Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Infection remains a significant global health concern, with millions of new cases and deaths occurring due to infectious diseases. Currently, chemoprophylaxis and chemotherapy are the primary treatments, but side effects and toxicities pose challenges. Pathogenic microorganisms have developed resistance to antimicrobial medications. Nitrogen containing heterocyclic scaffolds possess the potential in drug discovery and are explored in various fields like pharmaceuticals, cosmetics, and agrochemicals. To minimize antimicrobial drug resistance, there is a need to design potent, safer antimicrobial lead compounds with higher selectivity and minimal cytotoxicity.

Objectives

The present review aims to outline several recent developments in medicinal chemistry aspect of nitrogenous heterocyclic derivatives with the following purposes: (1) To cast light on the recent literature reports of the last eight years ranging from 2015 to 2023 describing anti-microbial potential of nitrogen-containing heterocyclic derivatives which includes pyrazole, pyrazoline, imidazole, tetrazole and quinoline; (2) To brief the recent developments in the medicinal chemistry of nitrogenous heterocyclic derivatives that is directed towards their anti-microbial profile; (3) To summarize the complete correlation of structural features of nitrogenous heterocyclic molecules with the pharmacological action including as well as mechanistic studies to provide thoughts accompanying the generation of lead molecules.

Methods

Antimicrobial potential of nitrogenous heterocyclic molecules has been displayed by relating the structural features of various lead candidates with their as well as antimicrobial outcomes. In contrast, computational analysis from different articles also helped to predict the SAR of potent molecules.

Results

Nitrogen containing heterocycles are involved in a range of natural to synthetic analogues with keen antimicrobial potency. It is an emerging need to generate new nitrogenous heterocyclic molecules in order to tackle the drug resistance in micro-organisms with more targeted selectivity as well as specificity.

Conclusion

To limit the side effects associated with them and to combat the microbes acquired resistance towards the current drug regimen, novel nitrogenous heterocycle based antimicrobial agents are essential to be developed. This review connects the structural units present in lead compounds with their promising antimicrobial action.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673301266240506083014
2024-05-23
2025-11-01
Loading full text...

Full text loading...

References

  1. YodaJ. Overview of recent advances in 3-Hydroxycoumarin Chemistry as a bioactive heterocyclic compound.Amer. J. Heterocyclic Chem.20206610.11648/j.ajhc.20200601.12
    [Google Scholar]
  2. HuttnerA. VerhaeghE.M. HarbarthS. MullerA.E. TheuretzbacherU. MoutonJ.W. Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials.J. Antimicrob. Chemother.20157092456246410.1093/jac/dkv147 26066581
    [Google Scholar]
  3. AndrusenkoI. HamiltonV. LanzaA.E. HallC.L. MugnaioliE. PotticaryJ. BuanzA. GaisfordS. PirasA.M. ZambitoY. HallS.R. GemmiM. Structure determination, thermal stability and dissolution rate of δ-indomethacin.Int. J. Pharm.202160812106710.1016/j.ijpharm.2021.121067 34481012
    [Google Scholar]
  4. AbdellatifK.R.A. AbdelallE.K.A. LabibM.B. FadalyW.A.A. ZidanT.H. Design, synthesis of celecoxib-tolmetin drug hybrids as selective and potent COX-2 inhibitors.Bioorg. Chem.20199010302910.1016/j.bioorg.2019.103029 31212177
    [Google Scholar]
  5. ColsonP. RolainJ.M. LagierJ.C. BrouquiP. RaoultD. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19.Int. J. Antimicrob. Agents202055410593210.1016/j.ijantimicag.2020.105932 32145363
    [Google Scholar]
  6. KerckhoveN. BoudieuL. OurtiesG. BourdierJ. DaulhacL. EschalierA. MalletC. Ethosuximide improves chronic pain-induced anxiety- and depression-like behaviors.Eur. Neuropsychopharmacol.201929121419143210.1016/j.euroneuro.2019.10.012 31767519
    [Google Scholar]
  7. AbdelhamidA.O. El SayedI.E. ZakiY.H. HusseinA.M. MangoudM.M. HosnyM.A. Utility of 5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide in the synthesis of heterocyclic compounds with antimicrobial activity.BMC Chem.20191314810.1186/s13065‑019‑0566‑y 31384796
    [Google Scholar]
  8. BansodeT.N. MeshramG.A. Synthesis and antimicrobial activity of 4‐(10H‐Phenothiazin‐2‐yl)‐pyrimidin‐2(1H)‐one/thione derivatives.J. Heterocycl. Chem.20124951004100810.1002/jhet.704
    [Google Scholar]
  9. El AzabI.H. KhaledK.M. Synthesis and reactivity of enaminone of naphtho[b]1,4-oxazine: One pot synthesis of novel isolated and heterocycle-fused derivatives with antimicrobial and antifungal activities.Bioorg. Khim.201541447549010.7868/S0132342315040077 26615644
    [Google Scholar]
  10. HassanM.M. FaroukO. Synthesis and antimicrobial evaluation of some functionalized heterocycles derived from Novel Quinolinyl Chalcone.J. Heterocycl. Chem.20175463133314210.1002/jhet.2927
    [Google Scholar]
  11. RiyadhS.M. KhederN.A. AsiryA.M. A facile and convenient synthesis of novel pyridine derivatives incorporating antipyrine moiety and investigation of their antimicrobial activities.Heterocycles201285225910.3987/COM‑12‑12520
    [Google Scholar]
  12. RamadanS.K. SallamH.A. Synthesis, spectral characterization, cytotoxic, and antimicrobial activities of some novel heterocycles utilizing 1,3‐Diphenylpyrazole‐4‐carboxalde-hyde thiosemicarbazone.J. Heterocycl. Chem.20185581942195410.1002/jhet.3232
    [Google Scholar]
  13. JoshiH.S. PanchaniN.M. FacileA. Efficient and catalyst free synthesis of imidazole, tetrazole and pyrimidine combined moiety as potential antimicrobial and antitubercular agents.Heterocycles2021102198210.3987/COM‑21‑14512
    [Google Scholar]
  14. KeikhaM. AskariP. GhazviniK. KarbalaeiM. Levofloxacin-based therapy as an efficient alternative for eradicating Helicobacter pylori infection in Iran: A systematic review and meta-analysis.J. Glob. Antimicrob. Resist.20222942042910.1016/j.jgar.2021.10.019 34788690
    [Google Scholar]
  15. SrinivasanA. WangC. SrivastavaD.K. BurnetteK. ShenepJ.L. LeungW. HaydenR.T. Timeline, epidemiology, and risk factors for bacterial, fungal, and viral infections in children and adolescents after allogeneic hematopoietic stem cell transplantation.Biol. Blood Marrow Transplant.20131919410110.1016/j.bbmt.2012.08.012 22922523
    [Google Scholar]
  16. WHOGlobal tuberculosis report 2020.Available From: https://www.who.int/publications-detail-redirect/9789240013131 2022
  17. BhattaraiS. SharmaB.K. SubediN. RanabhatS. BaralM.P. Burden of serious bacterial infections and multidrug-resistant organisms in an adult population of Nepal: A comparative analysis of minimally invasive tissue sampling informed mortality surveillance of community and hospital deaths.Clin. Infect. Dis.202173Suppl. 5S415S42110.1093/cid/ciab773 34910184
    [Google Scholar]
  18. Edwin MDD.B. Antibacterial activity of Psidium guajava L. against certain multidrug resistant gram-negative and gram-positive bacteria.J. Med. Sci. Clin. Res.20186910.18535/jmscr/v6i9.29
    [Google Scholar]
  19. KyziołA. KhanW. SebastianV. KyziołK. Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers.Chem. Eng. J.202038512388810.1016/j.cej.2019.123888
    [Google Scholar]
  20. CDCData and Statistics.Available From: https://www.cdc.gov/tb/statistics/default.htm 2024
  21. SterlingT.R. NjieG. ZennerD. CohnD.L. RevesR. AhmedA. MenziesD. HorsburghC.R.Jr CraneC.M. BurgosM. LoBueP. WinstonC.A. BelknapR. Guidelines for the treatment of latent tuberculosis infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020.MMWR Recomm. Rep.202069111110.15585/mmwr.rr6901a1 32053584
    [Google Scholar]
  22. LaiS. KitamuraK. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020.Ann. Emerg. Med.2021781495210.1016/j.annemergmed.2021.06.005
    [Google Scholar]
  23. ArumugamN. AlmansourA.I. Suresh KumarR. Antimicrobial activities of spirooxindolopyrrolidine tethered dicarbonitrile heterocycles against multidrug resistant nosocomial pathogens.J. Infect. Public Health202114121810181410.1016/j.jiph.2021.10.027 34776342
    [Google Scholar]
  24. AlaqeelS.I. ArumugamN. AlmansourA.I. Suresh KumarR. PonmuruganK. Abdullah Al-DhabiN. BrindhadeviK. PerumalK. Synthesis and antimicrobial potential of spirooxindolopyrrolidine tethered oxindole heterocyclic hybrid against multidrug resistant microbial pathogens.Process Biochem.2022114667010.1016/j.procbio.2021.12.032
    [Google Scholar]
  25. KaczorA.A. PolskiA. Sobótka-PolskaK. Pachuta-StecA. Makarska-BialokozM. PituchaM. Novel antibacterial compounds and their drug targets-successes and challenges.Curr. Med. Chem.201724181948198210.2174/0929867323666161213102127 27978802
    [Google Scholar]
  26. WangJ. ZhangP.L. AnsariM.F. LiS. ZhouC.H. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii.Bioorg. Chem.202111310503910.1016/j.bioorg.2021.105039 34091291
    [Google Scholar]
  27. PopescuF.D. CaraghiuleaM. GaneaC.S. PredaM. StanescuA.M.A. Nonirritating concentrations for skin testing in immediate antibiotic allergy.Romanian J. Pharmaceut. Prac.2022156010.37897/RJMP.2020.1.12
    [Google Scholar]
  28. RehmanK. KamranS.H. AkashM.S.H. Toxicity of antibiotics.Antibiotics and Antimicrobial Resistance Genes in the Environment.AmsterdamElsevier202023425210.1016/B978‑0‑12‑818882‑8.00016‑4
    [Google Scholar]
  29. ReddyG.M. KumariA.K. ReddyV.H. GarciaJ.R. Novel pyranopyrazole derivatives comprising a benzoxazole core as antimicrobial inhibitors: Design, synthesis, microbial resistance and machine aided results.Bioorg. Chem.202010010390810.1016/j.bioorg.2020.103908 32413632
    [Google Scholar]
  30. DuY. QiuY. MengX. FengJ. TaoJ. LiuW. A heterotrimeric dehydrogenase complex functions with 2 distinct YcaO proteins to install 5 azole heterocycles into 35-membered sulfomycin thiopeptides.J. Am. Chem. Soc.2020142188454846310.1021/jacs.0c02329 32293883
    [Google Scholar]
  31. SogeO.O. NoD. MichaelK.E. DankoffJ. LaneJ. VogelK. SmedleyJ. RobertsM.C. Transmission of MDR MRSA between primates, their environment and personnel at a United States primate centre.J. Antimicrob. Chemother.201671102798280310.1093/jac/dkw236 27439524
    [Google Scholar]
  32. ReeveS.M. ScoccheraE.W. G-DayanadanN. KeshipeddyS. KrucinskaJ. HajianB. FerreiraJ. NailorM. AeschlimannJ. WrightD.L. AndersonA.C. MRSA isolates from United States Hospitals carry dfrG and dfrK resistance genes and succumb to propargyl-linked antifolates.Cell Chem. Biol.201623121458146710.1016/j.chembiol.2016.11.007 27939900
    [Google Scholar]
  33. HasanR. AcharjeeM. NoorR. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections.Tzu-Chi Med. J.2016282495310.1016/j.tcmj.2016.03.002 28757721
    [Google Scholar]
  34. ChoiP.J. SutherlandH.S. TongA.S.T. BlaserA. FranzblauS.G. CooperC.B. LotlikarM.U. UptonA.M. GuillemontJ. MotteM. QueguinerL. AndriesK. Van den BroeckW. DennyW.A. PalmerB.D. Synthesis and evaluation of analogues of the tuberculosis drug bedaquiline containing heterocyclic B-ring units.Bioorg. Med. Chem. Lett.201727235190519610.1016/j.bmcl.2017.10.042 29107541
    [Google Scholar]
  35. AlaqeelS.I. AlmansourA.I. ArumugamN. KumarR.S. PonmuruganK. Al-DhabiN.A. Antimicrobial activities of novel class of dispirooxindolopyrrolidine grafted indanedione hybrid heterocycles against carbapenemase producing Klebsiella pneumoniae (CKP).J. Infect. Public Health202114121870187410.1016/j.jiph.2021.10.023 34782290
    [Google Scholar]
  36. KalariaP.N. KaradS.C. RavalD.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery.Eur. J. Med. Chem.201815891793610.1016/j.ejmech.2018.08.040 30261467
    [Google Scholar]
  37. KüçükgüzelŞ.G. Küçükgüzelİ. TatarE. RollasS. ŞahinF. GüllüceM. De ClercqE. KabasakalL. Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents.Eur. J. Med. Chem.200742789390110.1016/j.ejmech.2006.12.038 17418454
    [Google Scholar]
  38. VermaC. RheeK.Y. QuraishiM.A. EbensoE.E. Pyridine based N-heterocyclic compounds as aqueous phase corrosion inhibitors: A review.J. Taiwan Inst. Chem. Eng.202011726527710.1016/j.jtice.2020.12.011
    [Google Scholar]
  39. KrivdinL.B. Carbon-carbon spin-spin coupling constants: Practical applications of theoretical calculations.Prog. Nucl. Magn. Reson. Spectrosc.2018105549910.1016/j.pnmrs.2018.03.001 29548367
    [Google Scholar]
  40. TanL. WuC. ZhangJ. YuQ. WangX. ZhangL. GeM. WangZ. OuyangL. WangY. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by x-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site.J. Med. Chem.20236653588362010.1021/acs.jmedchem.2c02115 36802449
    [Google Scholar]
  41. NehraB. ChawlaP.A. PrasherP. BhagatD.S. Heterocycles in managing inflammatory diseases.Recent Developments in Anti-Inflammatory Therapy.AmsterdamElsevier202329531310.1016/B978‑0‑323‑99988‑5.00010‑3
    [Google Scholar]
  42. VermaA. JoshiS. SinghD. Imidazole: Having versatile biological activities.J. Chem.2013201311210.1155/2013/329412
    [Google Scholar]
  43. ChopraP. SahuJ. Biological significance of imidazole-based analogues in new drug development.Curr. Drug Discov. Technol.20191610.2174/1570163816666190320123340 30894111
    [Google Scholar]
  44. ShaabanM.R. MayhoubA.S. FaragA.M. Recent advances in the therapeutic applications of pyrazolines.Expert Opin. Ther. Pat.201222325329110.1517/13543776.2012.667403 22397588
    [Google Scholar]
  45. GaneshA. Biological activities of some pyrazoline derivatives.Int. J. Pharma Bio Sci.20134727733
    [Google Scholar]
  46. AliM.A. ShaharyarM. SiddiquiA.A. Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives.Eur. J. Med. Chem.200742226827510.1016/j.ejmech.2006.08.004 17007966
    [Google Scholar]
  47. JoshiS.D. DixitS.R. KirankumarM.N. AminabhaviT.M. RajuK.V.S.N. NarayanR. LherbetC. YangK.S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties.Eur. J. Med. Chem.201610713315210.1016/j.ejmech.2015.10.047 26580979
    [Google Scholar]
  48. PatelH. ChaudhariK. JainP. SuranaS. Synthesis and in vitro antitubercular activity of pyridine analouges against the resistant Mycobacterium tuberculosis.Bioorg. Chem.202010210409910.1016/j.bioorg.2020.104099 32711084
    [Google Scholar]
  49. ChiarelliL.R. MoriM. BarloccoD. BerettaG. GelainA. PiniE. PorcinoM. MoriG. StelitanoG. CostantinoL. LapilloM. BonanniD. PoliG. TuccinardiT. VillaS. MeneghettiF. Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents.Eur. J. Med. Chem.201815575476310.1016/j.ejmech.2018.06.033 29940465
    [Google Scholar]
  50. SantosoK.T. CheungC.Y. HardsK. CookG.M. StockerB.L. TimmerM.S.M. Synthesis and investigation of phthalazinones as antitubercular agents.Chem. Asian J.20191481278128510.1002/asia.201801805 30680937
    [Google Scholar]
  51. ÖzdemirA. Turan-ZitouniG. Asım KaplancıklıZ. RevialG. GüvenK. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives.Eur. J. Med. Chem.200742340340910.1016/j.ejmech.2006.10.001 17125888
    [Google Scholar]
  52. KarthikeyanM.S. HollaB.S. KumariN.S. Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines.Eur. J. Med. Chem.2007421303610.1016/j.ejmech.2006.07.011 17007964
    [Google Scholar]
  53. Kalinowska-LisU. FelczakA. ChęcińskaL. Szabłowska-GadomskaI. PatynaE. MałeckiM. LisowskaK. OchockiJ. Antibacterial activity and cytotoxicity of Silver(I) complexes of pyridine and (Benz)Imidazole Derivatives. X-ray crystal structure of [Ag(2,6-di(CH2OH)py)2] NO3.Molecules20162128710.3390/molecules21020087 26828469
    [Google Scholar]
  54. SinghA. SinghJ.V. RanaA. BhagatK. GulatiH.K. KumarR. SalwanR. BhagatK. KaurG. SinghN. KumarR. SinghH. SharmaS. BediP.M.S. Monocarbonyl curcumin-based molecular hybrids as potent antibacterial agents.ACS Omega201947116731168410.1021/acsomega.9b01109 31460274
    [Google Scholar]
  55. NiuY. WangM. CaoY. NimmagaddaA. HuJ. WuY. CaiJ. YeX.S. Rational design of Dimeric Lysine N -Alkylamides as potent and broad-spectrum antibacterial agents.J. Med. Chem.20186172865287410.1021/acs.jmedchem.7b01704 29569910
    [Google Scholar]
  56. KanwalM. MungrooM.R. AnwarA. AliF. KhanS. AbdullahM.A. SiddiquiR. KhanK.M. KhanN.A. Synthetic nanoparticle-conjugated bisindoles and hydrazinyl arylthiazole as novel antiamoebic agents against brain-eating amoebae.Exp. Parasitol.202021810797910.1016/j.exppara.2020.107979 32866583
    [Google Scholar]
  57. KusriniE. HashimF. SalehM.I. AdnanR. UsmanA. ZakariaI.N. PrihandiniW.W. PutraN. PrasetyantoE.A. Monoclinic cerium(III) picrate tetraethylene glycol complex: Design, synthesis and biological evaluation as anti-amoebic activity against Acanthamoeba sp.J. Mater. Sci.202055239795981110.1007/s10853‑020‑04793‑2
    [Google Scholar]
  58. AbidM. BhatA.R. AtharF. AzamA. Synthesis, spectral studies and antiamoebic activity of new 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines.Eur. J. Med. Chem.200944141742510.1016/j.ejmech.2007.10.032 18068873
    [Google Scholar]
  59. BhatA.R. AtharF. AzamA. Bis-pyrazolines: Synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica.Eur. J. Med. Chem.200944142643110.1016/j.ejmech.2007.11.005 18187238
    [Google Scholar]
  60. NegiB. PoonanP. AnsariM.F. KumarD. AggarwalS. SinghR. AzamA. RawatD.S. Synthesis, antiamoebic activity and docking studies of metronidazole-triazole-styryl hybrids.Eur. J. Med. Chem.201815063364110.1016/j.ejmech.2018.03.033 29558734
    [Google Scholar]
  61. AcharyaB.N. SaraswatD. TiwariM. ShrivastavaA.K. GhorpadeR. BapnaS. KaushikM.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines.Eur. J. Med. Chem.201045243043810.1016/j.ejmech.2009.10.023 19926176
    [Google Scholar]
  62. WanareG. AherR. KawathekarN. RanjanR. KaushikN.K. SahalD. Synthesis of novel α-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors.Bioorg. Med. Chem. Lett.201020154675467810.1016/j.bmcl.2010.05.069 20576433
    [Google Scholar]
  63. PavićK. PerkovićI. PospíšilováŠ. MachadoM. FontinhaD. PrudêncioM. JampilekJ. CoffeyA. EndersenL. RimacH. ZorcB. Primaquine hybrids as promising antimycobacterial and antimalarial agents.Eur. J. Med. Chem.201814376977910.1016/j.ejmech.2017.11.083 29220797
    [Google Scholar]
  64. Johnson-AjinwoO.R. UllahI. MbyeH. RichardsonA. HorrocksP. LiW.W. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents.Bioorg. Med. Chem. Lett.20182871219122210.1016/j.bmcl.2018.02.051 29519737
    [Google Scholar]
  65. Çapcı KaragözA. ReiterC. SeoE.J. GruberL. HahnF. LeidenbergerM. KleinV. HampelF. FriedrichO. MarschallM. KappesB. EfferthT. TsogoevaS.B. Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin.Bioorg. Med. Chem.201826123610361810.1016/j.bmc.2018.05.041 29887512
    [Google Scholar]
  66. ÖzdemirA. Turan-ZitouniG. Asım KaplancıklıZ. RevialG. DemirciF. İşcanG. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities.J. Enzyme Inhib. Med. Chem.201025456557110.3109/14756360903373368 20205628
    [Google Scholar]
  67. HassanS. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives.Molecules20131832683271110.3390/molecules18032683 23449067
    [Google Scholar]
  68. WuY.Y. ShaoW.B. ZhuJ.J. LongZ.Q. LiuL.W. WangP.Y. LiZ. YangS. Novel 1,3,4-oxadiazole-2-carbohydrazides as prospective agricultural antifungal agents potentially targeting succinate dehydrogenase.J. Agric. Food Chem.20196750138921390310.1021/acs.jafc.9b05942 31774673
    [Google Scholar]
  69. ObandoD. KodaY. PantaratN. LevS. ZuoX. Bijosono OeiJ. WidmerF. DjordjevicJ.T. SorrellT.C. JolliffeK.A. Synthesis and evaluation of a series of bis(pentylpyridinium) compounds as antifungal agents.ChemMedChem201813141421143610.1002/cmdc.201800331 29781143
    [Google Scholar]
  70. El ShehryM.F. GhorabM.M. AbbasS.Y. FayedE.A. ShedidS.A. AmmarY.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents.Eur. J. Med. Chem.20181431463147310.1016/j.ejmech.2017.10.046 29113746
    [Google Scholar]
  71. ChenY. LiP. SuS. ChenM. HeJ. LiuL. HeM. WangH. XueW. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base.RSC Advances2019940230452305210.1039/C9RA05139B 35514467
    [Google Scholar]
  72. KarypidouK. RiboneS.R. QuevedoM.A. PersoonsL. PannecouqueC. HelsenC. ClaessensF. DehaenW. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents.Bioorg. Med. Chem. Lett.201828213472347610.1016/j.bmcl.2018.09.019 30286952
    [Google Scholar]
  73. Goma’aH.A.M. GhalyM.A. Abou-zeidL.A. BadriaF.A. ShehataI.A. El-KerdawyM.M. Synthesis, biological evaluation and in silico studies of 1,2,4‐triazole and 1,3,4‐thiadiazole derivatives as antiherpetic agents.ChemistrySelect20194216421642810.1002/slct.201900814
    [Google Scholar]
  74. AouadM.R. Al-MohammadiH.M. Al-blewiF.F. IhmaidS. ElbadawyH.M. AlthagfanS.S. RezkiN. Introducing of acyclonucleoside analogues tethered 1,2,4-triazole as anticancer agents with dual epidermal growth factor receptor kinase and microtubule inhibitors.Bioorg. Chem.20209410344610.1016/j.bioorg.2019.103446 31791685
    [Google Scholar]
  75. EdwardsT.G. FisherC. Antiviral activity of pyrrole-imidazole polyamides against SV40 and BK polyomaviruses.Antiviral Res.2018152687510.1016/j.antiviral.2018.02.012 29458134
    [Google Scholar]
  76. FesatidouM. PetrouA. AthinaG. Heterocycle compounds with antimicrobial activity, current pharmaceutical design.Curr. Pharm. Des.202026886790410.2174/1381612826666200206093815
    [Google Scholar]
  77. DesaiN. TrivediA. PanditU. DodiyaA. Kameswara RaoV. DesaiP. Hybrid bioactive heterocycles as potential antimicrobial agents: A review.Mini Rev. Med. Chem.201616181500152610.2174/1389557516666160609075620 27292782
    [Google Scholar]
  78. SharmaP.K. A review: Antimicrobial agents based on nitrogen and sulfur containing heterocycles.Asian J. Pharm. Clin. Res.20171024710.22159/ajpcr.2017.v10i2.15673
    [Google Scholar]
  79. JalageriM.D. NagarajaA. PuttaiahgowdaY.M. Piperazine based antimicrobial polymers: A review.RSC Advances20211125152131523010.1039/D1RA00341K 35424074
    [Google Scholar]
  80. DesaiN.C. JadejaD.J. JethawaA.M. AhmadI. PatelH. DaveB.P. Design and synthesis of some novel hybrid molecules based on 4-thiazolidinone bearing pyridine-pyrazole scaffolds: Molecular docking and molecular dynamics simulations of its major constituent onto DNA gyrase inhibition.Mol. Divers.202311710.1007/s11030‑023‑10612‑y 36750538
    [Google Scholar]
  81. AlfeiS. ZuccariG. CavigliaD. BrulloC. Synthesis and characterization of pyrazole-enriched cationic nanoparticles as new promising antibacterial agent by mutual cooperation.Nanomaterials (Basel)2022127121510.3390/nano12071215 35407333
    [Google Scholar]
  82. SaadonK.E. TahaN.M.H. MahmoudN.A. ElhagaliG.A.M. RagabA. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study.J. Indian Chem. Soc.20221993899391710.1007/s13738‑022‑02575‑y
    [Google Scholar]
  83. AnsariM.I. KhanS.A. Synthesis and antimicrobial activity of some novel quinoline-pyrazoline-based coumarinyl thiazole derivatives.Med. Chem. Res.20172671481149610.1007/s00044‑017‑1855‑4
    [Google Scholar]
  84. Shahavar SulthanaS. Arul AntonyS. BalachandranC. Syed ShafiS. Thiophene and benzodioxole appended thiazolyl-pyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies.Bioorg. Med. Chem. Lett.201525142753275710.1016/j.bmcl.2015.05.033 26028159
    [Google Scholar]
  85. AltıntopM.D. ÖzdemirA. Turan-ZitouniG. IlgınS. AtlıÖ. DemirelR. KaplancıklıZ.A. A novel series of thiazolyl–pyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity.Eur. J. Med. Chem.20159234235210.1016/j.ejmech.2014.12.055 25576739
    [Google Scholar]
  86. ArchanaS. RanganathanR. DineshM. ArulP. PonnuswamyA. KalaiselviP. ChellammalS. SubramanianG. Design, synthesis, and antibacterial studies of potent pyrazolinyltriazoles.Res. Chem. Intermed.20174342471249010.1007/s11164‑016‑2774‑6
    [Google Scholar]
  87. DesaiN.C. PatelB.Y. DaveB.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues.Med. Chem. Res.201726110911910.1007/s00044‑016‑1732‑6
    [Google Scholar]
  88. MishraV.K. MishraM. KashawV. KashawS.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents.Bioorg. Med. Chem.20172561949196210.1016/j.bmc.2017.02.025 28237557
    [Google Scholar]
  89. NikamM.D. MahajanP.S. DamaleM.G. SangshettiJ.N. DabhadeS.K. ShindeD.W. GillC.H. Synthesis, molecular docking and biological evaluation of some novel tetrazolo[1,5-a]quinoline incorporated pyrazoline and isoxazoline derivatives.Med. Chem. Res.20152493372338610.1007/s00044‑015‑1385‑x
    [Google Scholar]
  90. BanoS. AlamM.S. JavedK. DudejaM. DasA.K. DhulapA. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents.Eur. J. Med. Chem.2015959610310.1016/j.ejmech.2015.03.031 25800645
    [Google Scholar]
  91. LiuJ.J. SunJ. FangY.B. YangY.A. JiaoR.H. ZhuH.L. Synthesis, and antibacterial activity of novel 4,5-dihydro-1H-pyrazole derivatives as DNA gyrase inhibitors.Org. Biomol. Chem.2014126998100810.1039/c3ob41953c 24382549
    [Google Scholar]
  92. AbrigachF. RokniY. TakfaouiA. KhoutoulM. DoucetH. AsehraouA. TouzaniR. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives.Biomed. Pharmacother.201810365366110.1016/j.biopha.2018.04.061 29679907
    [Google Scholar]
  93. BouchalB. AbrigachF. TakfaouiA. Elidrissi ErrahhaliM. Elidrissi ErrahhaliM. DixneufP.H. DoucetH. TouzaniR. BellaouiM. Identification of novel antifungal agents: Antimicrobial evaluation, SAR, ADME–Tox and molecular docking studies of a series of imidazole derivatives.BMC Chem.201913110010.1186/s13065‑019‑0623‑6 31410411
    [Google Scholar]
  94. HuY. ShenY. WuX. TuX. WangG.X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents.Eur. J. Med. Chem.201814395896910.1016/j.ejmech.2017.11.100 29232586
    [Google Scholar]
  95. SkočibušićM. OdžakR. RamićA. SmolićT. HrenarT. PrimožičI. Novel imidazole aldoximes with broad-spectrum antimicrobial potency against multidrug resistant gram-negative bacteria.Molecules2018235121210.3390/molecules23051212 29783685
    [Google Scholar]
  96. BrahmbhattH. MolnarM. PavićV. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents.Karbala Int. J. Modern Sci.20184220020610.1016/j.kijoms.2018.01.006
    [Google Scholar]
  97. Khalili ArjomandiO. KavoosiM. AdibiH. Synthesis and investigation of inhibitory activities of imidazole derivatives against the metallo-β-lactamase IMP-1.Bioorg. Chem.20199210327710.1016/j.bioorg.2019.103277 31539743
    [Google Scholar]
  98. SlassiS. AarjaneM. YamniK. AmineA. Synthesis, crystal structure, DFT calculations, Hirshfeld surfaces, and antibacterial activities of schiff base based on imidazole.J. Mol. Struct.2019119754755410.1016/j.molstruc.2019.07.071
    [Google Scholar]
  99. SharmaS. SharmaV. SinghG. KaurH. SrivastavaS. IsharM.P.S. 2-(chromon-3-yl)imidazole derivatives as potential antimicrobial agents: Synthesis, biological evaluation and molecular docking studies.J. Chem. Biol.2017101354410.1007/s12154‑016‑0162‑8 28101253
    [Google Scholar]
  100. RamamurthyS. JayachandranE. Synthesis and antimicrobial evaluation of some new thiazolo imidazole analogs.Asian J. Chem.201729122639264210.14233/ajchem.2017.20738
    [Google Scholar]
  101. De VitaD. AngeliA. PandolfiF. BortolamiM. CostiR. Di SantoR. SuffrediniE. CerusoM. Del PreteS. CapassoC. ScipioneL. SupuranC.T. Inhibition of the α-carbonic anhydrase from Vibrio cholerae with amides and sulfonamides incorporating imidazole moieties.J. Enzyme Inhib. Med. Chem.201732179880410.1080/14756366.2017.1327522 28569564
    [Google Scholar]
  102. WenS.Q. JeyakkumarP. AvulaS.R. ZhangL. ZhouC.H. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation.Bioorg. Med. Chem. Lett.201626122768277310.1016/j.bmcl.2016.04.070 27156777
    [Google Scholar]
  103. RajaramanD. SundararajanG. LoganathN.K. KrishnasamyK. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies.J. Mol. Struct.2017112759761010.1016/j.molstruc.2016.08.021
    [Google Scholar]
  104. NiT. ChiX. XieF. LiL. WuH. HaoY. WangX. ZhangD. JiangY. Design, synthesis, and evaluation of novel tetrazoles featuring isoxazole moiety as highly selective antifungal agents.Eur. J. Med. Chem.202324611500710.1016/j.ejmech.2022.115007 36502579
    [Google Scholar]
  105. MerzoukiO. ArrousseN. El BarnossiA. Ech-chihbiE. FernineY. Iraqi HousseiniA. RaisZ. TalebM. Eco-friendly synthesis, characterization, in silico ADMET and molecular docking analysis of novel carbazole derivatives as antibacterial and antifungal agents.J. Mol. Struct.2023127113396610.1016/j.molstruc.2022.133966
    [Google Scholar]
  106. EdreesM. MelhaS. SaadA. KhederN. GomhaS. MuhammadZ. Eco-friendly synthesis, characterization and biological evaluation of some novel pyrazolines containing thiazole moiety as potential anticancer and antimicrobial agents.Molecules20182311297010.3390/molecules23112970 30441815
    [Google Scholar]
  107. MontoyaA. QuirogaJ. AboniaR. DeritaM. SortinoM. OrnelasA. ZacchinoS. InsuastyB. Hybrid molecules containing a 7-Chloro-4-Aminoquinoline nucleus and a substituted 2-Pyrazoline with antiproliferative and antifungal activity.Molecules201621896910.3390/molecules21080969 27472314
    [Google Scholar]
  108. ZhaoD. ZhaoS. ZhaoL. ZhangX. WeiP. LiuC. HaoC. SunB. SuX. ChengM. Discovery of biphenyl imidazole derivatives as potent antifungal agents: Design, synthesis, and structure-activity relationship studies.Bioorg. Med. Chem.201725275075810.1016/j.bmc.2016.11.051 27955926
    [Google Scholar]
  109. ZhaoS. ZhaoL. ZhangX. WeiP. WuM. SuX. SunB. ZhaoD. ChengM. Design, synthesis and evaluation of biphenyl imidazole analogues as potent antifungal agents.Bioorg. Med. Chem. Lett.201929172448245110.1016/j.bmcl.2019.07.037 31358467
    [Google Scholar]
  110. OlenderD. ZaprutkoL. MertasA. SzliszkaE. WyrozumskiD. KrólW. Anti-candida activity of 4-morpholino-5-nitro- and 4,5-dinitro-imidazole derivatives.Pharm. Chem. J.201851121063106710.1007/s11094‑018‑1741‑5
    [Google Scholar]
  111. OsmaniyeD. Kaya CavusogluB. SaglikB. LeventS. Acar CevikU. AtliO. Synthesis and anticandidal activity of new imidazole-chalcones.Molecules201823483110.3390/molecules23040831
    [Google Scholar]
  112. BolousM. ArumugamN. AlmansourA.I. Suresh KumarR. MaruokaK. AntharamV.C. ThangamaniS. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens.Bioorg. Med. Chem. Lett.201929162059206310.1016/j.bmcl.2019.07.022 31320146
    [Google Scholar]
  113. IşıkA. Acar ÇevikU. SağlıkB.N. ÖzkayY. Synthesis, Characterization, and molecular docking study of some novel imidazole derivatives as potential antifungal agents.J. Heterocycl. Chem.201956114215210.1002/jhet.3388
    [Google Scholar]
  114. ShojaeiP. MokhtariB. GhorbanpoorM. Synthesis, in vitro antifungal evaluation and docking studies of novel derivatives of imidazoles and benzimidazoles.Med. Chem. Res.20192891359136710.1007/s00044‑019‑02369‑7
    [Google Scholar]
  115. JeanmartS. GagnepainJ. MaityP. LamberthC. CederbaumF. RajanR. JacobO. BlumM. BieriS. Synthesis and fungicidal activity of novel imidazole-based ketene dithioacetals.Bioorg. Med. Chem.20182682009201610.1016/j.bmc.2018.02.051 29530348
    [Google Scholar]
  116. WaniM.Y. AhmadA. ShiekhR.A. Al-GhamdiK.J. SobralA.J.F.N. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents.Bioorg. Med. Chem.201523154172418010.1016/j.bmc.2015.06.053 26164624
    [Google Scholar]
  117. LusardiM. BasilicoN. RotoloC. ParapiniS. SpallarossaA. Antimalarial activity of tri- and tetra-substituted Anilino pyrazoles.Molecules2023284171210.3390/molecules28041712 36838701
    [Google Scholar]
  118. KumarA. JainS. ChauhanS. AggarwalS. SainiD. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction.Chem. Biol. Interact.202337311037910.1016/j.cbi.2023.110379 36738914
    [Google Scholar]
  119. HimanginiD. PathakD.P. SharmaV. KumarS. Designing novel inhibitors against falcipain-2 of Plasmodium falciparum.Bioorg. Med. Chem. Lett.20182891566156910.1016/j.bmcl.2018.03.058 29602682
    [Google Scholar]
  120. KumarG. TanwarO. KumarJ. AkhterM. SharmaS. PillaiC.R. AlamM.M. ZamaM.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study.Eur. J. Med. Chem.201814913914710.1016/j.ejmech.2018.01.082 29499486
    [Google Scholar]
  121. PandeyA.K. SharmaS. PandeyM. AlamM.M. ShaquiquzzamanM. AkhterM. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents.Eur. J. Med. Chem.201612347648610.1016/j.ejmech.2016.07.055 27494165
    [Google Scholar]
  122. TuhaA. BekhitA.A. SeidY. Synthesis and biological screening of some thienyl and phenyl pyrazoline derivatives as antimalarial agent.Thaiphesatchasan201438121129
    [Google Scholar]
  123. MarellaA. AkhterM. ShaquiquzzamanM. TanwarO. VermaG. AlamM.M. Synthesis, 3D-QSAR and docking studies of pyrimidine nitrile-pyrazoline: A novel class of hybrid antimalarial agents.Med. Chem. Res.20152431018103710.1007/s00044‑014‑1188‑5
    [Google Scholar]
  124. RaghuvanshiD.S. VermaN. SinghS.V. KhareS. PalA. NegiA.S. Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials.Bioorg. Chem.20198810293310.1016/j.bioorg.2019.102933 31048119
    [Google Scholar]
  125. AkhterW. MarellaA. ShaquiquzzamanM. AkhterM. AlamM.M. Microwave assissted synthesis of pyrazoline-coumarin hybrids and their in vitro antimalarial evaluation.J. Pharm. Res.20159318322
    [Google Scholar]
  126. AkhtarW. KhanM.F. VermaG. ShaquiquzzamanM. AkhterM. MarellaA. ParmarS. KhatoonR. AlamM.M. Coumarin-pyrazoline derivatives: Their one-pot microwave assisted synthesis and anti-malarial activity.J. Pharmaceut. Med. Chem.201736910.21088/jpmc.2395.6615.3117.1
    [Google Scholar]
  127. KondaparlaS. ManhasA. DolaV.R. SrivastavaK. PuriS.K. KattiS.B. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline.Bioorg. Chem.20188020421110.1016/j.bioorg.2018.06.012 29940342
    [Google Scholar]
  128. SabtA. EldehnaW.M. IbrahimT.M. BekhitA.A. BatranR.Z. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies.Eur. J. Med. Chem.202324611495910.1016/j.ejmech.2022.114959 36493614
    [Google Scholar]
  129. BerheH.G. BirhanY.S. BeshayB.Y. HabibH.J. HymeteA. BekhitA.A. Synthesis, antileishmanial, antimalarial evaluation and Molecular Docking Study of some hydrazine-coupled pyrazole derivatives.Preprint202410.21203/rs.3.rs‑2598794/v1
    [Google Scholar]
  130. HayatF. SalahuddinA. UmarS. AzamA. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail.Eur. J. Med. Chem.201045104669467510.1016/j.ejmech.2010.07.028 20696501
    [Google Scholar]
  131. WaniM.Y. BhatA.R. AzamA. LeeD.H. ChoiI. AtharF. Synthesis and in vitro evaluation of novel tetrazole embedded 1,3,5-trisubstituted pyrazoline derivatives as Entamoeba histolytica growth inhibitors.Eur. J. Med. Chem.20125484585410.1016/j.ejmech.2012.03.049 22658085
    [Google Scholar]
  132. SaccolitiF. MadiaV.N. TudinoV. De LeoA. PescatoriL. MessoreA. De VitaD. ScipioneL. BrunR. KaiserM. MäserP. CalvetC.M. JenningsG.K. PodustL.M. CostiR. Di SantoR. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents.Eur. J. Med. Chem.2018156536010.1016/j.ejmech.2018.06.063 30006174
    [Google Scholar]
  133. PapadopoulouM.V. BloomerW.D. RosenzweigH.S. KaiserM. The antitrypanosomal and antitubercular activity of some nitro(triazole/imidazole)-based aromatic amines.Eur. J. Med. Chem.20171381106111310.1016/j.ejmech.2017.07.060 28763645
    [Google Scholar]
  134. OlmoF. Gómez-ContrerasF. NavarroP. MarínC. YuntaM.J.R. CanoC. CampayoL. Martín-OlivaD. RosalesM.J. Sánchez-MorenoM. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative.Eur. J. Med. Chem.201510610611910.1016/j.ejmech.2015.10.034 26523668
    [Google Scholar]
  135. SadashivaR. NaralD. KudvaJ. ShivalingegowdaN. LokanathN.K. PampaK.J. Synthesis, spectral, biological activity, and crystal structure evaluation of novel pyrazoline derivatives having sulfonamide moiety.Med. Chem. Res.20172661213122710.1007/s00044‑017‑1838‑5
    [Google Scholar]
  136. HarikrishnaN. IsloorA.M. AnandaK. ObaidA. FunH.K. Synthesis, and antitubercular and antimicrobial activity of 1′-(4-chlorophenyl)pyrazole containing 3,5-disubstituted pyrazoline derivatives.New J. Chem.2016401737610.1039/C5NJ02237A
    [Google Scholar]
  137. MunnaluriR.K. ChevulaJ. PatnamN. YaminiL. MangaV. One-pot synthesis, spectral characterization, biological evaluation, molecular docking studies and in silico ADME/Tox profiling of new 2,4,5 triaryl imidazole derivatives as anti tubercular agents.Indian J. Tuberc.202370445145910.1016/j.ijtb.2023.01.005 37968051
    [Google Scholar]
  138. PieroniM. WanB. ZulianiV. FranzblauS.G. CostantinoG. RivaraM. Discovery of antitubercular 2,4-diphenyl-1H-imidazoles from chemical library repositioning and rational design.Eur. J. Med. Chem.2015100444910.1016/j.ejmech.2015.05.048 26071857
    [Google Scholar]
  139. El-wahabH.A.A.A. AcciettoM. MarinoL.B. McLeanK.J. LevyC.W. Abdel-RahmanH.M. El-GendyM.A. MunroA.W. AboraiaA.S. SimonsC. Design, synthesis and evaluation against Mycobacterium tuberculosis of azole piperazine derivatives as dicyclotyrosine (cYY) mimics.Bioorg. Med. Chem.201826116117610.1016/j.bmc.2017.11.030 29183661
    [Google Scholar]
  140. KishkS.M. McLeanK.J. SoodS. SmithD. EvansJ.W.D. HelalM.A. GomaaM.S. SalamaI. MostafaS.M. de CarvalhoL.P.S. LevyC.W. MunroA.W. SimonsC. Design and synthesis of imidazole and triazole pyrazoles as Mycobacterium tuberculosis CYP121A1 inhibitors.ChemistryOpen201987995101110.1002/open.201900227 31367508
    [Google Scholar]
  141. EjehS. UzairuA. ShallangwaG.A. AbechiS.E. IbrahimM.T. Pharmacoinformatics-based strategy in designing and profiling of some Pyrazole analogues as novel hepatitis C virus inhibitors with pharmacokinetic analysis.Egyptian J. Basic Appl. Sci.202310124025410.1080/2314808X.2023.2185994
    [Google Scholar]
  142. FioravantiR. DesideriN. CartaA. AtzoriE.M. DeloguI. ColluG. LoddoR. Inhibitors of Yellow Fever Virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: Design, synthesis and antiviral evaluation.Eur. J. Med. Chem.2017141152510.1016/j.ejmech.2017.09.060 29028528
    [Google Scholar]
  143. NikitinaP.A. BasanovaE.I. NikolaenkovaE.B. Os’kinaI.A. SerovaO.A. BormotovN.I. ShishkinaL.N. PerevalovV.P. TikhonovA.Y. Synthesis of esters and amides of 2-aryl-1-hydroxy-4-methyl-1H-imidazole-5-carboxylic acids and study of their antiviral activity against orthopoxviruses.Bioorg. Med. Chem. Lett.20237912908010.1016/j.bmcl.2022.129080 36414175
    [Google Scholar]
  144. HuY. ChenW. ShenY. ZhuB. WangG.X. Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus.Bioorg. Med. Chem. Lett.201929141749175510.1016/j.bmcl.2019.05.019 31104994
    [Google Scholar]
  145. DongJ. ChenS. LiR. CuiW. JiangH. LingY. YangZ. HuW. Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus.Eur. J. Med. Chem.201610860561510.1016/j.ejmech.2015.12.013 26722757
    [Google Scholar]
  146. OkanoY. Saito-TarashimaN. KurosawaM. IwabuA. OtaM. WatanabeT. KatoF. HishikiT. FujimuroM. MinakawaN. Synthesis and biological evaluation of novel imidazole nucleosides as potential anti-dengue virus agents.Bioorg. Med. Chem.201927112181218610.1016/j.bmc.2019.04.015 31003866
    [Google Scholar]
  147. KaradS.C. PurohitV.B. ThakorP. ThakkarV.R. RavalD.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities.Eur. J. Med. Chem.201611227027910.1016/j.ejmech.2016.02.016 26900659
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673301266240506083014
Loading
/content/journals/cmc/10.2174/0109298673301266240506083014
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antimicrobial; cytotoxicity; docking studies; Heterocycles; resistance; SAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test