Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Capsaicin analogs, whether sourced from natural origins or synthesized , have garnered significant attention across diverse scientific disciplines. This comprehensive investigation explores the expansive domain of medicinal chemistry and pharmacology, focusing on capsaicin and its analogs. Notably, these analogs exhibit a wide-ranging pharmacological spectrum, with a particular emphasis on their potent antitumor properties. Researchers frequently explore structural modifications, particularly in region C, consistently enhancing their pharmacological activities. A highlighted finding is that analogs with alterations in both regions A and C manifest a diverse array of effects, spanning from anti-obesity to protection against ischemia. They also demonstrate anti-Alzheimer's, anti-fibrotic, anti-inflammatory, anti-diabetic, antimalarial, and anti-epileptic properties. This underscores the potential of structural adaptations in these regions, expanding the therapeutic applications of capsaicin-like compounds. Additionally, manipulations in regions B and C result in compounds that possess antioxidant and anti-obesity properties, providing valuable insights for the development of novel compounds. The therapeutic potential of capsaicin analogs opens innovative avenues for drug design and development, promising to address a broad spectrum of diseases and enhance global quality of life. Moreover, this article meticulously examines various synthetic methodologies for synthesizing capsaicin analogs, complementing the main review. These methodologies distinguish themselves through their simplicity, mild reaction conditions, and reliance on readily available commercial reagents. The accessible synthesis pathways enable researchers from diverse backgrounds to explore these compounds, fostering investigations and potential therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673310050240821054652
2024-09-03
2025-10-22
Loading full text...

Full text loading...

References

  1. NewmanD.J. CraggG.M. Natural Products as Sources of New Drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  2. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta, Gen. Subj.2013183063670369510.1016/j.bbagen.2013.02.008 23428572
    [Google Scholar]
  3. HailN.Jr Mechanisms of vanilloid-induced apoptosis.Apoptosis20038325126210.1023/A:1023620821878 12766485
    [Google Scholar]
  4. de AguiarA.C. CoutinhoJ.P. BarberoG.F. GodoyH.T. MartínezJ. Comparative study of capsaicinoid composition in Capsicum peppers grown in Brazil.Int. J. Food Prop.20161961292130210.1080/10942912.2015.1072210
    [Google Scholar]
  5. SzokaL. PalkaJ. Capsaicin up-regulates pro-apoptotic activity of thiazolidinediones in glioblastoma cell line.Biomed. Pharmacother.202013211074110.1016/j.biopha.2020.110741 33038582
    [Google Scholar]
  6. CunhaM.R. TavaresM.T. FernandesT.B. Parise-FilhoR. Peppers: A “Hot” natural source for antitumor compounds.Molecules2021266121
    [Google Scholar]
  7. ThoennissenN.H. O’KellyJ. LuD. IwanskiG.B. LaD.T. AbbassiS. LeiterA. KarlanB. MehtaR. KoefflerH.P. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway.Oncogene201029228529610.1038/onc.2009.335 19855437
    [Google Scholar]
  8. SenawongT. WongphakhamP. SaiwichaiT. PhaosiriC. KumboonmaP. Histone deacetylase inhibitory activity of hydroxycapsaicin, a synthetic derivative of capsaicin, and its cytotoxic effects against human colon cancer cell lines.Turk. J. Biol.201539337037910.3906/biy‑1409‑60
    [Google Scholar]
  9. TavaresM.T. PasqualotoK.F.M. van de StreekJ. FerreiraA.K. AzevedoR.A. DamiãoM.C.F.C.B. RodriguesC.P. de-Sá-JúniorP.L. BarbutoJ.A.M. Parise-FilhoR. FerreiraF.F. Synthesis, characterization, in silico approach and in vitro antiproliferative activity of RPF151, a benzodioxole sulfonamide analogue designed from capsaicin scaffold.J. Mol. Struct.2015108813814610.1016/j.molstruc.2015.02.019
    [Google Scholar]
  10. PereiraG.J.V. TavaresM.T. AzevedoR.A. MartinsB.B. CunhaM.R. BhardwajR. CuryY. ZambelliV.O. BarbosaE.G. HedigerM.A. Parise-FilhoR. Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling.Bioorg. Med. Chem.201927132893290410.1016/j.bmc.2019.05.020 31104785
    [Google Scholar]
  11. RichbartS.D. FriedmanJ.R. BrownK.C. GadepalliR.S. MilesS.L. RimoldiJ.M. RankinG.O. ValentovicM.A. TironaM.T. FinchP.T. HessJ.A. DasguptaP. Nonpungent N-AVAM capsaicin analogues and cancer therapy.J. Med. Chem.20216431346136110.1021/acs.jmedchem.0c01679 33508189
    [Google Scholar]
  12. KissinI. Vanilloid-induced conduction analgesia: Selective, dose-dependent, long-lasting, with a low level of potential neurotoxicity.Anesth. Analg.2008107127128110.1213/ane.0b013e318162cfa3 18635498
    [Google Scholar]
  13. DamannN. VoetsT. NiliusB. TRPs in Our Senses.Curr. Biol.20081818R880R88910.1016/j.cub.2008.07.063
    [Google Scholar]
  14. SzallasiA. Vanilloid (capsaicin) receptors in health and disease.Am. J. Clin. Pathol.2002118111012110.1309/7AYY‑VVH1‑GQT5‑J4R2 12109845
    [Google Scholar]
  15. ZhangS. WangD. HuangJ. HuY. XuY. Application of capsaicin as a potential new therapeutic drug in human cancers.J. Clin. Pharm. Ther.2020451162810.1111/jcpt.13039 31545523
    [Google Scholar]
  16. IlieM. CaruntuC. TampaM. GeorgescuS.R. MateiC. NegreiC. IonR.M. ConstantinC. NeaguM. BodaD. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review).Exp. Ther. Med.201918291692510.3892/etm.2019.7513 31384324
    [Google Scholar]
  17. SunF. XiongS. ZhuZ. Dietary capsaicin protects cardiometabolic organs from dysfunction.Nutrients20168517410.3390/nu8050174 27120617
    [Google Scholar]
  18. SzolcsányiJ. BarthóL. Capsaicin-sensitive afferents and their role in gastroprotection: An update.J. Physiol. Paris2001951-618118810.1016/S0928‑4257(01)00023‑7 11595435
    [Google Scholar]
  19. PanchalS.K. BlissE. BrownL. Capsaicin in metabolic syndrome.Nutrients201810563010.3390/nu10050630 29772784
    [Google Scholar]
  20. ZhaiK. LiskovaA. KubatkaP. BüsselbergD. Calcium entry through TRPV1: A potential target for the regulation of proliferation and apoptosis in cancerous and healthy cells.Int. J. Mol. Sci.202012111417710.3390/ijms21114177
    [Google Scholar]
  21. LiL. ChenC. ChiangC. XiaoT. ChenY. ZhaoY. ZhengD. The impact of TRPV1 on cancer pathogenesis and therapy: A systematic review.Int. J. Biol. Sci.20211782034204910.7150/ijbs.59918 34131404
    [Google Scholar]
  22. ChakrabortyS. AdhikaryA. MazumdarM. MukherjeeS. BhattacharjeeP. GuhaD. ChoudhuriT. ChattopadhyayS. SaG. SenA. DasT. Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis.PLoS One201496e9974310.1371/journal.pone.0099743 24926985
    [Google Scholar]
  23. LinY.T. WangH.C. HsuY.C. ChoC.L. YangM.Y. ChienC.Y. Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma cells by downregulating the PI3K/AKT/MTOR pathway.Int. J. Mol. Sci.2017187134310.3390/ijms18071343
    [Google Scholar]
  24. ChenM. XiaoC. JiangW. YangW. QinQ. TanQ. LianB. LiangZ. WeiC. Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-mediated NF-κB pathway.Drug Des. Devel. Ther.20211512514010.2147/DDDT.S269901 33469265
    [Google Scholar]
  25. SrinivasanK. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review.Crit. Rev. Food Sci. Nutr.20165691488150010.1080/10408398.2013.772090 25675368
    [Google Scholar]
  26. RemadeviR. SzallisiA. Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief.IDrugs2008112120132 18240098
    [Google Scholar]
  27. BasithS. CuiM. HongS. ChoiS. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases.Molecules201623896610.3390/molecules21080966
    [Google Scholar]
  28. FriedmanJ.R. NolanN.A. BrownK.C. MilesS.L. AkersA.T. ColcloughK.W. SeidlerJ.M. RimoldiJ.M. ValentovicM.A. DasguptaP. Anticancer activity of natural and synthetic capsaicin analogs.J. Pharmacol. Exp. Ther.2018364346247310.1124/jpet.117.243691 29246887
    [Google Scholar]
  29. HuangX.F. XueJ.Y. JiangA.Q. ZhuH.L. Capsaicin and its analogues: Structure-activity relationship study.Curr. Med. Chem.201320212661267210.2174/0929867311320210004 23627937
    [Google Scholar]
  30. LuoX.J. PengJ. LiY.J. Recent advances in the study on capsaicinoids and capsinoids.Eur. J. Pharmacol.201165011710.1016/j.ejphar.2010.09.074 20946891
    [Google Scholar]
  31. WhitingS. DerbyshireE. TiwariB.K. Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence.Appetite201259234134810.1016/j.appet.2012.05.015 22634197
    [Google Scholar]
  32. HurselR. Westerterp-PlantengaM.S. Thermogenic ingredients and body weight regulation.Int. J. Obes.201034465966910.1038/ijo.2009.299 20142827
    [Google Scholar]
  33. HogaboamC.M. WallaceJ.L. Inhibition of platelet aggregation by capsaicin. An effect unrelated to actions on sensory afferent neurons.Eur. J. Pharmacol.1991202112913110.1016/0014‑2999(91)90267‑T 1786800
    [Google Scholar]
  34. HarperA.G.S. BrownlowS.L. SageS.O. A role for TRPV1 in agonist-evoked activation of human platelets.J. Thromb. Haemost.20097233033810.1111/j.1538‑7836.2008.03231.x 19036069
    [Google Scholar]
  35. NishiharaK. NozawaY. NakanoM. AjiokaH. MatsuuraN. Sensitizing effects of lafutidine on CGRP-containing afferent nerves in the rat stomach.Br. J. Pharmacol.200213561487149410.1038/sj.bjp.0704596 11906962
    [Google Scholar]
  36. WangL. HuC.P. DengP.Y. ShenS.S. ZhuH.Q. DingJ.S. TanG.S. LiY.J. The protective effects of rutaecarpine on gastric mucosa injury in rats.Planta Med.200571541641910.1055/s‑2005‑864135 15931578
    [Google Scholar]
  37. KobataK. TodoT. YazawaS. IwaiK. WatanabeT. Novel Capsaicinoid-like Substances, Capsiate and Dihydrocapsiate, from the Fruits of a Nonpungent Cultivar, CH-19 Sweet, of Pepper (Capsicum annuum L.).J. Agric. Food Chem.19984651695169710.1021/jf980135c
    [Google Scholar]
  38. ShintakuK. UchidaK. SuzukiY. ZhouY. FushikiT. WatanabeT. YazawaS. TominagaM. Activation of transient receptor potential A1 by a non-pungent capsaicin-like compound, capsiate.Br. J. Pharmacol.201216551476148610.1111/j.1476‑5381.2011.01634.x 21883144
    [Google Scholar]
  39. IidaT. MoriyamaT. KobataK. MoritaA. MurayamaN. HashizumeS. FushikiT. YazawaS. WatanabeT. TominagaM. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate.Neuropharmacology200344795896710.1016/S0028‑3908(03)00100‑X 12726827
    [Google Scholar]
  40. TanakaY. SonoyamaT. MuragaY. KoedaS. GotoT. YoshidaY. YasubaK. Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense.Mol. Breed.201535614210.1007/s11032‑015‑0339‑9
    [Google Scholar]
  41. YangZ.H. WangX.H. WangH.P. HuL.Q. ZhengX.M. LiS.W. Capsaicin mediates cell death in bladder cancer T24 cells through reactive oxygen species production and mitochondrial depolarization.Urology201075373574110.1016/j.urology.2009.03.042 19592070
    [Google Scholar]
  42. KawabataF. InoueN. MasamotoY. MatsumuraS. KimuraW. KadowakiM. HigashiT. TominagaM. InoueK. FushikiT. Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice.Biosci. Biotechnol. Biochem.200973122690269710.1271/bbb.90555 19966466
    [Google Scholar]
  43. RosaA. DeianaM. CasuV. PaccagniniS. AppendinoG. BalleroM. DessíM.A. Antioxidant activity of capsinoids.J. Agric. Food Chem.200250257396740110.1021/jf020431w 12452665
    [Google Scholar]
  44. MelckD. BisognoT. De PetrocellisL. ChuangH. JuliusD. BifulcoM. Di MarzoV. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): Vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors.Biochem. Biophys. Res. Commun.1999262127528410.1006/bbrc.1999.1105 10448105
    [Google Scholar]
  45. MárquezN. De PetrocellisL. CaballeroF.J. MachoA. Schiano-MorielloA. MinassiA. AppendinoG. MuñozE. Di MarzoV. Iodinated N-acylvanillamines: Potential “multiple-target” anti-inflammatory agents acting via the inhibition of t-cell activation and antagonism at vanilloid TRPV1 channels.Mol. Pharmacol.20066941373138210.1124/mol.105.019786 16394182
    [Google Scholar]
  46. Di MarzoV. MelckD. De PetrocellisL. BisognoT. Cannabimimetic fatty acid derivatives in cancer and inflammation.Prostaglandins Other Lipid Mediat.2000611-2436110.1016/S0090‑6980(00)00054‑X 10785541
    [Google Scholar]
  47. MooreB.M.II The effect of arvanil on prostate cancer cells studied by whole cell high resolution magic angle spinning NMR.Modern Chem. Appl.2014212510.4172/2329‑6798.1000119
    [Google Scholar]
  48. LiX. GeJ. ZhengQ. ZhangJ. SunR. LiuR. Evodiamine and rutaecarpine from Tetradium ruticarpum in the treatment of liver diseases.Phytomedicine20206815318010.1016/j.phymed.2020.153180 32092638
    [Google Scholar]
  49. WangT. WangY. KontaniY. KobayashiY. SatoY. MoriN. YamashitaH. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner: Involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling.Endocrinology2008149135836610.1210/en.2007‑0467
    [Google Scholar]
  50. ZhangW. ChenX. WuC. LianY. WangY. WangJ. YangF. LiuC. LiX. Evodiamine reduced peripheral hypersensitivity on the mouse with nerve injury or inflammation.Mol. Pain202016174480692090256310.1177/1744806920902563
    [Google Scholar]
  51. ZhangH. YinL. LuM. WangJ. LiY. GaoW.L. YinZ. Evodiamine attenuates adjuvant-induced arthritis in rats by inhibiting synovial inflammation and restoring the Th17/Treg balance.J. Pharm. Pharmacol.202072679880610.1111/jphp.13238 32056223
    [Google Scholar]
  52. HochfellnerC. EvangelopoulosD. ZlohM. WubeA. GuzmanJ.D. McHughT.D. KunertO. BhaktaS. BucarF. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine.J. Appl. Microbiol.2015118486487210.1111/jam.12753 25604161
    [Google Scholar]
  53. IwaokaE. WangS. MatsuyoshiN. KogureY. HyperalgesiaT.Á.D.Á. Evodiamine suppresses capsaicin-induced thermal hyperalgesia through activation and subsequent desensitization of the transient receptor potential V1 channels.J. Nat. Med.20167011710.1007/s11418‑015‑0929‑1
    [Google Scholar]
  54. JiangJ. HuC. Evodiamine: A novel anti-cancer alkaloid from Evodia rutaecarpa.Molecules20091451852185910.3390/molecules14051852 19471205
    [Google Scholar]
  55. FangZ. TangY. YingJ. TangC. WangQ. Traditional Chinese medicine for anti-Alzheimer’s disease: Berberine and evodiamine from Evodia rutaecarpa.Chin. Med.20201518210.1186/s13020‑020‑00359‑1 32774447
    [Google Scholar]
  56. GeX. ChenS. LiuM. LiangT. LiuC. Evodiamine attenuates PDGF-BB-induced migration of rat vascular smooth muscle cells through activating PPARγ.Int. J. Mol. Sci.20151612281802819310.3390/ijms161226093
    [Google Scholar]
  57. WangZ. XiongY. PengY. ZhangX. LiS. PengY. PengX. ZhuoL. JiangW. Natural product evodiamine-inspired medicinal chemistry: Anticancer activity, structural optimization and structure-activity relationship.Eur. J. Med. Chem.202324711503110.1016/j.ejmech.2022.115031 36549115
    [Google Scholar]
  58. SheuJ.R. Pharmacological effects of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa.Cardiovasc. Drug Rev.199917323724510.1111/j.1527‑3466.1999.tb00017.x
    [Google Scholar]
  59. JiaS. HuC. Pharmacological effects of rutaecarpine as a cardiovascular protective agent.Molecules20101531873188110.3390/molecules15031873 20336017
    [Google Scholar]
  60. SheenW.S. TsaiI.L. TengC.M. KoF.N. ChenI.S. Indolopyridoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifoliolum.Planta Med.199662217517610.1055/s‑2006‑957846 8657756
    [Google Scholar]
  61. SheuJ.R. KanY.C. HungW.C. SuC.H. LinC.H. LeeY.M. YenM.H. The antiplatelet activity of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa, is mediated through inhibition of phospholipase C.Thromb. Res.1998922536410.1016/S0049‑3848(98)00112‑1 9792112
    [Google Scholar]
  62. HuangW. RubinsteinJ. PrietoA.R. ThangL.V. WangD.H. Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction.Hypertension200953224325010.1161/HYPERTENSIONAHA.108.118349 19114647
    [Google Scholar]
  63. KimS.J. LeeS.J. LeeS. ChaeS. HanM.D. MarW. NamK.W. Rutecarpine ameliorates bodyweight gain through the inhibition of orexigenic neuropeptides NPY and AgRP in mice.Biochem. Biophys. Res. Commun.2009389343744210.1016/j.bbrc.2009.08.161 19732749
    [Google Scholar]
  64. YangL.M. ChenC.F. LeeK.H. Synthesis of rutaecarpine and cytotoxic analogues.Bioorg. Med. Chem. Lett.19955546546810.1016/0960‑894X(95)00046‑V
    [Google Scholar]
  65. BaruahB. DasuK. VaitilingamB. MamnoorP. VenkataP.P. RajagopalS. YeleswarapuK.R. Synthesis and cytotoxic activity of novel quinazolino-β-carboline-5-one derivatives.Bioorg. Med. Chem.20041291991199410.1016/j.bmc.2004.03.005 15080902
    [Google Scholar]
  66. WangT. WangY. YamashitaH. Evodiamine inhibits adipogenesis via the EGFR–PKCα–ERK signaling pathway.FEBS Lett.2009583223655365910.1016/j.febslet.2009.10.046 19854188
    [Google Scholar]
  67. DongG. ShengC. WangS. MiaoZ. YaoJ. ZhangW. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents.J. Med. Chem.201053217521753110.1021/jm100387d 20942490
    [Google Scholar]
  68. DongG. WangS. MiaoZ. YaoJ. ZhangY. GuoZ. ZhangW. ShengC. New tricks for an old natural product: Discovery of highly potent evodiamine derivatives as novel antitumor agents by systemic structure-activity relationship analysis and biological evaluations.J. Med. Chem.201255177593761310.1021/jm300605m 22867019
    [Google Scholar]
  69. FreyM.R. ClarkJ.A. BatemanN.W. KazanietzM.G. BlackA.R. BlackJ.D. Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells.Biochem. Pharmacol.200467101873188610.1016/j.bcp.2004.02.006 15130764
    [Google Scholar]
  70. LeeJ. KimS.Y. ParkS. LimJ.O. KimJ.M. KangM. LeeJ. KangS.U. ChoiH.K. JinM.K. WelterJ.D. SzaboT. TranR. PearceL.V. TothA. BlumbergP.M. Structure–activity relationships of simplified resiniferatoxin analogues with potent VR1 agonism elucidates an active conformation of RTX for VR1 binding.Bioorg. Med. Chem.20041251055106910.1016/j.bmc.2003.12.005 14980619
    [Google Scholar]
  71. BhaveG. ZhuW. WangH. BrasierD.J. OxfordG.S. IvR.W.G. CarolinaN. HillC. HillC. CarolinaN. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation.Neuron.2002354721731
    [Google Scholar]
  72. NumazakiM. TominagaT. ToyookaH. TominagaM. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues.J. Biol. Chem.200227716133751337810.1074/jbc.C200104200 11884385
    [Google Scholar]
  73. SzallasiA. BlumbergP.M. AnnicelliL.L. KrauseJ.E. CortrightD.N. The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons.Mol. Pharmacol.199956358158710.1124/mol.56.3.581 10462546
    [Google Scholar]
  74. KagaH. GotoK. TakahashiT. HinoM. TokuhashiT. OritoK. A general and stereoselective synthesis of the capsaicinoids via the orthoester Claisen rearrangement.Tetrahedron199652258451847010.1016/0040‑4020(96)00414‑0
    [Google Scholar]
  75. BarberoG.F. MolinilloJ.M.G. VarelaR.M. PalmaM. MacíasF.A. BarrosoC.G. Application of Hansch’s model to capsaicinoids and capsinoids: A study using the quantitative structure-activity relationship. A novel method for the synthesis of capsinoids.J. Agric. Food Chem.20105863342334910.1021/jf9035029 20178388
    [Google Scholar]
  76. GonçalvesP. dos S. Síntese de análogos de capsaicina e nova síntese da dihidrocapsaicina como potenciais substâncias antibacterianas.Available From: https://www.oasisbr.ibict.br/vufind/Record/BRCRIS_af260a9734627794940550365068e3ed 2009
  77. LaezzaC. D’AlessandroA. PaladinoS. Maria MalfitanoA. Chiara ProtoM. GazzerroP. PisantiS. SantoroA. CiagliaE. BifulcoM. Anandamide inhibits the Wnt/β-catenin signalling pathway in human breast cancer MDA MB 231 cells.Eur. J. Cancer201248163112312210.1016/j.ejca.2012.02.062 22425263
    [Google Scholar]
  78. PisantiS. PicardiP. D’AlessandroA. LaezzaC. BifulcoM. The endocannabinoid signaling system in cancer.Trends Pharmacol. Sci.201334527328210.1016/j.tips.2013.03.003 23602129
    [Google Scholar]
  79. BarreiroE.J. FragaC.A.M. A utilização do safrol, principal componente químico do óleo de sassafráz, na síntese de substâncias bioativas na cascata do ácido araquidônico: antiinflamatórios, analgésicos e anti-trombóticos.Quim. Nova199922574475910.1590/S0100‑40421999000500019
    [Google Scholar]
  80. BarreiroE.J. Manssour FragaC.A. RodriguesC.R. Palhares de MirandaA.L. Estratégias em química medicinal para o planejamento de fármacos. Revista brasileira de Ciencias Farmaceuticas.Braz. J. Pharm. Sci.20012001269292
    [Google Scholar]
  81. de-Sá-JúniorP.L. PasqualotoK.F.M. FerreiraA.K. TavaresM.T. DamiãoM.C.F.C.B. de AzevedoR.A. CâmaraD.A.D. PereiraA. de SouzaD.M. Parise FilhoR. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells.Toxicol. Appl. Pharmacol.2013266338539810.1016/j.taap.2012.11.029 23238560
    [Google Scholar]
  82. FerreiraA.K. TavaresM.T. PasqualotoK.F.M. de AzevedoR.A. TeixeiraS.F. Ferreira-JuniorW.A. BertinA.M. de-Sá-JuniorP.L. BarbutoJ.A.M. FigueiredoC.R. CuryY. DamiãoM.C.F.C.B. Parise-FilhoR. RPF151, a novel capsaicin-like analogue: In vitro studies and in vivo preclinical antitumor evaluation in a breast cancer model.Tumour Biol.20153697251726710.1007/s13277‑015‑3441‑z 25894379
    [Google Scholar]
  83. DamiãoM.C.F.C.B. PasqualotoK.F.M. FerreiraA.K. TeixeiraS.F. AzevedoR.A. BarbutoJ.A.M. Palace-BerlF. Franchi-JuniorG.C. NowillA.E. TavaresM.T. Parise-FilhoR. Novel capsaicin analogues as potential anticancer agents: Synthesis, biological evaluation, and in silico approach.Arch. Pharm. (Weinheim)20143471288589510.1002/ardp.201400233 25283529
    [Google Scholar]
  84. KobataK. KawaguchiM. WatanabeT. Enzymatic synthesis of a capsinoid by the acylation of vanillyl alcohol with fatty acid derivatives catalyzed by lipases.Biosci. Biotechnol. Biochem.200266231932710.1271/bbb.66.319 11999404
    [Google Scholar]
  85. ZieniukB. GroborzK. WołoszynowskaM. RatuszK. Białecka-FlorjańczykE. FabiszewskaA. Enzymatic synthesis of lipophilic esters of phenolic compounds, evaluation of their antioxidant activity and effect on the oxidative stability of selected oils.Biomolecules202111231410.3390/biom11020314 33669574
    [Google Scholar]
  86. LuoX.J. LiN.S. ZhangY.S. LiuB. YangZ.C. LiY.J. DongX.R. PengJ. Vanillyl nonanoate protects rat gastric mucosa from ethanol-induced injury through a mechanism involving calcitonin gene-related peptide.Eur. J. Pharmacol.20116661-321121710.1016/j.ejphar.2011.05.032 21640099
    [Google Scholar]
  87. GarcíaT. VelosoJ. DíazJ. Properties of vanillyl nonanoate for protection of pepper plants against Phytophthora capsici and Botrytis cinerea.Eur. J. Plant Pathol.201815041091110110.1007/s10658‑017‑1352‑0
    [Google Scholar]
  88. MoritaA. IwasakiY. KobataK. IidaT. HigashiT. OdaK. SuzukiA. NarukawaM. SasakumaS. YokogoshiH. YazawaS. TominagaM. WatanabeT. Lipophilicity of capsaicinoids and capsinoids influences the multiple activation process of rat TRPV1.Life Sci.200679242303231010.1016/j.lfs.2006.07.024 16950406
    [Google Scholar]
  89. YangM.H. JungS.H. SethiG. AhnK.S. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory diseases.Molecules201924599510.3390/molecules24050995 30871017
    [Google Scholar]
  90. BevanS. HothiS. HughesG. JamesI.F. RangH.P. ShahK. WalpoleC.S.J. YeatsJ.C. Capsazepine: A competitive antagonist of the sensory neurone excitant capsaicin.Br. J. Pharmacol.1992107254455210.1111/j.1476‑5381.1992.tb12781.x 1422598
    [Google Scholar]
  91. SzallasiA. The vanilloid (capsaicin) receptor: Receptor types and species differences.Gen. Pharmacol.199425222324310.1016/0306‑3623(94)90049‑3 8026721
    [Google Scholar]
  92. FazzariJ. BalenkoM. ZacalN. SinghG. Identification of capsazepine as a novel inhibitor of system xc− and cancer-induced bone pain.J. Pain Res.20171091592510.2147/JPR.S125045 28458574
    [Google Scholar]
  93. GonzalesC.B. KirmaN.B. De La ChapaJ.J. ChenR. HenryM.A. LuoS. HargreavesK.M. Vanilloids induce oral cancer apoptosis independent of TRPV1.Oral Oncol.201450543744710.1016/j.oraloncology.2013.12.023 24434067
    [Google Scholar]
  94. LeeJ.H. KimC. BaekS.H. KoJ.H. LeeS.G. YangW.M. UmJ.Y. SethiG. AhnK.S. Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer.Oncotarget2017811177001771110.18632/oncotarget.10775 27458171
    [Google Scholar]
  95. SungB. PrasadS. RavindranJ. YadavV.R. AggarwalB.B. Capsazepine, a TRPV1 antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROS–JNK–CHOP-mediated upregulation of death receptors.Free Radic. Biol. Med.201253101977198710.1016/j.freeradbiomed.2012.08.012 22922338
    [Google Scholar]
  96. TengH.P. HuangC.J. YehJ.H. HsuS.S. LoY.K. ChengJ.S. ChengH.H. ChenJ.S. JiannB.P. ChangH.T. HuangJ.K. JanC.R. Capsazepine elevates intracellular Ca2+ in human osteosarcoma cells, questioning its selectivity as a vanilloid receptor antagonist.Life Sci.200475212515252610.1016/j.lfs.2004.04.037 15363657
    [Google Scholar]
  97. FujinoK. TakamiY. GdelafuenteS. LudwigK. MantyhC. BeckerJ. MulvihillS. MoodyF. MatthewsJ. Inhibition of the vanilloid receptor subtype-1 attenuates TNBS-colitis.J. Gastrointest. Surg.20048784284810.1016/j.gassur.2004.07.011 15531237
    [Google Scholar]
  98. VignaS.R. ShahidR.A. NathanJ.D. McVeyD.C. LiddleR.A. Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats.Pancreas201140570871410.1097/MPA.0b013e318214c8df 21602738
    [Google Scholar]
  99. ChoS.J. VacaM.A. MirandaC.J. N’GouemoP. Inhibition of transient potential receptor vanilloid type 1 suppresses seizure susceptibility in the genetically epilepsy-prone rat.CNS Neurosci. Ther.2018241182810.1111/cns.12770 29105300
    [Google Scholar]
  100. De La ChapaJ.J. SinghaP.K. SelfK.K. SallawayM.L. McHardyS.F. HartM.J. McGuffH.S. ValdezM.C. RuizF.I.I. PolusaniS.R. GonzalesC.B. The novel capsazepine analog, CIDD -99, significantly inhibits oral squamous cell carcinoma in vivo through a TRPV 1-independent induction of ER stress, mitochondrial dysfunction, and apoptosis.J. Oral Pathol. Med.201948538939910.1111/jop.12843 30825343
    [Google Scholar]
  101. De La ChapaJ. ValdezM. RuizF.III GonzalesK. MitchellW. McHardyS.F. HartM. PolusaniS.R. GonzalesC.B. Synthesis and SAR of novel capsazepine analogs with significant anti-cancer effects in multiple cancer types.Bioorg. Med. Chem.201927120821510.1016/j.bmc.2018.11.040 30528162
    [Google Scholar]
  102. MuratovskaN. SilvaP. PozdniakovaT. PereiraH. GreyC. JohanssonB. CarlquistM. Towards engineered yeast as production platform for capsaicinoids.Biotechnol. Adv.20225910798910.1016/j.biotechadv.2022.107989 35623491
    [Google Scholar]
  103. AntonioA.S. WiedemannL.S.M. Veiga JuniorV.F. The genus Capsicum: A phytochemical review of bioactive secondary metabolites.RSC Advances2018845257672578410.1039/C8RA02067A 35539808
    [Google Scholar]
  104. CurryJ. AluruM. MendozaM. NevarezJ. MelendrezM. O’ConnellM.A. Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp.Plant Sci.19991481475710.1016/S0168‑9452(99)00118‑1
    [Google Scholar]
  105. TsurumakiK. SasanumaT. Discovery of novel unfunctional pAMT allele pamt10 causing loss of pungency in sweet bell pepper (Capsicum annuum L.).Breed. Sci.201969113314210.1270/jsbbs.18150 31086491
    [Google Scholar]
  106. FroidevauxV. NegrellC. CaillolS. PascaultJ.P. BoutevinB. Biobased amines: From synthesis to polymers; present and future.Chem. Rev.201611622141811422410.1021/acs.chemrev.6b00486 27809503
    [Google Scholar]
  107. AppendinoG. DaddarioN. MinassiA. MorielloA.S. De PetrocellisL. Di MarzoV. The taming of capsaicin. Reversal of the vanilloid activity of N-acylvanillamines by aromatic iodination.J. Med. Chem.200548144663466910.1021/jm050139q 16000002
    [Google Scholar]
  108. JanuszJ.M. BuckwalterB.L. YoungP.A. LaHannT.R. FarmerR.W. KastingG.B. LoomansM.E. KerckaertG.A. MaddinC.S. BermanE.F. Vanilloids. 1. Analogs of capsaicin with antinociceptive and antiinflammatory activity.J. Med. Chem.199336182595260410.1021/jm00070a002 8410971
    [Google Scholar]
  109. AppendinoG. MinassiA. MorelloA.S. De PetrocellisL. Di MarzoV. N-Acylvanillamides: Development of an expeditious synthesis and discovery of new acyl templates for powerful activation of the vanilloid receptor.J. Med. Chem.200245173739374510.1021/jm020844o 12166946
    [Google Scholar]
  110. WalpoleC.S.J. BevanS. BovermannG. BoelsterliJ.J. BreckenridgeR. DaviesJ.W. HughesG.A. JamesI. ObererL. WinterJ. WrigglesworthR. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin.J. Med. Chem.199437131942195410.1021/jm00039a006 8027976
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673310050240821054652
Loading
/content/journals/cmc/10.2174/0109298673310050240821054652
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test