Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

Exosomal transfer RNA-derived fragments (exo-tRF) possess the capacity to be employed as biomarkers for several types of cancer. We aim to ascertain the diagnostic significance of exosomal 5’tRF-TyrGTA and 5’tRF-ValTAC in non-small cell lung cancer (NSCLC).

Methods

Ultracentrifugation was deployed to obtain serum exosomes from NSCLC patients and healthy donors. The acquired exosomes were then confirmed by transmission electron microscopy (TEM), qNano, and Western blot (WB) techniques. The level of exo-tRF expression was validated by the use of microarrays and RT-qPCR. The diagnostic performance of exo-tRFs for NSCLC was determined through the receiver operating characteristic curve (ROC).

Results

Exosomal 5’tRF-TyrGTA and 5’tRF-ValTAC were significantly downregulated in both early- and late-stage NSCLC patients compared to healthy donors, representing favorable diagnostic efficiency for NSCLC. In addition, the exosomal 5’tRF-TyrGTA level was correlated with tumor stage and lymph node metastasis.

Conclusion

Exosomal 5’tRF-TyrGTA and 5’tRF-ValTAC can serve as potential biomarkers for NSCLC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673314235240813060542
2024-08-16
2025-10-25
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  2. BoutsikouE. HardavellaG. FiliE. BakiriA. GaitanakisS. KoteA. SamitasK. GkiozosI. The role of biomarkers in lung cancer screening.Cancers (Basel)20241611198010.3390/cancers1611198038893101
    [Google Scholar]
  3. DalalB. TadaT. PatelD.P. PineS.R. KhanM. OikeT. KankeY. ParkerA.L. HaznadarM. ToulabiL. KrauszK.W. RoblesA.I. BowmanE.D. GonzalezF.J. HarrisC.C. Urinary metabolite diagnostic and prognostic liquid biopsy biomarkers of lung cancer in nonsmokers and tobacco smokers.Clin. Cancer Res.2024OF1OF1110.1158/1078‑0432.CCR‑24‑063738837903
    [Google Scholar]
  4. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers (Basel)20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  5. RizzoA. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate.Br. J. Cancer202212781381138210.1038/s41416‑022‑01929‑w36064585
    [Google Scholar]
  6. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.103912136533070
    [Google Scholar]
  7. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑017933225800
    [Google Scholar]
  8. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  9. LiY. YanB. HeS. Advances and challenges in the treatment of lung cancer.Biomed. Pharmacother.202316911589110.1016/j.biopha.2023.11589137979378
    [Google Scholar]
  10. ShenH. CaoD. ZhangX. Advances in exosome research in the management of lung cancer.Curr. Top. Med. Chem.2023231092193010.2174/156802662366623050410120837150988
    [Google Scholar]
  11. KadeethamK. NgodngamthaweesukM. KantathutN. SamankatiwatP. CherntanomwongP. LeelayanaP. KhajarernS. Overall 5-year survival rate and disease-free survival after segmentectomy versus lobectomy in patients with non-small cell lung cancer.SAGE Open Med.20221010.1177/2050312122114217136568340
    [Google Scholar]
  12. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  13. ArbourK.C. RielyG.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer.JAMA2019322876477410.1001/jama.2019.1105831454018
    [Google Scholar]
  14. YanW. LiY. PengZ. Clinical value of combined detection of carcinoembryonic antigen and CA125 in the diagnosis of non-small cell lung cancer combined with malignant pleural effusion.Pak. J. Med. Sci.2024405995100010.12669/pjms.40.5.795638827875
    [Google Scholar]
  15. ReinaC. ŠabanovićB. LazzariC. GregorcV. HeeschenC. Unlocking the future of cancer diagnosis – Promises and challenges of ctDNA, Based liquid biopsies in non-small cell lung cancer.Transl. Res.2024272415310.1016/j.trsl.2024.05.01438838851
    [Google Scholar]
  16. ChenH. MaY. XuJ. WangW. LuH. QuanC. YangF. LuY. WuH. QiuM. Circulating microbiome DNA as biomarkers for early diagnosis and recurrence of lung cancer.Cell Rep. Med.20245410149910.1016/j.xcrm.2024.10149938582085
    [Google Scholar]
  17. HoldenriederS. van RossumH.H. van den HeuvelM. Lung cancer biomarkers: Raising the clinical value of the classical and the new ones.Tumour Biol.202446s1S1S710.3233/TUB‑24000438517827
    [Google Scholar]
  18. TsaiY.T. SchlomJ. DonahueR.N. Blood-based biomarkers in patients with non-small cell lung cancer treated with immune checkpoint blockade.J. Exp. Clin. Cancer Res.20244318210.1186/s13046‑024‑02969‑138493133
    [Google Scholar]
  19. KajiwaraN. KakihanaM. MaedaJ. KanekoM. OtaS. EnomotoA. IkedaN. SugimotoM. Salivary metabolomic biomarkers for non-invasive lung cancer detection.Cancer Sci.202411551695170510.1111/cas.1611238417449
    [Google Scholar]
  20. GongM. DengY. XiangY. YeD. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors.Cell Commun. Signal.20232116210.1186/s12964‑023‑01079‑336964534
    [Google Scholar]
  21. ZouS. LiN. ZhangT. GengQ. Research progress on tumor metabolic biomarkers in liquid biopsy of lung cancer.Zhongguo Fei Ai Za Zhi202427212613238453444
    [Google Scholar]
  22. AndradeR. RibeiroI.P. CarreiraI.M. TralhãoJ.G. The diagnostic and prognostic potentials of non-coding RNA in cholangiocarcinoma.Int. J. Mol. Sci.20242511600210.3390/ijms2511600238892191
    [Google Scholar]
  23. TashakoriN. ArmanfarM. MashhadiA. MohammedA.T. KarimM.M. HusseinA.H.A. AdilM. AzimiS.A. AbediniF. Deciphering the role of exosomal non- coding RNA (ncRNA) in drug resistance of gastrointestinal tumors; An updated review.Cell Biochem. Biophys.202410.1007/s12013‑024‑01290‑038878101
    [Google Scholar]
  24. LvX. YangL. XieY. MomeniM.R. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: Insights into their functions.Front. Cell Dev. Biol.202412139778810.3389/fcell.2024.139778838859962
    [Google Scholar]
  25. LuJ. ZhuP. ZhangX. ZengL. XuB. ZhouP. tRNA-derived fragments: Unveiling new roles and molecular mechanisms in cancer progression.Int. J. Cancer2024ijc.3504110.1002/ijc.3504138867475
    [Google Scholar]
  26. WangQ. HuangQ. YingX. ShenJ. DuanS. Unveiling the role of tRNA-derived small RNAs in MAPK signaling pathway: Implications for cancer and beyond.Front. Genet.202415134685210.3389/fgene.2024.134685238596214
    [Google Scholar]
  27. KirchnerS. IgnatovaZ. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease.Nat. Rev. Genet.20151629811210.1038/nrg386125534324
    [Google Scholar]
  28. ShiX. ZhangY. WangY. WangJ. GaoY. WangR. WangL. XiongM. CaoY. OuN. LiuQ. MaH. CaiJ. ChenH. The tRNA Gm18 methyltransferase TARBP1 promotes hepatocellular carcinoma progression via metabolic reprogramming of glutamine.Cell Death Differ.202410.1038/s41418‑024‑01323‑438867004
    [Google Scholar]
  29. MaoC. YuanW. FangR. WuY. ZhangZ. CongH. Transfer RNA-derived small RNAs: A class of potential biomarkers in multiple cancers (Review).Oncol. Lett.202428129310.3892/ol.2024.1442738737976
    [Google Scholar]
  30. BalattiV. NigitaG. VenezianoD. DruscoA. SteinG.S. MessierT.L. FarinaN.H. LianJ.B. TomaselloL. LiuC. PalamarchukA. HartJ.R. BellC. CarosiM. PescarmonaE. PerracchioL. DiodoroM. RussoA. AntenucciA. ViscaP. CiardiA. HarrisC.C. VogtP.K. PekarskyY. CroceC.M. tsRNA signatures in cancer.Proc. Natl. Acad. Sci. USA2017114308071807610.1073/pnas.170690811428696308
    [Google Scholar]
  31. YangN. LiR. LiuR. YangS. ZhaoY. XiongW. QiuL. The emerging function and promise of tRNA-derived small RNAs in cancer.J. Cancer20241561642165610.7150/jca.8921938370372
    [Google Scholar]
  32. SalehiM. KamaliM.J. RajabzadehA. MinooS. MosharafiH. SaeediF. DaraeiA. tRNA-derived fragments: Key determinants of cancer metastasis with emerging therapeutic and diagnostic potentials.Arch. Biochem. Biophys.202475310993010.1016/j.abb.2024.10993038369227
    [Google Scholar]
  33. NechooshtanG. YunusovD. ChangK. GingerasT.R. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment.Nucleic Acids Res.202048148035804910.1093/nar/gkaa52632609822
    [Google Scholar]
  34. OlvedyM. ScaravilliM. HoogstrateY. VisakorpiT. JensterG. Martens-UzunovaE.S. A comprehensive repertoire of tRNA-derived fragments in prostate cancer.Oncotarget2016717247662477710.18632/oncotarget.829327015120
    [Google Scholar]
  35. SunC. FuZ. WangS. LiJ. LiY. ZhangY. YangF. ChuJ. WuH. HuangX. LiW. YinY. Roles of tRNA-derived fragments in human cancers.Cancer Lett.2018414162510.1016/j.canlet.2017.10.03129107107
    [Google Scholar]
  36. KumarP. KuscuC. DuttaA. Biogenesis and function of transfer RNA-related fragments (tRFs).Trends Biochem. Sci.201641867968910.1016/j.tibs.2016.05.00427263052
    [Google Scholar]
  37. ZhuP. YuJ. ZhouP. Role of tRNA-derived fragments in cancer: Novel diagnostic and therapeutic targets tRFs in cancer.Am. J. Cancer Res.202010239340232195016
    [Google Scholar]
  38. TangX. WuJ. ChenY. WangD. WangT. WengY. ZhuZ. PengR. WangY. YanF. Evaluation of 5′-tRF-His-GTG as a molecular biomarker in breast cancer diagnoses and prognosis.Cancer Biother. Radiopharm.2024cbr.2023.004810.1089/cbr.2023.004838527246
    [Google Scholar]
  39. CabrelleC. GiorgiF.M. MercatelliD. Quantitative and qualitative detection of tRNAs, tRNA halves and tRFs in human cancer samples: Molecular grounds for biomarker development and clinical perspectives.Gene202489814809710.1016/j.gene.2023.14809738128792
    [Google Scholar]
  40. YuM. YiJ. QiuQ. YaoD. LiJ. YangJ. MiC. ZhouL. LuB. LuW. YingK. ChenW. ChenE. ZhangH. LuZ. LuY. LiuP. Pan-cancer tRNA-derived fragment CAT1 coordinates RBPMS to stabilize NOTCH2 mRNA to promote tumorigenesis.Cell Rep.2023421111340810.1016/j.celrep.2023.11340837943661
    [Google Scholar]
  41. LuanN. WangJ. ShengB. ZhouQ. YeX. ZhuX. SunJ. TangZ. WangJ. tRF-20-M0NK5Y93-induced MALAT1 promotes colon cancer metastasis through alternative splicing of SMC1A.Am. J. Cancer Res.202313385287137034215
    [Google Scholar]
  42. WangY. XiaW. ShenF. ZhouJ. GuY. ChenY. tRNA-derived fragment tRF-Glu49 inhibits cell proliferation, migration and invasion in cervical cancer by targeting FGL1.Oncol. Lett.202224433410.3892/ol.2022.1345536039056
    [Google Scholar]
  43. HanY. PengY. LiuS. WangX. CaiC. GuoC. ChenY. GaoL. HuangQ. HeM. ShenE. LongJ. YuJ. ShenH. ZengS. tRF3008A suppresses the progression and metastasis of colorectal cancer by destabilizing FOXK1 in an AGO-dependent manner.J. Exp. Clin. Cancer Res.20224113210.1186/s13046‑021‑02190‑435065674
    [Google Scholar]
  44. DongX. FanX. HeX. ChenS. HuangW. GaoJ. HuangY. WangH. Comprehensively identifying the key tRNA-derived fragments and investigating their function in gastric cancer processes.OncoTargets Ther.202013109311094310.2147/OTT.S26613033149609
    [Google Scholar]
  45. ZhangF. ShiJ. WuZ. GaoP. ZhangW. QuB. WangX. SongY. WangZ. A 3′-tRNA-derived fragment enhances cell proliferation, migration and invasion in gastric cancer by targeting FBXO47.Arch. Biochem. Biophys.202069010846710.1016/j.abb.2020.10846732592804
    [Google Scholar]
  46. ZhouY. HuJ. LiuL. YanM. ZhangQ. SongX. LinY. ZhuD. WeiY. FuZ. HuL. ChenY. LiX. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2.Cancer Cell Int.202121150210.1186/s12935‑021‑02102‑834537070
    [Google Scholar]
  47. LiJ. CaoC. FangL. YuW. Serum transfer RNA-derived fragment tRF-31-79MP9P9NH57SD acts as a novel diagnostic biomarker for non-small cell lung cancer.J. Clin. Lab. Anal.2022367jcla.2449210.1002/jcla.2449235576497
    [Google Scholar]
  48. GuzziN. MuthukumarS. CieślaM. TodiscoG. NgocP.C.T. MadejM. MunitaR. FazioS. EkströmS. MorterA, BlancoT. JanssonM. NannyaY. CazzolaM. OgawaS. MalcovatiL. Hellström-LindbergE. DimitriouM. BellodiC. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome.Nat. Cell Biol.202224329930610.1038/s41556‑022‑00852‑935292784
    [Google Scholar]
  49. GuX. WangL. CoatesP.J. BoldrupL. FåhraeusR. WilmsT. SgaramellaN. NylanderK. Transfer-RNA-derived fragments are potential prognostic factors in patients with squamous cell carcinoma of the head and neck.Genes (Basel)20201111134410.3390/genes1111134433202812
    [Google Scholar]
  50. ZhangY. BiZ. DongX. YuM. WangK. SongX. XieL. SongX. tRNA-derived fragments: tRF-Gly-CCC-046, tRF-Tyr-GTA-010 and tRF-Pro-TGG-001 as novel diagnostic biomarkers for breast cancer.Thorac. Cancer202112172314232310.1111/1759‑7714.1407234254739
    [Google Scholar]
  51. BocchettiM. LuceA. IannaroneC. PasqualeL.S. FalcoM. TammaroC. AbateM. FerraroM.G. AddeoR. RicciardielloF. MottaG. De StefanoL. CaragliaF. CeccarelliA. ZappavignaS. ScrimaM. CossuA.M. CaragliaM. MissoG. Exosomes multiplex profiling, a promising strategy for early diagnosis of laryngeal cancer.J. Transl. Med.202422158210.1186/s12967‑024‑05396‑038902710
    [Google Scholar]
  52. ArimaJ. YoshinoH. FukumotoW. KawaharaI. SaitoS. LiG. FukudaI. IizasaS. MitsukeA. SakaguchiT. InoguchiS. MatsushitaR. NakagawaM. TataranoS. YamadaY. EnokidaH. LncRNA BCYRN1 as a potential therapeutic target and diagnostic marker in serum exosomes in bladder cancer.Int. J. Mol. Sci.20242511595510.3390/ijms2511595538892143
    [Google Scholar]
  53. ZhengB.H. NiX.J. LiuH.B. Exosomal microRNAs in hepatocellular carcinoma, expanding research field.World J. Gastroenterol.202430202618262010.3748/wjg.v30.i20.261838855155
    [Google Scholar]
  54. MittelstädtA. AnthuberA. DavidP. PodolskaM. BénardA. BrunnerM. KrautzC. JacobsenA. DenzA. WeberK. MerkelS. HacknerD. BuniatovT. RoßdeutschL. KlöschB. SwierzyI. HansenF.J. StrobelD. ZopfY. BaurJ.O. Van DeunJ. Immanuel GeppertC. GießlA. LettmaierS. SemrauS. GrützmannR. KouhestaniD. WeberG.F. Exosomal ROR1 in peritoneal fluid identifies peritoneal disseminated PDAC and is associated with poor survival.Front. Immunol.202415125307210.3389/fimmu.2024.125307238846943
    [Google Scholar]
  55. Costa-SilvaB. AielloN.M. OceanA.J. SinghS. ZhangH. ThakurB.K. BeckerA. HoshinoA. MarkM.T. MolinaH. XiangJ. ZhangT. TheilenT.M. García-SantosG. WilliamsC. ArarsoY. HuangY. RodriguesG. ShenT.L. LaboriK.J. LotheI.M.B. KureE.H. HernandezJ. DoussotA. EbbesenS.H. GrandgenettP.M. HollingsworthM.A. JainM. MallyaK. BatraS.K. JarnaginW.R. SchwartzR.E. MateiI. PeinadoH. StangerB.Z. BrombergJ. LydenD. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.Nat. Cell Biol.201517681682610.1038/ncb316925985394
    [Google Scholar]
  56. ZhangZ. LiX. SunW. YueS. YangJ. LiJ. MaB. WangJ. YangX. PuM. RuanB. ZhaoG. HuangQ. WangL. TaoK. DouK. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis.Cancer Lett.2017397334210.1016/j.canlet.2017.03.00428288874
    [Google Scholar]
  57. LiuZ. HuangH. RenJ. SongT. NiY. MaoS. YangY. LiuD. TangH. Plasma exosomes contain protein biomarkers valuable for the diagnosis of lung cancer.Discov. Oncol.202415119410.1007/s12672‑024‑01022‑z38806979
    [Google Scholar]
  58. BardolT. DujonA.M. TalyV. Dunyach-RemyC. LavigneJ.P. Costa-SilvaB. KurmaK. Eslami-SZ. CayrefourcqL. CanivetC. MuscariF. BournetB. Alix-PanabièresC. Early detection of pancreatic cancer by liquid biopsy “PANLIPSY”: A French nation-wide study project.BMC Cancer202424170910.1186/s12885‑024‑12463‑838853244
    [Google Scholar]
  59. ZhangQ. ZhangX. XieP. ZhangW. Liquid biopsy: An arsenal for tumour screening and early diagnosis.Cancer Treat. Rev.202412910277410.1016/j.ctrv.2024.10277438851148
    [Google Scholar]
  60. LiuJ. RenL. LiS. LiW. ZhengX. YangY. FuW. YiJ. WangJ. DuG. The biology, function, and applications of exosomes in cancer.Acta Pharm. Sin. B20211192783279710.1016/j.apsb.2021.01.00134589397
    [Google Scholar]
  61. CarrecaA.P. TinnirelloR. MiceliV. GalvanoA. GristinaV. IncorvaiaL. PampaloneM. TavernaS. IannoloG. Extracellular vesicles in lung cancer: Implementation in diagnosis and therapeutic perspectives.Cancers (Basel)20241611196710.3390/cancers1611196738893088
    [Google Scholar]
  62. ZhuL. LiJ. GongY. WuQ. TanS. SunD. XuX. ZuoY. ZhaoY. WeiY.Q. WeiX.W. PengY. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis.Mol. Cancer20191817410.1186/s12943‑019‑1000‑830940133
    [Google Scholar]
  63. WangS. SongX. WangK. ZhengB. LinQ. YuM. XieL. ChenL. SongX. Plasma exosomal miR-320d, miR-4479, and miR-6763-5p as diagnostic biomarkers in epithelial ovarian cancer.Front. Oncol.20221298634310.3389/fonc.2022.98634336591520
    [Google Scholar]
  64. WangJ. MaG. LiM. HanX. XuJ. LiangM. MaoX. ChenX. XiaT. LiuX. WangS. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer.Mol. Ther. Nucleic Acids20202195496410.1016/j.omtn.2020.07.02632814252
    [Google Scholar]
  65. TosarJ.P. CayotaA. Extracellular tRNAs and tRNA-derived fragments.RNA Biol.20201781149116710.1080/15476286.2020.172958432070197
    [Google Scholar]
  66. StrømmeO. HeckK.A. BredeG. LindholmH.T. OtterleiM. ArumC.J. tRNA-derived fragments as biomarkers in bladder cancer.Cancers (Basel)2024168158810.3390/cancers1608158838672670
    [Google Scholar]
  67. ChenQ. ZhangX. ShiJ. YanM. ZhouT. Origins and evolving functionalities of tRNA-derived small RNAs.Trends Biochem. Sci.2021461079080410.1016/j.tibs.2021.05.00134053843
    [Google Scholar]
  68. ZhuL. LiT. ShenY. YuX. XiaoB. GuoJ. Using tRNA halves as novel biomarkers for the diagnosis of gastric cancer.Cancer Biomark.201925216917610.3233/CBM‑18218431104009
    [Google Scholar]
  69. ZuoY. ChenS. YanL. HuL. BowlerS. ZitelloE. HuangG. DengY. Development of a tRNA-derived small RNA diagnostic and prognostic signature in liver cancer.Genes Dis.20229239340010.1016/j.gendis.2021.01.00635224155
    [Google Scholar]
  70. ChenH. XuZ. CaiH. PengY. YangL. WangZ. Identifying differentially expressed tRNA-derived small fragments as a biomarker for the progression and metastasis of colorectal cancer.Dis. Markers2022202211010.1155/2022/264617335035608
    [Google Scholar]
  71. KarousiP. AdamopoulosP.G. PapageorgiouS.G. PappaV. ScorilasA. KontosC.K. A novel, mitochondrial, internal tRNA-derived RNA fragment possesses clinical utility as a molecular prognostic biomarker in chronic lymphocytic leukemia.Clin. Biochem.202085202610.1016/j.clinbiochem.2020.07.00532745483
    [Google Scholar]
  72. DumaN. Santana-DavilaR. MolinaJ.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment.Mayo Clin. Proc.20199481623164010.1016/j.mayocp.2019.01.01331378236
    [Google Scholar]
  73. SunS. YangQ. JiangD. ZhangY. Nanobiotechnology augmented cancer stem cell guided management of cancer: Liquid-biopsy, imaging, and treatment.J. Nanobiotechnol.202422117610.1186/s12951‑024‑02432‑538609981
    [Google Scholar]
  74. NiaziS. KhanI.M. AkhtarW. ul HaqF. PashaI. KhanM.K.I. MohsinA. AhmadS. ZhangY. WangZ. Aptamer functionalized gold nanoclusters as an emerging nanoprobe in biosensing, diagnostic, catalysis and bioimaging.Talanta2024268Pt 112527010.1016/j.talanta.2023.12527037875028
    [Google Scholar]
  75. KlebesA. AtesH.C. VerboketR.D. UrbanG.A. von StettenF. DincerC. FrühS.M. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers.Biosens. Bioelectron.202424411580010.1016/j.bios.2023.11580037925943
    [Google Scholar]
  76. ChatzilakouE. HuY. JiangN. YetisenA.K. Biosensors for melanoma skin cancer diagnostics.Biosens. Bioelectron.202425011604510.1016/j.bios.2024.11604538301546
    [Google Scholar]
  77. YinX. LiaoH. YunH. LinN. LiS. XiangY. MaX. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer.Semin. Cancer Biol.202286Pt 214615910.1016/j.semcancer.2022.08.00235963564
    [Google Scholar]
  78. PrelajA. MiskovicV. ZanittiM. TrovoF. GenovaC. ViscardiG. RebuzziS.E. MazzeoL. ProvenzanoL. KostaS. FavaliM. SpagnolettiA. Castelo-BrancoL. DolezalJ. PearsonA.T. Lo RussoG. ProtoC. GanzinelliM. GianiC. AmbrosiniE. TurajlicS. AuL. KoopmanM. DelalogeS. KatherJ.N. de BraudF. GarassinoM.C. PentheroudakisG. SpencerC. PedrocchiA.L.G. Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review.Ann. Oncol.2024351296510.1016/j.annonc.2023.10.12537879443
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673314235240813060542
Loading
/content/journals/cmc/10.2174/0109298673314235240813060542
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): biomarker; cellular RNAs; exosomes; Non-small cell lung cancer; plasma exosomes; tRFs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test