Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

“Diabetes mellitus” is a chronic metabolic disorder manifested by elevated blood glucose levels, primarily due to insufficient insulin production or resistance to insulin. Long-term diabetes results in persistent complications like retinopathy, cardiomyopathy, nephropathy, and neuropathy, causing significant health risks. The most alarming microvascular consequence allied with diabetes is “diabetic retinopathy,” distinguished by the proliferation of anomalous blood vessels in the eye, mainly in the retina, resulting in visual impairment, diabetic macular edema, and retinal detachment if left untreated. According to estimates, 27.0% of people with diabetes worldwide have retinopathy, which leads to 0.4 million blindness cases. It is believed that mitochondrial damage and the production of inflammatory mediators are the early indicators of diabetic retinopathy before any histological changes occur in the retina. Moreover, it is evident that augmented oxidative stress in the retina further initiates the NF-κB/MMP-9 downstream signaling pathway. Interestingly, these downstream regulators, Nuclear Factor Kappa B [NF-kB] and matrix metalloproteinases 9 [MMP-9], have been recognized as important regulators of the inception and advancement of diabetic retinopathy. This diabetes and oxidative stress-induced MMP-9 are believed to regulate various cellular functions, including angiogenesis and apoptosis, causing blood-retinal barrier breakdown and tight junction protein degradation that further leads to diabetic retinopathy. Thus, there is an emergency need for the treatment of diabetic retinopathy. Emerging treatment options include anti-VEGF, laser treatment, and eye surgery, but these have certain limitations. This comprehensive review explores the mechanisms of MMP-9 and NF-kB involvement in diabetic retinopathy and bioflavonoids' therapeutic potential and mechanisms of action in inhibiting MMP-9 activity and suppressing NF-kB-mediated inflammation. Clinical evidence supporting the use of bioflavonoids in mitigating diabetic complications and future perspectives are also examined.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673316493240527113707
2024-05-30
2025-09-04
Loading full text...

Full text loading...

References

  1. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.196719534424822
    [Google Scholar]
  2. TomicD. ShawJ.E. MaglianoD.J. The burden and risks of emerging complications of diabetes mellitus.Nat. Rev. Endocrinol.202218952553910.1038/s41574‑022‑00690‑735668219
    [Google Scholar]
  3. TokalıF.S. DemirY. Demircioğluİ.H. TürkeşC. KalayE. ŞendilK. BeydemirŞ. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors.Drug Dev. Res.202283358660434585414
    [Google Scholar]
  4. MauryaR.P. Diabetic retinopathy: My brief synopsis.Indian J. Clin. Exp. Ophthalmol.20151189190
    [Google Scholar]
  5. WatkinsP.J. ABC of diabetes: Retinopathy.BMJ2003326739592492610.1136/bmj.326.7395.92412714476
    [Google Scholar]
  6. FowlerM.J. Microvascular and macrovascular complications of diabetes.Clin. Diabetes2008262778210.2337/diaclin.26.2.77
    [Google Scholar]
  7. SongP. YuJ. ChanK.Y. TheodoratouE. RudanI. Prevalence, risk factors and burden of diabetic retinopathy in China: A systematic review and meta-analysis.J. Glob. Health20188101080310.7189/jogh.08.01080329899983
    [Google Scholar]
  8. SeverB. AltıntopM.D. DemirY. YılmazN. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines.Chem. Biol. Interact.202134510957610.1016/j.cbi.2021.10957634252406
    [Google Scholar]
  9. TokalıF.S. DemirY. TürkeşC. DinçerB. BeydemirŞ. Novel acetic acid derivatives containing quinazolin-4(3 H )-one ring: synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors.Drug Dev. Res.202384227529510.1002/ddr.2203136598092
    [Google Scholar]
  10. DemirY. TokalıF.S. KalayE. TürkeşC. TokalıP. AslanO.N. ŞendilK. BeydemirŞ. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors.Mol. Divers.20232741713173310.1007/s11030‑022‑10526‑136103032
    [Google Scholar]
  11. AkdağM. ÖzçelikA.B. DemirY. BeydemirŞ. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety.J. Mol. Struct.2022125813267510.1016/j.molstruc.2022.132675
    [Google Scholar]
  12. SinghL.S. SharmaR. Developmental expression and corticosterone inhibition of adenosine deaminase activity in different tissues of mice.Mech. Ageing Dev.1995802859210.1016/0047‑6374(94)01560‑97564566
    [Google Scholar]
  13. AmorS. PuentesF. BakerD. Van Der ValkP. Inflammation in neurodegenerative diseases.Immunology2010129215416910.1111/j.1365‑2567.2009.03225.x20561356
    [Google Scholar]
  14. CoulonJ WillemsD DorchyH. Increase in C-reactive protein plasma levels during diabetes in infants and young adults.Press Medicale2005342 Pt 18993
    [Google Scholar]
  15. KowluruR.A. KoppoluP. ChakrabartiS. ChenS. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants.Free Radic. Res.200337111169118010.1080/1071576031000160418914703729
    [Google Scholar]
  16. RomeoG. LiuW.H. AsnaghiV. KernT.S. LorenziM. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes.Diabetes20025172241224810.2337/diabetes.51.7.224112086956
    [Google Scholar]
  17. DiS. AnX. PangB. WangT. WuH. WangJ. LiM. Yiqi Tongluo Fang could preventive and delayed development and formation of diabetic retinopathy through antioxidant and anti-inflammatory effects.Biomed. Pharmacother.202214811225410.1016/j.biopha.2021.11225435183405
    [Google Scholar]
  18. VermaR.P. HanschC. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs.Bioorg. Med. Chem.20071562223226810.1016/j.bmc.2007.01.01117275314
    [Google Scholar]
  19. LöffekS. SchillingO. FranzkeC.W. Biological role of matrix metalloproteinases: A critical balance.Eur. Respir. J.201138119120810.1183/09031936.0014651021177845
    [Google Scholar]
  20. López-OtínC. MatrisianL.M. Emerging roles of proteases in tumour suppression.Nat. Rev. Cancer200771080080810.1038/nrc222817851543
    [Google Scholar]
  21. KöroğluZ. KizirD. KaramanM. DemirY. TürkeşC. BeydemirŞ. Protective effects of esculetin against doxorubicin-induced toxicity correlated with oxidative stress in rat liver: In vivo and in silico studies.J. Biochem. Mol. Toxicol.2024384e2370210.1002/jbt.2370238567888
    [Google Scholar]
  22. UguzH. AvcıB. PalabıyıkE. Nurseli SulumerA. Kızıltunç ÖzmenH. DemirY. AşkınH. Naringenin, hesperidin and quercetin ameliorate radiation-induced damage in rats: in vivo snd in silico evaluations.Chem. Biodivers.2024212e20230161310.1002/cbdv.20230161338105348
    [Google Scholar]
  23. SulumerA.N. PalabıyıkE. AvcıB. UguzH. DemirY. Serhat ÖzaslanM. AşkınH. Protective effect of bromelain on some metabolic enzyme activities in tyloxapol-induced hyperlipidemic rats.Biotechnol. Appl. Biochem.2024711172710.1002/bab.251737749825
    [Google Scholar]
  24. NobaharA. CarlierJ.D. MiguelM.G. CostaM.C. A review of plant metabolites with metal interaction capacity: A green approach for industrial applications.Biometals202134476179310.1007/s10534‑021‑00315‑y33961184
    [Google Scholar]
  25. Wilkinson-BerkaJ.L. MillerA.G. Update on the treatment of diabetic retinopathy.ScientificWorldJournal200889812010.1100/tsw.2008.2518264628
    [Google Scholar]
  26. MoutrayT. EvansJ.R. LoisN. ArmstrongD.J. PetoT. Azuara-BlancoA. Different lasers and techniques for proliferative diabetic retinopathy.Cochrane Database Syst. Rev.201833CD01231410.1002/14651858.CD012314.pub2
    [Google Scholar]
  27. GuptaV. ArevaloJ.F. Surgical management of diabetic retinopathy.Middle East Afr. J. Ophthalmol.201320428329210.4103/0974‑9233.12000324339677
    [Google Scholar]
  28. WangL. XuJ. YuT. WangH. CaiX. SunH. Efficacy and safety of curcumin in diabetic retinopathy: A protocol for systematic review and meta-analysis.PLoS One2023184e028286610.1371/journal.pone.028286637079570
    [Google Scholar]
  29. MohanV. PradeepaR. Epidemiology of type 2 diabetes in India.Indian J. Ophthalmol.202169112932293810.4103/ijo.IJO_1627_2134708726
    [Google Scholar]
  30. VashistP. SenjamS. GuptaV. MannaS. GuptaN. ShamannaB.R. BhardwajA. KumarA. GuptaP. Prevalence of diabetic retinopahty in India: Results from the National Survey 2015-19.Indian J. Ophthalmol.202169113087309410.4103/ijo.IJO_1310_2134708747
    [Google Scholar]
  31. PickeringR.J. RosadoC.J. SharmaA. BukshS. TateM. de HaanJ.B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications.Clin. Transl. Immunology201874e101610.1002/cti2.101629713471
    [Google Scholar]
  32. GüleçÖ. TürkeşC. ArslanM. DemirY. DincerB. EceA. İrfan KüfrevioğluÖ. BeydemirŞ. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies.Bioorg. Chem.202414510722110.1016/j.bioorg.2024.10722138387398
    [Google Scholar]
  33. AltıntopM.D. DemirY. TürkeşC. ÖztürkR.B. CantürkZ. BeydemirŞ. ÖzdemirA. A new series of hydrazones as small-molecule aldose reductase inhibitors.Arch. Pharm. (Weinheim)20233564220057010.1002/ardp.20220057036603162
    [Google Scholar]
  34. TarrJ.M. KaulK. ChopraM. KohnerE.M. ChibberR. Pathophysiology of diabetic retinopathy.Int Sch Res Not2013201334356010.1155/2013/343560
    [Google Scholar]
  35. WangW. LoA. Diabetic retinopathy: pathophysiology and treatments.Int. J. Mol. Sci.2018196181610.3390/ijms1906181629925789
    [Google Scholar]
  36. MiyamotoK. KhosrofS. BursellS.E. RohanR. MurataT. ClermontA.C. AielloL.P. OguraY. AdamisA.P. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition.Proc. Natl. Acad. Sci. USA19999619108361084110.1073/pnas.96.19.1083610485912
    [Google Scholar]
  37. SchröderS. PalinskiW. Schmid-SchönbeinG.W. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy.Am. J. Pathol.19911391811001713023
    [Google Scholar]
  38. TienT. ZhangJ. MutoT. KimD. SarthyV.P. RoyS. High glucose induces mitochondrial dysfunction in retinal Müller cells: implications for diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.20175872915292110.1167/iovs.16‑2135528586916
    [Google Scholar]
  39. AnsariP. TabasummaN. SnigdhaN.N. SiamN.H. PanduruR.V.N.R.S. AzamS. HannanJ.M.A. Abdel-WahabY.H.A. Diabetic retinopathy: An overview on mechanisms, pathophysiology and pharmacotherapy.Diabetology20223115917510.3390/diabetology3010011
    [Google Scholar]
  40. SelvachandranG. QuekS.G. ParamesranR. DingW. SonL.H. Developments in the detection of diabetic retinopathy: A state-of-the-art review of computer-aided diagnosis and machine learning methods.Artif. Intell. Rev.202356291596410.1007/s10462‑022‑10185‑635498558
    [Google Scholar]
  41. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. Ramirez-AcuñaJ.M. Perez-RomeroB.A. Guerrero-RodriguezJ.F. Martinez- AvilaN. Martinez-FierroM.L. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms2124973933419373
    [Google Scholar]
  42. KapoorC. VaidyaS. WadhwanV. Hitesh KaurG. PathakA. Hitesh Seesaw of matrix metalloproteinases (MMPs).J. Cancer Res. Ther.2016121283510.4103/0973‑1482.15733727072206
    [Google Scholar]
  43. CuiN. HuM. KhalilR.A. Biochemical and biological attributes of matrix metalloproteinases.Prog. Mol. Biol. Transl. Sci.201714717310.1016/bs.pmbts.2017.02.00528413025
    [Google Scholar]
  44. ShimodaM. Extracellular vesicle-associated MMPs: A modulator of the tissue microenvironment.Adv. Clin. Chem.201988356610.1016/bs.acc.2018.10.00630612606
    [Google Scholar]
  45. NagaseH. EnghildJ.J. SuzukiK. SalvesenG. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate.Biochemistry199029245783578910.1021/bi00476a0202383557
    [Google Scholar]
  46. RemacleA. MurphyG. RoghiC. Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface.J. Cell Sci.2003116193905391610.1242/jcs.0071012915589
    [Google Scholar]
  47. WangX. MaD. Keski-OjaJ. PeiD. Co-recycling of MT1-MMP and MT3-MMP through the trans-golgi network. Identification of DKV582 as a recycling signal.J. Biol. Chem.2004279109331933610.1074/jbc.M31236920014665622
    [Google Scholar]
  48. StawowyP. MeyborgH. StibenzD. StawowyN.B.P. RoserM. ThanabalasingamU. VeinotJ.P. ChrétienM. SeidahN.G. FleckE. GrafK. Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis.Circulation2005111212820282710.1161/CIRCULATIONAHA.104.50261715911696
    [Google Scholar]
  49. PeppinG.J. WeissS.J. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils.Proc. Natl. Acad. Sci. USA198683124322432610.1073/pnas.83.12.43223012563
    [Google Scholar]
  50. GuZ KaulM YanB KridelSJ CuiJ StronginA. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death.Science2002297558411861190
    [Google Scholar]
  51. FuX. KaoJ.L.F. BergtC. KassimS.Y. HuqN.P. d’AvignonA. ParksW.C. MechamR.P. HeineckeJ.W. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation.J. Biol. Chem.200427986209621210.1074/jbc.C30050620014670964
    [Google Scholar]
  52. YauJ.W.Y. RogersS.L. KawasakiR. LamoureuxE.L. KowalskiJ.W. BekT. ChenS.J. DekkerJ.M. FletcherA. GrauslundJ. HaffnerS. HammanR.F. IkramM.K. KayamaT. KleinB.E.K. KleinR. KrishnaiahS. MayurasakornK. O’HareJ.P. OrchardT.J. PortaM. RemaM. RoyM.S. SharmaT. ShawJ. TaylorH. TielschJ.M. VarmaR. WangJ.J. WangN. WestS. XuL. YasudaM. ZhangX. MitchellP. WongT.Y. Meta-Analysis for Eye Disease (META-EYE) Study Group Global prevalence and major risk factors of diabetic retinopathy.Diabetes Care201235355656410.2337/dc11‑190922301125
    [Google Scholar]
  53. NavaratnaD. McGuireP.G. MenicucciG. DasA. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes.Diabetes20075692380238710.2337/db06‑169417536065
    [Google Scholar]
  54. GiebelS.J. MenicucciG. McGuireP.G. DasA. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier.Lab. Invest.200585559760710.1038/labinvest.370025115711567
    [Google Scholar]
  55. KaurC. RathnasamyG. FouldsW.S. LingE.A. Cellular and molecular mechanisms of retinal ganglion cell death in hypoxic-ischemic injuries.J. Neurol. Exp. Neurosci.201511101910.17756/jnen.2015‑003
    [Google Scholar]
  56. CauweB. Van den SteenP.E. OpdenakkerG. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases.Crit. Rev. Biochem. Mol. Biol.200742311318510.1080/1040923070134001917562450
    [Google Scholar]
  57. IdrisI. GrayS. DonnellyR. Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes.Diabetologia200144665967310.1007/s00125005167511440359
    [Google Scholar]
  58. GrinerE.M. KazanietzM.G. Protein kinase C and other diacylglycerol effectors in cancer.Nat. Rev. Cancer20077428129410.1038/nrc211017384583
    [Google Scholar]
  59. LiuJ-Y. YaoJ. LiX-M. SongY-C. WangX-Q. LiY-J. YanB. JiangQ. Pathogenic role of lncRNA- MALAT1 in endothelial cell dysfunction in diabetes mellitus.Cell Death Dis.2014510e1506e150610.1038/cddis.2014.46625356875
    [Google Scholar]
  60. ErtanoB.Y. DemirY. NuralY. ErdoğanO. Investigation of the effect of acylthiourea derivatives on diabetes-associated enzymes.Chemistry Select2022746e20220414910.1002/slct.202204149
    [Google Scholar]
  61. TürkeşC. DemirY. BeydemirŞ. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors.ChemistrySelect2022748e20220405010.1002/slct.202204050
    [Google Scholar]
  62. KowluruR.A. Cross talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy.Cells202312230010.3390/cells1202030036672234
    [Google Scholar]
  63. KowluruR.A. ZhongQ. SantosJ.M. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9.Expert Opin. Investig. Drugs201221679780510.1517/13543784.2012.68104322519597
    [Google Scholar]
  64. KowluruR.A. MishraM. Regulation of matrix metalloproteinase in the pathogenesis of diabetic retinopathy.Prog. Mol. Biol. Transl. Sci.2017148678510.1016/bs.pmbts.2017.02.00428662829
    [Google Scholar]
  65. SantosJ.M. TewariS. LinJ.Y. KowluruR.A. Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy.Biochem. Biophys. Res. Commun.2013438476076410.1016/j.bbrc.2013.07.06623891690
    [Google Scholar]
  66. TewariS. SantosJ.M. KowluruR.A. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy.Antioxid. Redox Signal.201217349250410.1089/ars.2011.433322229649
    [Google Scholar]
  67. ChenY. WangW. LiuF. TangL. TangR. LiW. Apoptotic effect of mtrix metalloproteinases 9 in the development of diabetic retinopathy.Int. J. Clin. Exp. Pathol.201589104521045926617754
    [Google Scholar]
  68. Abu El-AsrarA.M. MohammadG. NawazM.I. SiddiqueiM.M. Van den EyndeK. MousaA. De HertoghG. OpdenakkerG. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy.PLoS One2013812e8585710.1371/journal.pone.008585724392031
    [Google Scholar]
  69. DiY. NieQ.Z. ChenX.L. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization.Int. J. Ophthalmol.20169680480827366678
    [Google Scholar]
  70. TuuminenR. LoukovaaraS. High intravitreal TGF-β1 and MMP-9 levels in eyes with retinal vein occlusion.Eye (Lond.)20142891095109910.1038/eye.2014.13724946846
    [Google Scholar]
  71. MatosA.L. BrunoD.F. AmbrósioA.F. SantosP.F. The benefits of flavonoids in diabetic retinopathy.Nutrients20201210316910.3390/nu1210316933081260
    [Google Scholar]
  72. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti-inflammatory properties of walnut ( Juglans regia ) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  73. BayrakS. ÖztürkC. DemirY. AlımZ. KüfreviogluÖ.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity.Protein Pept. Lett.202027318719210.2174/092986652666619100214230131577197
    [Google Scholar]
  74. ÖzaslanM.S. SağlamtaşR. DemirY. GençY. Saraçoğluİ. Gülçinİ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity.Chem. Biodivers.2022198e20220028010.1002/cbdv.20220028035796520
    [Google Scholar]
  75. Bagwe-ParabS. KaurG. ButtarH.S. Singh TuliH. Absorption, metabolism, and disposition of flavonoids and their role in the prevention of distinctive cancer types.Current Aspects of Flavonoids: Their Role in Cancer TreatmentSingaporeSpringer201912513710.1007/978‑981‑13‑5874‑6_6
    [Google Scholar]
  76. KhooH.E. AzlanA. TangS.T. LimS.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits.Food Nutr. Res.2017611136177910.1080/16546628.2017.136177928970777
    [Google Scholar]
  77. PuttaS. YarlaN.S. Kumar KE. LakkappaD.B. KamalM.A. ScottiL. ScottiM.T. AshrafG.M. RaoB.S.B. DS.K. ReddyG.V. TarasovV.V. ImandiS.B. AlievG. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications.Curr. Med. Chem.201925395347537110.2174/092986732566617120610194529210634
    [Google Scholar]
  78. BonettiF. BromboG. ZulianiG. Nootropics, functional foods, and dietary patterns for prevention of cognitive decline.Nutrition and functional foods for healthy aging.Elsevier201721123210.1016/B978‑0‑12‑805376‑8.00019‑8
    [Google Scholar]
  79. SongY. HuangL. YuJ. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling.J. Neuroimmunol.20163011610.1016/j.jneuroim.2016.11.00127847126
    [Google Scholar]
  80. KimJ. KimC.S. LeeY.M. SohnE. JoK. KimJ.S. Vaccinium myrtillus extract prevents or delays the onset of diabetes-induced blood-retinal barrier breakdown.Int. J. Food Sci. Nutr.201566223624210.3109/09637486.2014.97931925582181
    [Google Scholar]
  81. MehrabadiM.E. SalemiZ. BabaieS. PanahiM. Effect of biochanin A on retina levels of vascular endothelial growth factor, tumor necrosis factor-alpha and interleukin-1beta in rats with streptozotocin-induced diabetes.Can. J. Diabetes201842663964410.1016/j.jcjd.2018.03.00830054234
    [Google Scholar]
  82. JiaW.C. LiuG. ZhangC.D. ZhangS.P. Formononetin attenuates hydrogen peroxide (H2O2)-induced apoptosis and NF-κB activation in RGC-5 cells.Eur. Rev. Med. Pharmacol. Sci.201418152191219725070826
    [Google Scholar]
  83. CaiY. ZhangX. XuX. YuY. Effects of puerarin on the retina and STAT3 expression in diabetic rats.Exp. Ther. Med.20171465480548410.3892/etm.2017.520329285079
    [Google Scholar]
  84. KumarM.P. SankeshiV. NaikR.R. ThirupathiP. DasB. RajuT.N. The inhibitory effect of Isoflavones isolated from Caesalpinia pulcherrima on aldose reductase in STZ induced diabetic rats.Chem. Biol. Interact.2015237182410.1016/j.cbi.2015.05.01025986969
    [Google Scholar]
  85. KimJ. KimC.S. MoonM.K. KimJ.S. Epicatechin breaks preformed glycated serum albumin and reverses the retinal accumulation of advanced glycation end products.Eur. J. Pharmacol.201574810811410.1016/j.ejphar.2014.12.01025530268
    [Google Scholar]
  86. SkopinskiP. SzaflikJ. Duda-KrólB. NartowskaJ. SommerE. Chorostowska-WynimkoJ. DemkowU. Skopinska-RózewskaE. Suppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfone.Int. J. Mol. Med.200414470771110.3892/ijmm.14.4.70715375605
    [Google Scholar]
  87. ChenB. HeT. XingY. CaoT. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy.Exp. Ther. Med.20171466022602610.3892/etm.2017.527529285153
    [Google Scholar]
  88. GuptaS.K. SharmaH.P. DasU. VelpandianT. SaklaniR. Effect of rutin on retinal VEGF, TNF-α, aldose reductase, and total antioxidant capacity in diabetic rats: molecular mechanism and ocular pharmacokinetics.Int. Ophthalmol.202040115916810.1007/s10792‑019‑01165‑x31456155
    [Google Scholar]
  89. ZhangT. MeiX. OuyangH. LuB. YuZ. WangZ. JiL. Natural flavonoid galangin alleviates microglia-trigged blood-retinal barrier dysfunction during the development of diabetic retinopathy.J. Nutr. Biochem.20196511410.1016/j.jnutbio.2018.11.00630597356
    [Google Scholar]
  90. KimY.S. KimJ. KimK.M. JungD.H. ChoiS. KimC.S. KimJ.S. Myricetin inhibits advanced glycation end product (AGE)-induced migration of retinal pericytes through phosphorylation of ERK1/2, FAK-1, and paxillin in vitro and in vivo. Biochem. Pharmacol.201593449650510.1016/j.bcp.2014.09.02225450667
    [Google Scholar]
  91. XinH. ZhouF. LiuT. LiG.Y. LiuJ. GaoZ.Z. BaiG.Y. LuH. XinZ.C. Icariin ameliorates streptozotocin-induced diabetic retinopathy in vitro and in vivo. Int. J. Mol. Sci.201213186687810.3390/ijms1301086622312291
    [Google Scholar]
  92. YangL. SunH. WuL. GuoX. DouH. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy.Invest Ophthalmol Vis Sci200950523192327
    [Google Scholar]
  93. MeiX. ZhangT. OuyangH. LuB. WangZ. JiL. Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of diabetic retinopathy.Biochem. Pharmacol.2019159829510.1016/j.bcp.2018.11.01130447218
    [Google Scholar]
  94. ZhangH.T. ShiK. BaskotaA. ZhouF.L. ChenY.X. TianH.M. Silybin reduces obliterated retinal capillaries in experimental diabetic retinopathy in rats.Eur. J. Pharmacol.201474023323910.1016/j.ejphar.2014.07.03325066112
    [Google Scholar]
  95. YinY. XuR. NingL. YuZ. Bergenin alleviates Diabetic Retinopathy in STZ-induced rats.Appl. Biochem. Biotechnol.202319595299531135622274
    [Google Scholar]
  96. HuangW YanZ LiD MaY ZhouJ SuiZ Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells.Oxid. Med. Cell Longev.20189186246210.1155/2018/1862462
    [Google Scholar]
  97. LvP. YuJ. XuX. LuT. XuF. Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells.J. Cell. Biochem.201912045644565110.1002/jcb.2784830317656
    [Google Scholar]
  98. XuX.H. ZhaoC. PengQ. XieP. LiuQ.H. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.Braz. J. Med. Biol. Res.2017503e539610.1590/1414‑431x2016539628273207
    [Google Scholar]
  99. DaiC. JiangS. ChuC. XinM. SongX. ZhaoB. RETRACTED: Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145.Exp. Mol. Pathol.2019106123130
    [Google Scholar]
  100. ZhengX.X. XuY.L. LiS.H. HuiR. WuY.J. HuangX.H. Effects of green tea catechins with or without caffeine on glycemic control in adults: A meta-analysis of randomized controlled trials.Am. J. Clin. Nutr.201397475076210.3945/ajcn.111.03257323426037
    [Google Scholar]
  101. de CrecchioG CennamoG. BonavolontàP. Long-term follow-up of oral administration of flavonoids, Centella asiatica and Melilotus, for diabetic cystoid macular edema without macular thickening.J. Ocul. Pharmacol. Ther.2013298733737
    [Google Scholar]
  102. MaQ ChenD SunHP YanN XuY PanCW. Regular Chinese green tea consumption is protective for diabetic retinopathy: A clinic-based case-control study.J. Diabetes Res.20152015231570
    [Google Scholar]
  103. SteigerwaltR. BelcaroG. CesaroneM.R. Di RenzoA. GrossiM.G. RicciA. DugallM. CacchioM. SchönlauF. Pycnogenol improves microcirculation, retinal edema, and visual acuity in early diabetic retinopathy.J. Ocul. Pharmacol. Ther.200925653754010.1089/jop.2009.002319916788
    [Google Scholar]
  104. MahoneyS.E. LoprinziP.D. Influence of flavonoid-rich fruit and vegetable intake on diabetic retinopathy and diabetes-related biomarkers.J. Diabetes Complications201428676777110.1016/j.jdiacomp.2014.06.01125055729
    [Google Scholar]
  105. HomayouniF. HaidariF. HedayatiM. ZakerkishM. AhmadiK. Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes: A randomized double-blind controlled clinical trial.Phytother. Res.20183261073107910.1002/ptr.604629468764
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673316493240527113707
Loading
/content/journals/cmc/10.2174/0109298673316493240527113707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetes; inflammation; MMP-9; NF-kB; retinopathy; vascular disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test