiprotozoan drug discovery.J. Biol. Chem.200928418117491175310.1074/jbc.R800072200 19103598
    [Google Scholar]
  12. GoniL.K.M.O. Jafar MazumderM.A. TripathyD.B. QuraishiM.A. Acridine and its derivatives: Synthesis, biological, and anticorrosion properties.Materials20221521756010.3390/ma15217560 36363152
    [Google Scholar]
  13. PrasherP. SharmaM. Medicinal chemistry of acridine and its analogues.MedChemComm20189101589161810.1039/C8MD00384J 30429967
    [Google Scholar]
  14. ChenR. HuoL. JaiswalY. HuangJ. ZhongZ. ZhongJ. WilliamsL. XiaX. LiangY. YanZ. Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives.Molecules20192411206510.3390/molecules24112065 31151235
    [Google Scholar]
  15. SridharanK. GogtayN.J. Therapeutic nucleic acids: Current clinical status.Br. J. Clin. Pharmacol.201682365967210.1111/bcp.12987 27111518
    [Google Scholar]
  16. WolfeA. ShimerG.H.Jr MeehanT. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA.Biochemistry198726206392639610.1021/bi00394a013 3427013
    [Google Scholar]
  17. GravesE. Intercalative binding of small molecules to nucleic acids.Curr. Org. Chem.2005491592910.2174/1385272003375978
    [Google Scholar]
  18. NafisiS. SabouryA.A. KeramatN. NeaultJ.F. Tajmir-RiahiH.A. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue.J. Mol. Struct.20078271-3354310.1016/j.molstruc.2006.05.004
    [Google Scholar]
  19. FergusonL.R. DennyW.A. The genetic toxicology of acridines.Mutat. Res. Rev. Genet. Toxicol.1991258212316010.1016/0165‑1110(91)90006‑H 1881402
    [Google Scholar]
  20. FergusonL.R. TurnerP.M. DennyW.A. The mutagenic effects of diacridines and diquinolines in microbial systems.Mutat. Res.1990232233734310.1016/0027‑5107(90)90140‑Y 2215541
    [Google Scholar]
  21. ClarkeJ.J. SokalD.C. CancelA.M. CampenD.B. GudiR. WagnerV.O. SanR.H.C. Jacobson-KramD. Re-evaluation of the mutagenic potential of quinacrine dihydrochloride dihydrate.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20014941-2415310.1016/S1383‑5718(01)00178‑4 11423344
    [Google Scholar]
  22. GurovaK. New hopes from old drugs: Revisiting DNA-binding small molecules as anticancer agents.Future Oncol.20095101685170410.2217/fon.09.127 20001804
    [Google Scholar]
  23. SnyderR.D. ArnoneM.R. Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay.Mutat. Res.20025031-2213510.1016/S0027‑5107(02)00028‑3 12052500
    [Google Scholar]
  24. AydinogluS. PastiA. BiverT. MennucciB. AuramineO. Auramine O interaction with DNA: A combined spectroscopic and TD-DFT analysis.Phys. Chem. Chem. Phys.20192137206062061210.1039/C9CP03071A 31528919
    [Google Scholar]
  25. BelmontP. DorangeI. Acridine/acridone: A simple scaffold with a wide range of application in oncology.Expert Opin. Ther. Pat.200818111211122410.1517/13543776.18.11.1211
    [Google Scholar]
  26. MangueiraV.M. de SousaT.K.G. BatistaT.M. de AbrantesR.A. MouraA.P.G. FerreiraR.C. de AlmeidaR.N. BragaR.M. LeiteF.C. MedeirosK.C.P. CavalcantiM.A.T. MouraR.O. SilvestreG.F.G. BatistaL.M. SobralM.V. A 9-aminoacridine derivative induces growth inhibition of Ehrlich ascites carcinoma cells and antinociceptive effect in mice.Front. Pharmacol.20221396373610.3389/fphar.2022.963736 36324671
    [Google Scholar]
  27. SondhiS.M. KumarS. RaniR. ChakrabortyA. RoyP. Synthesis of bis‐acridine derivatives exhibiting anticancer and anti‐inflammatory activity.J. Heterocycl. Chem.201350225226010.1002/jhet.985
    [Google Scholar]
  28. LorenteA. VázquezY. FernándezM.J. FerrándezA. Bisacridines with aromatic linking chains. Synthesis, DNA interaction, and antitumor activity.Bioorg. Med. Chem.200412164307431210.1016/j.bmc.2004.06.021 15332297
    [Google Scholar]
  29. AntoniniI. PolucciP. MagnanoA. SparapaniS. MartelliS. Rational design, synthesis, and biological evaluation of bis(pyrimido[5,6,1-de]acridines) and bis(pyrazolo[3,4,5-kl]acridine-5-carboxamides) as new anticancer agents.J. Med. Chem.200447215244525010.1021/jm049706k 15456268
    [Google Scholar]
  30. AntoniniI. PolucciP. MagnanoA. GattoB. PalumboM. MentaE. PescalliN. MartelliS. Design, synthesis, and biological properties of new bis(acridine-4-carboxamides) as anticancer agents.J. Med. Chem.200346143109311510.1021/jm030820x 12825949
    [Google Scholar]
  31. LinL. LinW.Q. JiangJ.H. ShenG.L. YuR.Q. QSAR analysis of substituted bis[(acridine-4-carboxamide) propyl] methylamines using optimized block-wise variable combination by particle swarm optimization for partial least squares modeling.Eur. J. Pharm. Sci.2005252-324525410.1016/j.ejps.2005.02.016 15911220
    [Google Scholar]
  32. FritzscheH. TriebelH. ChairesJ.B. DattaguptaN. CrothersD.M. Studies on the interaction of anthracycline antibiotics and deoxyribonucleic acid: Geometry of intercalation of iremycin and daunomycin.Biochemistry198221173940394610.1021/bi00260a006 7126525
    [Google Scholar]
  33. SpicerJ.A. GamageS.A. AtwellG.J. FinlayG.J. BaguleyB.C. DennyW.A. Structure-activity relationships for acridine-substituted analogues of the mixed topoisomerase I/II inhibitor N-[2-(dimethylamino)ethyl]acridine-4-carboxamide.J. Med. Chem.199740121919192910.1021/jm970004n 9191970
    [Google Scholar]
  34. DennyW.A. AtwellG.J. BaguleyB.C. WakelinL.P.G. Potential antitumor agents. 44. Synthesis and antitumor activity of new classes of diacridines: importance of linker chain rigidity for DNA binding kinetics and biological activity.J. Med. Chem.198528111568157410.1021/jm00149a005 4067986
    [Google Scholar]
  35. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202110.1177/20503121211034366 34408877
    [Google Scholar]
  36. DemeunynckM. CharmantrayF. MartelliA. Interest of acridine derivatives in the anticancer chemotherapy.Curr. Pharm. Des.200520057 11562307
    [Google Scholar]
  37. KetronA.C. DennyW.A. GravesD.E. OsheroffN. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions.Biochemistry20125181730173910.1021/bi201159b 22304499
    [Google Scholar]
  38. BuzunK. BielawskaA. BielawskiK. GornowiczA. DNA topoisomerases as molecular targets for anticancer drugs.J. Enzyme Inhib. Med. Chem.20203511781179910.1080/14756366.2020.1821676 32975138
    [Google Scholar]
  39. Gensicka-KowalewskaM. CholewińskiG. DzierzbickaK. Recent developments in the synthesis and biological activity of acridine/acridone analogues.RSC Adv.2017726157761580410.1039/C7RA01026E
    [Google Scholar]
  40. ArrighiG. PuertaA. PetriniA. HickeF.J. NocentiniA. FernandesM.X. PadrónJ.M. SupuranC.T. Fernández-BolañosJ.G. LópezÓ. Squaramide-tethered sulfonamides and coumarins: Synthesis, inhibition of tumor-associated CAs IX and XII and docking simulations.Int. J. Mol. Sci.20222314768510.3390/ijms23147685 35887037
    [Google Scholar]
  41. KumarP. KumarR. PrasadD.N. Synthesis and anticancer study of 9-aminoacridine derivatives.Arab. J. Chem.201361798510.1016/j.arabjc.2012.04.039
    [Google Scholar]
  42. VarakumarP. RajagopalK. AparnaB. RamanK. ByranG. Gonçalves LimaC.M. RashidS. NafadyM.H. EmranT.B. WybraniecS. Acridine as an anti-tumour agent: A critical review.Molecules202228119310.3390/molecules28010193 36615391
    [Google Scholar]
  43. PaluszkiewiczE. HorowskaB. Borowa-MazgajB. Peszyńska-SularzG. Paradziej-ŁukowiczJ. AugustinE. KonopaJ. MazerskaZ. Design, synthesis and high antitumor potential of new unsymmetrical bisacridine derivatives towards human solid tumors, specifically pancreatic cancers and their unique ability to stabilize DNA G-quadruplexes.Eur. J. Med. Chem.202020411259910.1016/j.ejmech.2020.112599 32736230
    [Google Scholar]
  44. ZhouQ. WuH. YouC. GaoZ. SunK. WangM. ChenF. SunB. 1,3-dimethyl-6-nitroacridine derivatives induce apoptosis in human breast cancer cells by targeting DNA.Drug Dev. Ind. Pharm.201945221222110.1080/03639045.2018.1529185 30256663
    [Google Scholar]
  45. KalirajanR. SankarS. JubieS. GowrammaB. Molecular docking studies and in-silico admet screening of some novel oxazine substituted 9-anilinoacridines as topoisomerase II inhibitors.Ind. J. Pharmac. Educ. Res.201751111011510.5530/ijper.51.1.15
    [Google Scholar]
  46. MoreiraD. LeitãoD. Lopes-NunesJ. SantosT. FigueiredoJ. MirandaA. AlexandreD. TomazC. MergnyJ.L. CruzC. G-quadruplex aptamer-ligand characterization.Molecules20222720678110.3390/molecules27206781 36296374
    [Google Scholar]
  47. QiQ. HeK. YooM.H. ChanC.B. LiuX. ZhangZ. OlsonJ.J. XiaoG. WangL. MaoH. FuH. TaoH. RamalingamS.S. SunS.Y. MischelP.S. YeK. Acridine yellow G blocks glioblastoma growth via dual inhibition of epidermal growth factor receptor and protein kinase C kinases.J. Biol. Chem.201228796113612710.1074/jbc.M111.293605 22215664
    [Google Scholar]
  48. KalirajanR. KulshresthaV. SankarS. JubieS. Docking studies, synthesis, characterization of some novel oxazine substituted 9-anilinoacridine derivatives and evaluation for their antioxidant and anticancer activities as topoisomerase II inhibitors.Eur. J. Med. Chem.20125621722410.1016/j.ejmech.2012.08.025 22982526
    [Google Scholar]
  49. HansdaS. GhoshG. GhoshR. 9-phenyl acridine photosensitizes A375 cells to UVA radiation.Heliyon202069e0473310.1016/j.heliyon.2020.e04733 32944667
    [Google Scholar]
  50. RazaA. JacobsonB.A. BenoitA. PatelM.R. Jay-DixonJ. HiasaH. FergusonD.M. KratzkeR.A. Novel acridine-based agents with topoisomerase II inhibitor activity suppress mesothelioma cell proliferation and induce apoptosis.Invest. New Drugs20123041443144810.1007/s10637‑011‑9720‑7 21789510
    [Google Scholar]
  51. FergusonD.M. JacobsonB.A. Jay-DixonJ. PatelM.R. KratzkeR.A. RazaA. Targeting topoisomerase II activity in NSCLC with 9-aminoacridine derivatives.Anticancer Res.2015351052115217
    [Google Scholar]
  52. SunY.W. ChenK.Y. KwonC.H. ChenK.M. CK0403, a 9-aminoacridine, is a potent anti-cancer agent in human breast cancer cells.Mol. Med. Rep.201613193393810.3892/mmr.2015.4604 26648164
    [Google Scholar]
  53. JoubertJ.P. SmitF.J. du PlessisL. SmithP.J. N’DaD.D. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids.Eur. J. Pharm. Sci.201456162710.1016/j.ejps.2014.01.014 24560941
    [Google Scholar]
  54. JuW. ZhangM. PetrusM. MaedaM. Pise-MasisonC.A. WaldmannT.A. Combination of 9-aminoacridine with Campath-1H provides effective therapy for a murine model of adult T-cell leukemia.Retrovirology20141114310.1186/1742‑4690‑11‑43 24890041
    [Google Scholar]
  55. LuanX. GaoC. ZhangN. ChenY. SunQ. TanC. LiuH. JinY. JiangY. Exploration of acridine scaffold as a potentially interesting scaffold for discovering novel multi-target VEGFR-2 and Src kinase inhibitors.Bioorg. Med. Chem.201119113312331910.1016/j.bmc.2011.04.053 21576023
    [Google Scholar]
  56. KavaH.W. MurrayV. CpG methylation increases the DNA binding of 9-aminoacridine carboxamide Pt analogues.Bioorg. Med. Chem.201624194701471010.1016/j.bmc.2016.08.011 27567075
    [Google Scholar]
  57. PaulM. MurrayV. The sequence selectivity of DNA-targeted 9-aminoacridine cisplatin analogues in a telomere-containing DNA sequence.J. Biol. Inorg. Chem.201116573574310.1007/s00775‑011‑0774‑y 21465324
    [Google Scholar]
  58. KumarR. SharmaA. SharmaS. SilakariO. SinghM. KaurM. Synthesis, characterization and antitumor activity of 2-methyl-9-substituted acridines.Arab. J. Chem.201710S956S96310.1016/j.arabjc.2012.12.035
    [Google Scholar]
  59. WalunjD. EgarminaK. TuchinskyH. ShpilbergO. Hershkovitz-RokahO. GrynszpanF. GellermanG. Expedient synthesis and anticancer evaluation of dual‐action 9‐anilinoacridine methyl triazene chimeras.Chem. Biol. Drug Des.202197223725210.1111/cbdd.13776 32772433
    [Google Scholar]
  60. LoW.L. ChuP.Y. LeeT.H. SuT.L. ChienY. ChenY.W. HuangP.I. TsengL.M. TuP.H. KaoS.Y. LoJ.F. A combined DNA-affinic molecule and N-mustard alkylating agent has an anti-cancer effect and induces autophagy in oral cancer cells.Int. J. Mol. Sci.20121333277329010.3390/ijms13033277 22489152
    [Google Scholar]
  61. KalirajanR. PandiselviA. GowrammaB. BalachandranP. In-silico design, ADMET screening, MM-GBSA binding free energy of some novel isoxazole substituted 9-anilinoacridines as HER2 inhibitors targeting breast cancer.Curr. Drug Res. Rev.201911211812810.2174/2589977511666190912154817 31513003
    [Google Scholar]
  62. PaulíkováH. VantováZ. HunákováĽ. ČižekováL. ČarnáM. KožurkováM. SabolováD. KristianP. HamuľakováS. ImrichJ. DNA binding acridine–thiazolidinone agents affecting intracellular glutathione.Bioorg. Med. Chem.201220247139714810.1016/j.bmc.2012.09.068 23122936
    [Google Scholar]
  63. BarrosF.W.A. SilvaT.G. da Rocha PittaM.G. BezerraD.P. Costa-LotufoL.V. de MoraesM.O. PessoaC. de MouraM.A.F.B. de AbreuF.C. de LimaM.C.A. GaldinoS.L. da Rocha PittaI. GoulartM.O.F. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives.Bioorg. Med. Chem.201220113533353910.1016/j.bmc.2012.04.007 22546208
    [Google Scholar]
  64. MagalhaesL.G. MarquesF.B. da FonsecaM.B. RogérioK.R. GraebinC.S. AndricopuloA.D. Discovery of a series of acridinones as mechanism-based tubulin assembly inhibitors with anticancer activity.PLoS One2016118e016084210.1371/journal.pone.0160842 27508497
    [Google Scholar]
  65. Mohammadi-KhanaposhtaniM. SafaviM. SabourianR. MahdaviM. PordeliM. SaeediM. ArdestaniS.K. ForoumadiA. ShafieeA. AkbarzadehT. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles.Mol. Divers.201519478779510.1007/s11030‑015‑9616‑0 26170096
    [Google Scholar]
  66. PawlowskaM. ChuR. Fedejko-KapB. AugustinE. MazerskaZ. Radominska-PandyaA. ChambersT.C. Metabolic transformation of antitumor acridinone C-1305 but not C-1311 via selective cellular expression of UGT1A10 increases cytotoxic response: Implications for clinical use.Drug Metab. Dispos.201341241442110.1124/dmd.112.047811 23160818
    [Google Scholar]
  67. ChenK. ChuB. LiuF. LiB. GaoC. LiL. SunQ. ShenZ. JiangY. New benzimidazole acridine derivative induces human colon cancer cell apoptosis in vitro via the ROS-JNK signaling pathway.Acta Pharmacol. Sin.20153691074108410.1038/aps.2015.44 26235743
    [Google Scholar]
  68. YuanZ. ChenS. ChenC. ChenJ. ChenC. DaiQ. GaoC. JiangY. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy.Eur. J. Med. Chem.20171381135114610.1016/j.ejmech.2017.07.050 28763648
    [Google Scholar]
  69. BehbahaniF.S. TabeshpourJ. MirzaeiS. GolmakaniyoonS. Tayarani-NajaranZ. GhasemiA. GhodsiR. Synthesis and biological evaluation of novel benzo[c] acridine‐diones as potential anticancer agents and tubulin polymerization inhibitors.Arch. Pharm.20193526180030710.1002/ardp.201800307 31012156
    [Google Scholar]
  70. GuoQ.L. SuH.F. WangN. LiaoS.R. LuY.T. OuT.M. TanJ.H. LiD. HuangZ.S. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[ c]acridine derivatives as new c- KIT promoter G-quadruplex binding ligands.Eur. J. Med. Chem.201713045847110.1016/j.ejmech.2017.02.051 28284084
    [Google Scholar]
  71. TorikaiK. KogaR. LiuX. UmeharaK. KitanoT. WatanabeK. OishiT. NoguchiH. ShimohigashiY. Design and synthesis of benzoacridines as estrogenic and anti-estrogenic agents.Bioorg. Med. Chem.201725205216523710.1016/j.bmc.2017.07.067 28882502
    [Google Scholar]
  72. Paradziej-ŁukowiczJ. SkwarskaA. Peszyńska-SularzG. Brillowska-DąbrowskaA. KonopaJ. Anticancer imidazoacridinone C-1311 inhibits hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and angiogenesis.Cancer Biol. Ther.201112758659710.4161/cbt.12.7.15980 21775820
    [Google Scholar]
  73. AdarY. StarkM. BramE.E. Nowak-SliwinskaP. van den BerghH. SzewczykG. SarnaT. SkladanowskiA. GriffioenA.W. AssarafY.G. Imidazoacridinone-dependent lysosomal photodestruction: A pharmacological Trojan horse approach to eradicate multidrug-resistant cancers.Cell Death Dis.201234e293e29310.1038/cddis.2012.30 22476101
    [Google Scholar]
  74. AugustinE. PawłowskaM. PolewskaJ. PotegaA. MazerskaZ. Modulation of CYP3A4 activity and induction of apoptosis, necrosis and senescence by the anti‐tumour imidazoacridinone C‐1311 in human hepatoma cells.Cell Biol. Int.201337210912010.1002/cbin.10018 23319370
    [Google Scholar]
  75. NolanK.A. HumphriesM.P. BryceR.A. StratfordI.J. Imidazoacridin-6-ones as novel inhibitors of the quinone oxidoreductase NQO2.Bioorg. Med. Chem. Lett.20102092832283610.1016/j.bmcl.2010.03.051 20356739
    [Google Scholar]
  76. Fedejko-KapB. BrattonS.M. FinelM. Radominska-PandyaA. MazerskaZ. Role of human UDP-glucuronosyltransferases in the biotransformation of the triazoloacridinone and imidazoacridinone antitumor agents C-1305 and C-1311: highly selective substrates for UGT1A10.Drug Metab. Dispos.20124091736174310.1124/dmd.112.045401 22659092
    [Google Scholar]
  77. PolewskaJ. SkwarskaA. AugustinE. KonopaJ. DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells.J. Pharmacol. Exp. Ther.2013346339340510.1124/jpet.113.203851 23823138
    [Google Scholar]
  78. PotegaA. DabrowskaE. NiemiraM. Kot-WasikA. RonseauxS. HendersonC.J. WolfC.R. MazerskaZ. The imidazoacridinone antitumor drug, C-1311, is metabolized by flavin monooxygenases but not by cytochrome P450s.Drug Metab. Dispos.20113981423143210.1124/dmd.111.038984 21555506
    [Google Scholar]
  79. SkwarskaA. AugustinE. BeffingerM. WojtczykA. KoniczS. LaskowskaK. PolewskaJ. Targeting of FLT3-ITD kinase contributes to high selectivity of imidazoacridinone C-1311 against FLT3-activated leukemia cells.Biochem. Pharmacol.201595423825210.1016/j.bcp.2015.04.006 25896848
    [Google Scholar]
  80. HaiderM.R. AhmadK. SiddiquiN. AliZ. AkhtarM.J. FuloriaN. FuloriaS. RavichandranM. YarM.S. Novel 9-(2-(1-arylethylidene) hydrazinyl) acridine derivatives: Target Topoisomerase 1 and growth inhibition of HeLa cancer cells.Bioorg. Chem.20198810296210.1016/j.bioorg.2019.102962 31085373
    [Google Scholar]
  81. MangueiraV.M. BatistaT.M. BritoM.T. SousaT.K.G. CruzR.M.D. AbrantesR.A. VerasR.C. MedeirosI.A. MedeirosK.K.P. PereiraA.L.C. SerafimV.L. MouraR.O. SobralM.V. A new acridine derivative induces cell cycle arrest and antiangiogenic effect on Ehrlich ascites carcinoma model.Biomed. Pharmacother.20179025326110.1016/j.biopha.2017.03.049 28364597
    [Google Scholar]
  82. LisboaT. SilvaD. DuarteS. FerreiraR. AndradeC. LopesA.L. RibeiroJ. FariasD. MouraR. ReisM. MedeirosK. MagalhãesH. SobralM. Toxicity and antitumor activity of a thiophene–acridine hybrid.Molecules20192516410.3390/molecules25010064 31878135
    [Google Scholar]
  83. ChenJ. LiD. LiW. YinJ. ZhangY. YuanZ. GaoC. LiuF. JiangY. Design, synthesis and anticancer evaluation of acridine hydroxamic acid derivatives as dual Topo and HDAC inhibitors.Bioorg. Med. Chem.201826143958396610.1016/j.bmc.2018.06.016 29954683
    [Google Scholar]
  84. RoeS. GunaratnamM. SpiteriC. SharmaP. AlharthyR.D. NeidleS. MosesJ.E. Synthesis and biological evaluation of hybrid acridine-HSP90 ligand conjugates as telomerase inhibitors.Org. Biomol. Chem.201513318500850410.1039/C5OB01177A 26156660
    [Google Scholar]
  85. UngvarskyJ. PlsikovaJ. JanovecL. KovalJ. MikesJ. MikesováL. HarvanovaD. FedorockoP. KristianP. KasparkovaJ. BrabecV. VojtickovaM. SabolovaD. StramovaZ. RosochaJ. ImrichJ. KozurkovaM. Novel trisubstituted acridines as human telomeric quadruplex binding ligands.Bioorg. Chem.201457132910.1016/j.bioorg.2014.07.010 25171773
    [Google Scholar]
  86. ZhangW. ZhangB. ZhangW. YangT. WangN. GaoC. TanC. LiuH. JiangY. Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors.Eur. J. Med. Chem.2016116597010.1016/j.ejmech.2016.03.066 27060757
    [Google Scholar]
  87. JiangD. TamA.B. AlagappanM. HayM.P. GuptaA. KozakM.M. Solow-CorderoD.E. LumP.Y. DenkoN.C. GiacciaA.J. LeQ.T. NiwaM. KoongA.C. Acridine derivatives as inhibitors of the IRE1α–XBP1 pathway are cytotoxic to human multiple myeloma.Mol. Cancer Ther.20161592055206510.1158/1535‑7163.MCT‑15‑1023 27307600
    [Google Scholar]
  88. SalemO.M. VilkováM. JanoĿková, J.; Jendželovský, R.; FedoroĿko, P.; Žilecká, E.; Kašpárková, J.; Brabec, V.; Imrich, J.; Kožurková, M. New spiro tria(thia)zolidine acridines as topoisomerase inhibitors, DNA binders and cytostatic compounds.Int. J. Biol. Macromol.20168669070010.1016/j.ijbiomac.2016.02.018 26861825
    [Google Scholar]
  89. de SousaV.M. DuarteS.S. SilvaD.K.F. FerreiraR.C. de MouraR.O. SegundoM.A.S.P. FariasD. VieiraL. GonçalvesJ.C.R. SobralM.V. Cytotoxicity of a new spiro-acridine derivative: modulation of cellular antioxidant state and induction of cell cycle arrest and apoptosis in HCT-116 colorectal carcinoma.Naunyn Schmiedebergs Arch. Pharmacol.202339731901191310.1007/s00210‑023‑02686‑0 37676494
    [Google Scholar]
  90. GirekM. KłosińskiK. GrobelskiB. PizzimentiS. CucciM.A. DagaM. BarreraG. PasiekaZ. CzarneckaK. SzymańskiP. Novel tetrahydroacridine derivatives with iodobenzoic moieties induce G0/G1 cell cycle arrest and apoptosis in A549 non-small lung cancer and HT-29 colorectal cancer cells.Mol. Cell. Biochem.20194601-212315010.1007/s11010‑019‑03576‑x 31313023
    [Google Scholar]
  91. Cheung-OngK. SongK.T. MaZ. ShabtaiD. LeeA.Y. GalloD. HeislerL.E. BrownG.W. BierbachU. GiaeverG. NislowC. Comparative chemogenomics to examine the mechanism of action of dna-targeted platinum-acridine anticancer agents.ACS Chem. Biol.20127111892190110.1021/cb300320d 22928710
    [Google Scholar]
  92. FahrenholtzC.D. DingS. BernishB.W. WrightM.L. ZhengY. YangM. YaoX. DonatiG.L. GrossM.D. BierbachU. SinghR. Design and cellular studies of a carbon nanotube-based delivery system for a hybrid platinum-acridine anticancer agent.J. Inorg. Biochem.201616517018010.1016/j.jinorgbio.2016.07.016 27496614
    [Google Scholar]
  93. GrahamL.A. SuryadiJ. WestT.K. KuceraG.L. BierbachU. Synthesis, aqueous reactivity, and biological evaluation of carboxylic acid ester-functionalized platinum-acridine hybrid anticancer agents.J. Med. Chem.201255177817782710.1021/jm300879k 22871158
    [Google Scholar]
  94. KostrhunovaH. MalinaJ. PickardA.J. StepankovaJ. VojtiskovaM. KasparkovaJ. MuchovaT. RohlfingM.L. BierbachU. BrabecV. Replacement of a thiourea with an amidine group in a monofunctional platinum-acridine antitumor agent. Effect on DNA interactions, DNA adduct recognition and repair.Mol. Pharm.2011851941195410.1021/mp200309x 21806015
    [Google Scholar]
  95. PickardA.J. LiuF. BartensteinT.F. HainesL.G. LevineK.E. KuceraG.L. BierbachU. Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: A structure-activity relationship study.Chemistry20142049161741618710.1002/chem.201404845 25302716
    [Google Scholar]
  96. QiaoX. ZeitanyA.E. WrightM.W. EssaderA.S. LevineK.E. KuceraG.L. BierbachU. Analysis of the DNA damage produced by a platinum–acridine antitumor agent and its effects in NCI-H460 lung cancer cells.Metallomics20124764565210.1039/c2mt20031g 22456976
    [Google Scholar]
  97. SmyreC.L. SalutaG. KuteT.E. KuceraG.L. BierbachU. Inhibition of DNA synthesis by a platinum–acridine hybrid agent leads to potent cell kill in nonsmall cell lung cancer.ACS Med. Chem. Lett.201121187087410.1021/ml2001888 22328962
    [Google Scholar]
  98. ChangchienJ.J. ChenY.J. HuangC.H. ChengT.L. LinS.R. ChangL.S. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression.Toxicol. Appl. Pharmacol.20152841334110.1016/j.taap.2015.02.005 25684043
    [Google Scholar]
  99. HuangC.H. LeeY.C. ChenY.J. WangL.J. ShiY.J. ChangL.S. Quinacrine induces the apoptosis of human leukemia U937 cells through FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation.Toxicol. Appl. Pharmacol.2017334354610.1016/j.taap.2017.08.019 28867437
    [Google Scholar]
  100. NayakD. TripathiN. KathuriaD. SiddharthS. NayakA. BharatamP.V. KunduC. Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting ABCG2 and modulating DNA damage repair pathway.Int. J. Biochem. Cell Biol.202011910568210.1016/j.biocel.2019.105682 31877386
    [Google Scholar]
  101. SiddharthS. NayakD. NayakA. DasS. KunduC.N. ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous Polyposis coli.DNA Repair201645445510.1016/j.dnarep.2016.05.034 27334689
    [Google Scholar]
  102. YangS. ShengL. XuK. WangY. ZhuH. ZhangP. MuQ. OuyangG. Anticancer effect of quinacrine on diffuse large B cell lymphoma via inhibition of MSI2 NUMB signaling pathway.Mol. Med. Rep.2018171522530 29115587
    [Google Scholar]
  103. SolomonV.R. PundirS. LeH.T. LeeH. Design and synthesis of novel quinacrine-[1,3]-thiazinan-4-one hybrids for their anti-breast cancer activity.Eur. J. Med. Chem.20181431028103810.1016/j.ejmech.2017.11.097 29232580
    [Google Scholar]
  104. SolomonV.R. AlmnayanD. LeeH. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad.Eur. J. Med. Chem.201713715616610.1016/j.ejmech.2017.05.052 28586716
    [Google Scholar]
  105. de Melo RegoM.J.B. de SenaW.b. de MouraR.O. JacobI.T.T. Lins e LinsT.U. PereiraM.C. do CarmoA. Synthesis and anticancer evaluation of thiazacridine derivatives reveals new selective molecules to hematopoietic neoplastic cells.Comb. Chem. High Throughput Screen.2017201720
    [Google Scholar]
  106. BarrosF.W.A. BezerraD.P. FerreiraP.M.P. CavalcantiB.C. SilvaT.G. PittaM.G.R. de LimaM. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives.Toxicol. Appl. Pharmacol.2013268374610.1016/j.taap.2013.01.010 23347980
    [Google Scholar]
  107. ChagasM.B.O. CordeiroN.C.C. MarquesK.M.R. Rocha PittaM.G. RêgoM.J.B.M. LimaM.C.A. PittaM.G.R. PittaI.R. New thiazacridine agents: Synthesis, physical and chemical characterization, and in vitro anticancer evaluation.Hum. Exp. Toxicol.201736101059107010.1177/0960327116680274 27895099
    [Google Scholar]
  108. CuiZ. ChenS. WangY. GaoC. ChenY. TanC. JiangY. Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment.Eur. J. Med. Chem.201713637238110.1016/j.ejmech.2017.05.006 28525838
    [Google Scholar]
  109. KarelouM. KourafalosV. TragomalouA.P. MarakosP. PouliN. TsitsilonisO.E. GikasE. KostakisI.K. Synthesis, biological evaluation and stability studies of some novel aza-acridine aminoderivatives.Molecules20202519458410.3390/molecules25194584 33049986
    [Google Scholar]
  110. HigashiT. SakamotoM. MochizukiM. Synthesis of acridine analogues as intercalating crosslinkers and evaluation of their potential anticancer properties.Heterocycles20087581943195210.3987/COM‑08‑11346
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673310987240610091522
Loading
/content/journals/cmc/10.2174/0109298673310987240610091522
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test