Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The by-product of naturally occurring rock, soil with different agricultural and industrial processes contaminated groundwater with a toxic metalloid- Arsenic (As3+), which results in different toxicities within the human body and in developing fetus.

Aim

The present study emphasizes evaluating the presence of oxidative stress and excessive generation of reactive oxygen species (ROS) resulting in mitochondrial dysfunction and caspase activation followed by apoptosis due to arsenic-induced neurotoxicity along with epigenetic modifications at different molecular targets.

Methods

Published articles available on PubMed and Scopus were studied and summarized.

Results

The precise mechanism causing arsenic-induced neurotoxicity at a critical stage of brain development is still unknown, while increased oxidative stress led to mitochondrial dysfunctions which are known to play a prominent role in this. AMPK acts as a metabolic checkpoint and restores ATP levels through a different anabolic pathway in energy starvation. At the same time, arsenic-induced AMPK activation leads to autophagy and neuronal cell death.

Conclusion

This review summarized the molecular mechanisms involved in arsenic-induced neurotoxicity, which can help to develop suitable future ameliorative and therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673315956240829094938
2024-09-13
2025-09-05
Loading full text...

Full text loading...

References

  1. Balali-MoodM. NaseriK. TahergorabiZ. KhazdairM.R. SadeghiM. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic.Front. Pharmacol.20211264397210.3389/fphar.2021.64397233927623
    [Google Scholar]
  2. MuzaffarS. KhanJ. SrivastavaR. GorbatyukM.S. AtharM. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment.Cell Biol. Toxicol.20233918511010.1007/s10565‑022‑09710‑835362847
    [Google Scholar]
  3. ZhangC. WangN. XuY. TanH.Y. LiS. FengY. Molecular mechanisms involved in oxidative stress-associated liver injury induced by chinese herbal medicine: An experimental evidence-based literature review and network pharmacology study.Int. J. Mol. Sci.2018199274510.3390/ijms1909274530217028
    [Google Scholar]
  4. NguyenT.T.M. GilletG. PopgeorgievN. Caspases in the developing central nervous system: Apoptosis and beyond.Front. Cell Dev. Biol.2021970240410.3389/fcell.2021.70240434336853
    [Google Scholar]
  5. NamgungU. XiaZ. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases.Toxicol. Appl. Pharmacol.2001174213013810.1006/taap.2001.920011446828
    [Google Scholar]
  6. MuhetaerM. YangM. XiaR. LaiY. WuJ. Gender difference in arsenic biotransformation is an important metabolic basis for arsenic toxicity.BMC Pharmacol. Toxicol.20222311510.1186/s40360‑022‑00554‑w35227329
    [Google Scholar]
  7. TolinsM. RuchirawatM. LandriganP. The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure.Ann. Glob. Health201480430331410.1016/j.aogh.2014.09.00525459332
    [Google Scholar]
  8. FuS.C. LinJ.W. LiuJ.M. LiuS.H. FangK.M. SuC.C. HsuR.J. WuC.C. HuangC.F. LeeK.I. ChenY.W. Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death.Neurotoxicology20218513314410.1016/j.neuro.2021.05.00834038756
    [Google Scholar]
  9. StiglerK.A. SweetenT.L. PoseyD.J. McDougleC.J. Autism and immune factors: A comprehensive review.Res. Autism Spectr. Disord.20093484086010.1016/j.rasd.2009.01.007
    [Google Scholar]
  10. HeoY. ZhangY. GaoD. MillerV.M. LawrenceD.A. Aberrant immune responses in a mouse with behavioral disorders.PLoS One201167e2091210.1371/journal.pone.002091221799730
    [Google Scholar]
  11. HwangS.R. KimC.Y. ShinK.M. JoJ.H. KimH.A. HeoY. Altered expression levels of neurodevelopmental proteins in fetal brains of BTBR T+tf/J mice with autism-like behavioral characteristics.J. Toxicol. Environ. Health A201578851652310.1080/15287394.2015.101046625849768
    [Google Scholar]
  12. KimS.N. JoG.H. KimH.A. HeoY. Aberrant IgG isotype generation in mice with abnormal behaviors.J. Immunotoxicol.2016131929610.3109/1547691X.2015.101458125691089
    [Google Scholar]
  13. PiaoF. MaN. HirakuY. MurataM. OikawaS. ChengF. ZhongL. YamauchiT. KawanishiS. YokoyamaK. Oxidative DNA damage in relation to neurotoxicity in the brain of mice exposed to arsenic at environmentally relevant levels.J. Occup. Health200547544544910.1539/joh.47.44516230839
    [Google Scholar]
  14. FelixK. MannaS.K. WiseK. BarrJ. RameshG.T. Low levels of arsenite activates nuclear factor-κB and activator protein-1 in immortalized mesencephalic cells.J. Biochem. Mol. Toxicol.2005192677710.1002/jbt.2006215849723
    [Google Scholar]
  15. YipS.F. YeungY.M. TsuiE.Y.K. Severe neurotoxicity following arsenic therapy for acute promyelocytic leukemia: Potentiation by thiamine deficiency.Blood20029993481348210.1182/blood‑2001‑12‑032512001905
    [Google Scholar]
  16. DwivediN FloraSJ Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats.Food Chem. Toxicol.20114951152910.1016/j.fct.2011.02.007
    [Google Scholar]
  17. SarkarS. MukherjeeS. ChattopadhyayA. BhattacharyaS. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes.Ecotoxicol. Environ. Saf.20141071810.1016/j.ecoenv.2014.05.01224905690
    [Google Scholar]
  18. BardullasU. Limón-PachecoJ.H. GiordanoM. CarrizalesL. Mendoza-TrejoM.S. RodríguezV.M. Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice.Toxicol. Appl. Pharmacol.2009239216917710.1016/j.taap.2008.12.00419121333
    [Google Scholar]
  19. KrügerK. StraubH. HirnerA.V. HipplerJ. BindingN. MuβhoffU. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats.Toxicol. Appl. Pharmacol.2009236111512310.1016/j.taap.2008.12.02519371632
    [Google Scholar]
  20. LuoJ. QiuZ. ZhangL. ShuW. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus.Toxicol. Lett.20122111394410.1016/j.toxlet.2012.02.02122421273
    [Google Scholar]
  21. YadavR.S. ShuklaR.K. SankhwarM.L. PatelD.K. AnsariR.W. PantA.B. IslamF. KhannaV.K. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.Neurotoxicology201031553353910.1016/j.neuro.2010.05.00120466022
    [Google Scholar]
  22. ChandravanshiL.P. GuptaR. ShuklaR.K. Arsenic-induced neurotoxicity by dysfunctioning cholinergic and dopaminergic system in brain of developing rats.Biol. Trace Elem. Res.2019189111813310.1007/s12011‑018‑1452‑530051311
    [Google Scholar]
  23. LiuJ. AtamnaH. KuratsuneH. AmesB.N. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites.Ann. N. Y. Acad. Sci.2002959113316610.1111/j.1749‑6632.2002.tb02090.x11976193
    [Google Scholar]
  24. WangX. MengD. ChangQ. PanJ. ZhangZ. ChenG. KeZ. LuoJ. ShiX. Arsenic inhibits neurite outgrowth by inhibiting the LKB1-AMPK signaling pathway.Environ. Health Perspect.2010118562763410.1289/ehp.090151020439172
    [Google Scholar]
  25. HerreraA. PinedaJ. AntonioM.T. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants.Environ. Toxicol. Pharmacol.2013361737910.1016/j.etap.2013.03.01823619517
    [Google Scholar]
  26. ChaudhuriA.N. BasuS. ChattopadhyayS. Das GuptaS. Effect of high arsenic content in drinking water on rat brain.Indian J. Biochem. Biophys.1999361515410549161
    [Google Scholar]
  27. LiZ. LiuY. WangF. GaoZ. ElhefnyM.A. HabottaO.A. Abdel MoneimA.E. KassabR.B. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis.Chem. Biol. Interact.202133710939210.1016/j.cbi.2021.10939233497687
    [Google Scholar]
  28. PrakashC. SoniM. KumarV. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review.J. Appl. Toxicol.201636217918810.1002/jat.325626510484
    [Google Scholar]
  29. YangL. YoungbloodH. WuC. ZhangQ. Mitochondria as a target for neuroprotection: Role of methylene blue and photobiomodulation.Transl. Neurodegener.2020911910.1186/s40035‑020‑00197‑z32475349
    [Google Scholar]
  30. JurkowskaK. KratzE.M. SawickaE. PiwowarA. The impact of metalloestrogens on the physiology of male reproductive health as a current problem of the XXI century.J. Physiol. Pharmacol.201970333735531539881
    [Google Scholar]
  31. SrivastavaP. DhuriyaY.K. GuptaR. ShuklaR.K. YadavR.S. DwivediH.N. PantA.B. KhannaV.K. Protective effect of curcumin by modulating BDNF/DARPP32/CREB in arsenic-induced alterations in dopaminergic signaling in rat corpus striatum.Mol. Neurobiol.201855144546110.1007/s12035‑016‑0288‑227966075
    [Google Scholar]
  32. GopalkrishnanA. RaoM.V. Amelioration by vitamin A upon arsenic induced metabolic and neurotoxic effects.J. Health Sci.200652556857710.1248/jhs.52.568
    [Google Scholar]
  33. CastroviejoD. EscamesG. CarazoA. LeónJ. KhaldyH. ReiterR. Melatonin, mitochondrial homeostasis and mitochondrial-related diseases.Curr. Top. Med. Chem.20022213315110.2174/156802602339434411899097
    [Google Scholar]
  34. HaendelerJ. DröseS. BüchnerN. JakobS. AltschmiedJ. GoyC. SpyridopoulosI. ZeiherA.M. BrandtU. DimmelerS. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage.Arterioscler. Thromb. Vasc. Biol.200929692993510.1161/ATVBAHA.109.18554619265030
    [Google Scholar]
  35. DuX. LuoL. HuangQ. ZhangJ. Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats.Sci. Total Environ.202282015332510.1016/j.scitotenv.2022.15332535074374
    [Google Scholar]
  36. MattsonM.P. ChanS.L. Neuronal and glial calcium signaling in Alzheimer’s disease.Cell Calcium2003344-538539710.1016/S0143‑4160(03)00128‑312909083
    [Google Scholar]
  37. FloreaA.M. SplettstoesserF. BüsselbergD. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK).Toxicol. Appl. Pharmacol.2007220329230110.1016/j.taap.2007.01.02217376498
    [Google Scholar]
  38. SharmaS. KaurT. SharmaA.K. SinghB. PathakD. YadavH.N. SinghA.P. Betaine attenuates sodium arsenite-induced renal dysfunction in rats.Drug Chem. Toxicol.20224562488249510.1080/01480545.2021.195969934380335
    [Google Scholar]
  39. WrzosekA. GałeckaS. ŻochowskaM. OlszewskaA. KulawiakB. Alternative targets for modulators of mitochondrial potassium channels.Molecules202227129910.3390/molecules2701029935011530
    [Google Scholar]
  40. RochaR.A. Gimeno-AlcañizJ.V. Martín-IbañezR. CanalsJ.M. VélezD. DevesaV. Arsenic and fluoride induce neural progenitor cell apoptosis.Toxicol. Lett.2011203323724410.1016/j.toxlet.2011.03.02321439358
    [Google Scholar]
  41. PintonP. GiorgiC. SivieroR. ZecchiniE. RizzutoR. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis.Oncogene200827506407641810.1038/onc.2008.30818955969
    [Google Scholar]
  42. BrookesP.S. YoonY. RobothamJ.L. AndersM.W. SheuS.S. Calcium, ATP, and ROS: A mitochondrial love-hate triangle.Am. J. Physiol. Cell Physiol.20042874C817C83310.1152/ajpcell.00139.200415355853
    [Google Scholar]
  43. Kneissl, S. Photocontrol of protein-protein and protein-nucleic acid interactions. 2009. https://api.core.ac.uk/oai/oai: https://orca.cardiff.ac.uk:54835
  44. BahramiA. SathyapalanT. MoallemS.A. SahebkarA. Counteracting arsenic toxicity: Curcumin to the rescue?J. Hazard. Mater.202040012316010.1016/j.jhazmat.2020.12316032574880
    [Google Scholar]
  45. LuT.H. TsengT.J. SuC.C. TangF.C. YenC.C. LiuY.Y. YangC.Y. WuC.C. ChenK.L. HungD.Z. ChenY.W. Arsenic induces reactive oxygen species- caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways.Toxicol. Lett.2014224113014010.1016/j.toxlet.2013.10.01324157283
    [Google Scholar]
  46. PachauriV. MehtaA. MishraD. FloraS.J.S. Arsenic induced neuronal apoptosis in guinea pigs is Ca2+ dependent and abrogated by chelation therapy: Role of voltage gated calcium channels.Neurotoxicology20133513714510.1016/j.neuro.2013.01.00623376091
    [Google Scholar]
  47. RoseJ. Xenobiotic exposure requires mitochondrial metabolism for REDOX homeostasis and survival in astrocytes.Dissertations & Theses of Biochemistry, University of Nebraska - Lincoln. 2019.
    [Google Scholar]
  48. JaenischR. BirdA. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals.Nat. Genet.200333S324525410.1038/ng108912610534
    [Google Scholar]
  49. MitchellC. SchneperL.M. NottermanD.A. DNA methylation, early life environment, and health outcomes.Pediatr. Res.2016791-221221910.1038/pr.2015.19326466079
    [Google Scholar]
  50. BaileyK.A. FryR.C. Arsenic-associated changes to the epigenome: What are the functional consequences?Curr. Environ. Health Rep.201411223410.1007/s40572‑013‑0002‑824860721
    [Google Scholar]
  51. IslamR. ZhaoL. WangY. Lu-YaoG. LiuL.Z. Epigenetic dysregulations in arsenic-induced carcinogenesis.Cancers (Basel)20221418450210.3390/cancers1418450236139662
    [Google Scholar]
  52. RenX. McHaleC.M. SkibolaC.F. SmithA.H. SmithM.T. ZhangL. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis.Environ. Health Perspect.20111191111910.1289/ehp.100211420682481
    [Google Scholar]
  53. RobertsonK.D. DNA methylation, methyltransferases, and cancer.Oncogene200120243139315510.1038/sj.onc.120434111420731
    [Google Scholar]
  54. ZhangJ. MuX. XuW. MartinF.L. AlamdarA. LiuL. TianM. HuangQ. ShenH. Exposure to arsenic via drinking water induces 5-hydroxymethylcytosine alteration in rat.Sci. Total Environ.2014497-49861862510.1016/j.scitotenv.2014.08.00925256144
    [Google Scholar]
  55. BiergansS.D. Giovanni GaliziaC. ReinhardJ. ClaudianosC. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees.Sci. Rep.2015511622310.1038/srep1622326531238
    [Google Scholar]
  56. ReichardJ.F. PugaA. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation.Epigenomics2010218710410.2217/epi.09.4520514360
    [Google Scholar]
  57. YanL. GuoM.S. ZhangY. YuL. WuJ.M. TangY. AiW. ZhuF.D. LawB.Y.K. ChenQ. YuC.L. WongV.K.W. LiH. LiM. ZhouX.G. QinD.L. WuA.G. Dietary plant polyphenols as the potential drugs in neurodegenerative diseases: Current evidence, advances, and opportunities.Oxid. Med. Cell. Longev.2022202214010.1155/2022/528869835237381
    [Google Scholar]
  58. MauroM. CaradonnaF. KleinC.B. Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells.Environ. Mol. Mutagen.201657213715010.1002/em.2198726581878
    [Google Scholar]
  59. DuX. TianM. WangX. ZhangJ. HuangQ. LiuL. ShenH. Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water.Environ. Pollut.201823459060010.1016/j.envpol.2017.11.08329223816
    [Google Scholar]
  60. FengJ. ZhouY. CampbellS.L. LeT. LiE. SweattJ.D. SilvaA.J. FanG. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.Nat. Neurosci.201013442343010.1038/nn.251420228804
    [Google Scholar]
  61. LiuS. JiangJ. LiL. AmatoN.J. WangZ. WangY. Arsenite targets the zinc finger domains of tet proteins and inhibits tet-mediated oxidation of 5-methylcytosine.Environ. Sci. Technol.20154919119231193110.1021/acs.est.5b0338626355596
    [Google Scholar]
  62. UchiumiF. Current studies in transcriptional control system; toward the establishment of therapies against human diseases. Gene Expression and Regulation in Mammalian Cells - Transcription From General AspectsLondonInTechOpen201810.5772/intechopen.71701
    [Google Scholar]
  63. ChenY.C. Lin-ShiauS.Y. LinJ.K. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis.J. Cell. Physiol.1998177232433310.1002/(SICI)1097‑4652(199811)177:2<324::AID‑JCP14>3.0.CO;2‑99766529
    [Google Scholar]
  64. HaoZ. DuncanG.S. ChangC.C. EliaA. FangM. WakehamA. OkadaH. CalzasciaT. JangY. You-TenA. YehW.C. OhashiP. WangX. MakT.W. Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis.Cell2005121457959110.1016/j.cell.2005.03.01615907471
    [Google Scholar]
  65. ZhangW. CuiX. GaoY. SunL. WangJ. YangY. LiuX. LiY. GuoX. SunD. Role of pigment epithelium-derived factor (PEDF) on arsenic-induced neuronal apoptosis.Chemosphere201921592593110.1016/j.chemosphere.2018.10.10030408888
    [Google Scholar]
  66. Garza-LombóC. PappaA. PanayiotidisM.I. GonsebattM.E. FrancoR. Arsenic-induced neurotoxicity: A mechanistic appraisal.J. Biol. Inorg. Chem.20192481305131610.1007/s00775‑019‑01740‑831748979
    [Google Scholar]
  67. HeZ. ZhangY. ZhangH. ZhouC. MaQ. DengP. LuM. MouZ. LinM. YangL. LiY. YueY. PiH. LuY. HeM. ZhangL. ChenC. ZhouZ. YuZ. NAC antagonizes arsenic-induced neurotoxicity through TMEM179 by inhibiting oxidative stress in Oli-neu cells.Ecotoxicol. Environ. Saf.202122311255410.1016/j.ecoenv.2021.11255434332247
    [Google Scholar]
  68. MeddaN. PatraR. GhoshT.K. MaitiS. Neurotoxic mechanism of arsenic: Synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment.Biol. Trace Elem. Res.2020198181510.1007/s12011‑020‑02044‑831939057
    [Google Scholar]
  69. BarbhuiyaS.N. BarhoiD. GiriS. Impact of Arsenic on Reproductive Health. Environmental HealthLondonInTechOpen202110.5772/intechopen.101141
    [Google Scholar]
  70. LuoJ. ShuW. Arsenic-induced developmental neurotoxicity. Handbook of arsenic toxicology.AmsterdamElsevier201536338610.1016/B978‑0‑12‑418688‑0.00015‑0
    [Google Scholar]
  71. VahterM. ÅkessonA. LidénC. CeccatelliS. BerglundM. Gender differences in the disposition and toxicity of metals.Environ. Res.20071041859510.1016/j.envres.2006.08.00316996054
    [Google Scholar]
  72. KumarR. KhanS. DubeyP. Effect of arsenic exposure on testosterone level and spermatogonia of mice.World J. Pharm. Res.2013215241533
    [Google Scholar]
  73. LiY. WangM. PiaoF. WangX. Subchronic exposure to arsenic inhibits spermatogenesis and downregulates the expression of ddx3y in testis and epididymis of mice.Toxicol. Sci.2012128248248910.1093/toxsci/kfs16922581830
    [Google Scholar]
  74. OmmatiM.M. ShiX. LiH. ZamiriM.J. FarshadO. JamshidzadehA. HeidariR. GhaffariH. ZakerL. SabouriS. ChenY. The mechanisms of arsenic-induced ovotoxicity, ultrastructural alterations, and autophagic related paths: An enduring developmental study in folliculogenesis of mice.Ecotoxicol. Environ. Saf.202020411097310.1016/j.ecoenv.2020.11097332781346
    [Google Scholar]
  75. SouzaA.C.F. MarchesiS.C. FerrazR.P. LimaG.D.A. OliveiraJ.A. Machado-NevesM. Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats.J. Toxicol. Environ. Health A201679627428610.1080/15287394.2016.115092627029432
    [Google Scholar]
  76. ElshawarbyA.M. SalehH.A. AttiaA.A.E.M. NegmE.A. Arsenic-induced toxicity in the endometrium of adult albino rat and the possible role of human chorionic gonadotropin hormone.Egypt. J. Histol.201437232733810.1097/01.EHX.0000446582.73701.1b
    [Google Scholar]
  77. Dávila-EsquedaM.E. Jiménez-CapdevilleM.E. DelgadoJ.M. De la CruzE. Aradillas-GarcíaC. Jiménez-SuárezV. EscobedoR.F. LlerenasJ.R. Effects of arsenic exposure during the pre- and postnatal development on the puberty of female offspring.Exp. Toxicol. Pathol.2012641-2253010.1016/j.etp.2010.06.00120580540
    [Google Scholar]
  78. HuangQ. LuoL. AlamdarA. ZhangJ. LiuL. TianM. EqaniS.A.M.A.S. ShenH. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity.Sci. Rep.2016613251810.1038/srep3251827585557
    [Google Scholar]
  79. MehtaM. HundalS.S. Effect of sodium arsenite on reproductive organs of female Wistar rats.Arch. Environ. Occup. Health2016711162510.1080/19338244.2014.92734625153939
    [Google Scholar]
  80. GuvvalaP.R. SellappanS. ParameswaraiahR.J. Impact of arsenic(V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice.Environ. Sci. Pollut. Res. Int.20162318182001821010.1007/s11356‑016‑6870‑327265425
    [Google Scholar]
  81. DashM. MaityM. DeyA. PerveenH. KhatunS. JanaL. ChattopadhyayS. The consequence of NAC on sodium arsenite-induced uterine oxidative stress.Toxicol. Rep.2018527828710.1016/j.toxrep.2018.02.00329511641
    [Google Scholar]
  82. AllanA.M. HafezA.K. LabrecqueM.T. SolomonE.R. ShaikhM.N. ZhengX. AliA. Sex-dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain.Toxicol. Rep.201521376139010.1016/j.toxrep.2015.10.00326855884
    [Google Scholar]
  83. LavoieJ.C. RouleauT. TruttmannA.C. ChessexP. Postnatal gender-dependent maturation of cellular cysteine uptake.Free Radic. Res.200236881181710.1080/107157602100000523012420738
    [Google Scholar]
  84. RodríguezV.M. Limón-PachecoJ.H. CarrizalesL. Mendoza-TrejoM.S. GiordanoM. Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat.Neurotoxicol. Teratol.201032664064710.1016/j.ntt.2010.07.00520699118
    [Google Scholar]
  85. YadavR.S. ChandravanshiL.P. ShuklaR.K. SankhwarM.L. AnsariR.W. ShuklaP.K. PantA.B. KhannaV.K. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.Neurotoxicology201132676076810.1016/j.neuro.2011.07.00421839772
    [Google Scholar]
  86. HardieD.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy.Nat. Rev. Mol. Cell Biol.200781077478510.1038/nrm224917712357
    [Google Scholar]
  87. DuganL.L. YouY.H. AliS.S. Diamond-StanicM. MiyamotoS. DeClevesA.E. AndreyevA. QuachT. LyS. ShekhtmanG. NguyenW. ChepetanA. LeT.P. WangL. XuM. PaikK.P. FogoA. ViolletB. MurphyA. BrosiusF. NaviauxR.K. SharmaK. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.J. Clin. Invest.2013123114888489910.1172/JCI6621824135141
    [Google Scholar]
  88. SarreA. GabrielliJ. VialG. LeverveX.M. Assimacopoulos-JeannetF. Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells.Free Radic. Biol. Med.201252114215010.1016/j.freeradbiomed.2011.10.43722064362
    [Google Scholar]
  89. TaoK. MatsukiN. KoyamaR. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon.Dev. Neurobiol.201474655757310.1002/dneu.2214924218086
    [Google Scholar]
  90. ToyamaE.Q. HerzigS. CourchetJ. LewisT.L.Jr LosónO.C. HellbergK. YoungN.P. ChenH. PolleuxF. ChanD.C. ShawR.J. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress.Science2016351627027528110.1126/science.aab413826816379
    [Google Scholar]
  91. BalogJ. MehtaS.L. VemugantiR. Mitochondrial fission and fusion in secondary brain damage after CNS insults.J. Cereb. Blood Flow Metab.201636122022203310.1177/0271678X1667152827677674
    [Google Scholar]
  92. McCrimmonR.J. ShawM. FanX. ChengH. DingY. VellaM.C. ZhouL. McNayE.C. SherwinR.S. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia.Diabetes200857244445010.2337/db07‑083717977955
    [Google Scholar]
  93. LópezM. VarelaL. VázquezM.J. Rodríguez-CuencaS. GonzálezC.R. VelagapudiV.R. MorganD.A. SchoenmakersE. AgassandianK. LageR. de MorentinP.B.M. TovarS. NogueirasR. CarlingD. LelliottC. GallegoR. OrešičM. ChatterjeeK. SahaA.K. RahmouniK. DiéguezC. Vidal-PuigA. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance.Nat. Med.20101691001100810.1038/nm.220720802499
    [Google Scholar]
  94. ViolletB. AndreelliF. JørgensenS.B. PerrinC. GeloenA. FlamezD. MuJ. LenznerC. BaudO. BennounM. GomasE. NicolasG. WojtaszewskiJ.F.P. KahnA. CarlingD. SchuitF.C. BirnbaumM.J. RichterE.A. BurcelinR. VaulontS. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity.J. Clin. Invest.20031111919810.1172/JCI1656712511592
    [Google Scholar]
  95. ThakurM. RachamallaM. NiyogiS. DatusaliaA.K. FloraS.J.S. Molecular mechanism of arsenic-induced neurotoxicity including neuronal dysfunctions.Int. J. Mol. Sci.202122181007710.3390/ijms22181007734576240
    [Google Scholar]
  96. ShayanM BarangiS HosseinzadehH MehriS The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms.Food Chem Toxicol.2023175113691
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673315956240829094938
Loading
/content/journals/cmc/10.2174/0109298673315956240829094938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test