Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The manipulation of ferroptosis in cancer cells is a possible therapeutic technique that has been investigated for use in the treatment of cancer. Consequently, ferroptosis-inducing medications have recently received increased interest in cancer therapy. In this research, we assessed the anticancer efficacy of 14β-hydroxy-3β-(β-D-Glucopyranosyloxy)-5α-bufa-20,22-dienolide (HTB50-2), a natural product derived from the plant , in Triple-Negative Breast Cancer (TNBC). Moreover, we also studied its potential mechanisms.

Methods

The biological effects of HTB50-2 in a series of breast cancer cell lines were analyzed using sulforhodamine B (SRB) and other methods. The migration ability was analyzed using three methods: wound healing assay, transwell assay, and Western blot. Meanwhile, the potential therapeutic value of HTB50-2 was evaluated in BALB/c mice by orthotopic transplantation. Transcriptome sequencing was conducted to explore the FOS-like antigen 2 (FOSL2) gene, and its role in ferroptosis was verified by Western blot and immunohistochemistry. The association of FOSL2 and ferroptosis-related genes was analyzed using NetworkAnalyst databases, and a TF-Gene interaction network was constructed.

Results

Ferroptosis was found to be induced in TNBC cells by HTB50-2. Furthermore, HTB50-2 inhibited tumor development by inducing ferroptosis in TNBC . Mechanistically, we demonstrated that a transcription factor FOSL2 mediated ferroptosis by HTB50-2. Additionally, it was found that Forkhead box C1 (FOXC1) was regulated by FOSL2 and correlated with ferroptosis.

Conclusion

Our data suggest that HTB50-2 exerts its anti-cancer properties by ferroptosis FOSL2/FOXC1 signaling pathway. Hence, HTB50-2 has an important application potential in the treatment of TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306760240802062909
2024-08-09
2025-10-26
Loading full text...

Full text loading...

References

  1. HurvitzS. MeadM. Triple-negative breast cancer.Curr. Opin. Obstet. Gynecol.2015Publish Ahead of Print1596910.1097/GCO.000000000000023926694831
    [Google Scholar]
  2. BadranA. Atia-tul-Wahab FayyazS. BaydounE. ChoudharyM.I. Small molecular leads differentially active against HER2 positive and triple negative breast cancer cell lines.Med. Chem.201915773874210.2174/157340641466618110614391230398120
    [Google Scholar]
  3. FengF. ZhangD. HanF. ZhangX. DuanT. ZhangX. Downregulation of GATS gene inhibits proliferation, clonogenicity and migration in triple negative breast cancer cells MDA-MB-231 by cell autophagy.Cancer Biomark.201926326126910.3233/CBM‑18168131381506
    [Google Scholar]
  4. LiuW. XiongX. ChenW. LiX. HuaX. LiuZ. ZhangZ. [Corrigendum] High expression of FUSE binding protein 1 in breast cancer stimulates cell proliferation and diminishes drug sensitivity.Int. J. Oncol.20215863010.3892/ijo.2021.521033887879
    [Google Scholar]
  5. LiuX. XiaoX. ShouQ. YanJ. ChenL. FuH. WangJ. Bufalin inhibits pancreatic cancer by inducing cell cycle arrest via the c-Myc/NF-κB pathway.J. Ethnopharmacol.201619353854510.1016/j.jep.2016.09.04727686271
    [Google Scholar]
  6. WatabeM. MasudaY. NakajoS. YoshidaT. KuroiwaY. NakayaK. The cooperative interaction of two different signaling pathways in response to bufalin induces apoptosis in human leukemia U937 cells.J. Biol. Chem.199627124140671407310.1074/jbc.271.24.140678662906
    [Google Scholar]
  7. VartholomatosE. AlexiouG.A. MarkopoulosG.S. LazariD. TsiftsoglouO. ChousidisI. LeonardosI. KyritsisA.P. Deglucohellebrin: A potent agent for glioblastoma treatment.Anticancer. Agents Med. Chem.202020110311010.2174/187152061966619112111084831755397
    [Google Scholar]
  8. ChengW. TanY.F. TianH.Y. GongX.W. ChenK.L. JiangR.W. Two new bufadienolides from the rhizomes of Helleborus thibetanus with inhibitory activities against prostate cancer cells.Nat. Prod. Res.2014281290190810.1080/14786419.2014.89120024697315
    [Google Scholar]
  9. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  10. ChenG.Q. BenthaniF.A. WuJ. LiangD. BianZ.X. JiangX. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis.Cell Death Differ.202027124225410.1038/s41418‑019‑0352‑331114026
    [Google Scholar]
  11. BersukerK. HendricksJ.M. LiZ. MagtanongL. FordB. TangP.H. RobertsM.A. TongB. MaimoneT.J. ZoncuR. BassikM.C. NomuraD.K. DixonS.J. OlzmannJ.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.Nature2019575778468869210.1038/s41586‑019‑1705‑231634900
    [Google Scholar]
  12. DollS. FreitasF.P. ShahR. AldrovandiM. da SilvaM.C. IngoldI. Goya GrocinA. Xavier da SilvaT.N. PanziliusE. ScheelC.H. MourãoA. BudayK. SatoM. WanningerJ. VignaneT. MohanaV. RehbergM. FlatleyA. SchepersA. KurzA. WhiteD. SauerM. SattlerM. TateE.W. SchmitzW. SchulzeA. O’DonnellV. PronethB. PopowiczG.M. PrattD.A. AngeliJ.P.F. ConradM. FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019575778469369810.1038/s41586‑019‑1707‑031634899
    [Google Scholar]
  13. KoppulaP. ZhuangL. GanB. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy.Protein Cell202112859962010.1007/s13238‑020‑00789‑533000412
    [Google Scholar]
  14. RohJ.L. KimE.H. JangH. ShinD. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.Redox Biol.20171125426210.1016/j.redox.2016.12.01028012440
    [Google Scholar]
  15. StockwellB.R. JiangX. GuW. Emerging mechanisms and disease relevance of ferroptosis.Trends Cell Biol.202030647849010.1016/j.tcb.2020.02.00932413317
    [Google Scholar]
  16. GuanZ. ChenJ. LiX. DongN. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation.Biosci. Rep.2020408BSR2020180710.1042/BSR2020180732776119
    [Google Scholar]
  17. ParkE. ChungS.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation.Cell Death Dis.2019101182210.1038/s41419‑019‑2064‑531659150
    [Google Scholar]
  18. WuJ. MinikesA.M. GaoM. BianH. LiY. StockwellB.R. ChenZ.N. JiangX. Publisher correction: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling.Nature20195727770E2010.1038/s41586‑019‑1480‑031371811
    [Google Scholar]
  19. ShaulianE. KarinM. AP-1 as a regulator of cell life and death.Nat. Cell Biol.200245E131E13610.1038/ncb0502‑e13111988758
    [Google Scholar]
  20. SunL. GuoZ. SunJ. LiJ. DongZ. ZhangY. ChenJ. KanQ. YuZ. MiR-133a acts as an anti-oncogene in Hepatocellular carcinoma by inhibiting FOSL2 through TGF-β/Smad3 signaling pathway.Biomed. Pharmacother.201810716817610.1016/j.biopha.2018.07.15130086463
    [Google Scholar]
  21. WanX. GuanS. HouY. QinY. ZengH. YangL. QiaoY. LiuS. LiQ. JinT. QiuY. LiuM. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts.Theranostics202111104975499110.7150/thno.5507433754039
    [Google Scholar]
  22. ZhaoC. QiaoY. JonssonP. WangJ. XuL. RouhiP. SinhaI. CaoY. WilliamsC. Dahlman-WrightK. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer.Cancer Res.201474143983399410.1158/0008‑5472.CAN‑13‑339624830720
    [Google Scholar]
  23. ZhaoQ. ZhangK. LiY. RenY. ShiJ. GuY. QiuS. LiuS. ChengY. QiaoY. LiuY. OLFML2A is necessary for anti-triple negative breast cancer effect of selective activator protein-1 inhibitor T-5224.Transl. Oncol.202114810110010.1016/j.tranon.2021.10110033993098
    [Google Scholar]
  24. ShanP. YangF. QiH. HuY. ZhuS. SunZ. ZhangZ. WangC. HouC. YuJ. WangL. ZhouZ. LiP. ZhangH. WangK. Alteration of MDM2 by the small molecule YF438 exerts antitumor effects in triple-negative breast cancer.Cancer Res.202181154027404010.1158/0008‑5472.CAN‑20‑092233985974
    [Google Scholar]
  25. ShanP. WangC. ChenH. YuJ. ZhangH. Inonotsutriol E from Inonotus obliquus exhibits promising anti breast cancer activity via regulating the JAK2/STAT3 signaling pathway.Bioorg. Chem.202313910674110.1016/j.bioorg.2023.10674137480812
    [Google Scholar]
  26. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.02128985560
    [Google Scholar]
  27. ChenH. WangL. LiuJ. WanZ. ZhouL. LiaoH. WanR. LncRNA ITGB2-AS1 promotes cisplatin resistance of non-small cell lung cancer by inhibiting ferroptosis via activating the FOSL2/NAMPT axis.Cancer Biol Ther2023241222337710.1080/15384047.2023.2223377
    [Google Scholar]
  28. CaoW. LiY. ZengZ. LeiS. Terpinen-4-ol Induces ferroptosis of glioma cells via downregulating JUN proto-oncogene.Molecules20232812464310.3390/molecules2812464337375197
    [Google Scholar]
  29. LiangX. HuC. HanM. LiuC. SunX. YuK. GuH. ZhangJ. Solasonine inhibits pancreatic cancer progression with involvement of ferroptosis induction.Front. Oncol.20221283472910.3389/fonc.2022.83472935494004
    [Google Scholar]
  30. ShanG. BiG. ZhaoG. LiangJ. BianY. ZhangH. JinX. HuZ. YaoG. FanH. ZhanC. Inhibition of PKA/CREB1 pathway confers sensitivity to ferroptosis in non-small cell lung cancer.Respir. Res.202324127710.1186/s12931‑023‑02567‑337957645
    [Google Scholar]
  31. YangJ. GuoQ. WangL. YuS. POU domain class 2 transcription factor 2 inhibits ferroptosis in cerebral ischemia reperfusion injury by activating sestrin2.Neurochem. Res.202348265867010.1007/s11064‑022‑03791‑x36306010
    [Google Scholar]
  32. YangQ. YangB. ChenM. Partner of NOB1 homolog transcriptionally activated by E2F transcription factor 1 promotes the malignant progression and inhibits ferroptosis of pancreatic cancer.Chin. J. Physiol.202366538839910.4103/cjop.CJOP‑D‑23‑0006337929351
    [Google Scholar]
  33. PatelS. Plant-derived cardiac glycosides: Role in heart ailments and cancer management.Biomed. Pharmacother.2016841036104110.1016/j.biopha.2016.10.03027780131
    [Google Scholar]
  34. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑4
    [Google Scholar]
  35. KaffashM. Tolou-Shikhzadeh-YazdiS. SoleimaniS. HoseinpoorS. SaberiM.R. ChamaniJ. Spectroscopy and molecular simulation on the interaction of Nano-Kaempferol prepared by oil-in-water with two carrier proteins: An investigation of protein–protein interaction.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430912381510.1016/j.saa.2023.12381538154302
    [Google Scholar]
  36. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  37. XiaoY. MaD. YangY.S. YangF. DingJ.H. GongY. JiangL. GeL.P. WuS.Y. YuQ. ZhangQ. BertucciF. SunQ. HuX. LiD.Q. ShaoZ.M. JiangY.Z. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer.Cell Res.202232547749010.1038/s41422‑022‑00614‑035105939
    [Google Scholar]
  38. BabuR.L. Naveen KumarM. PatilR.H. DevarajuK.S. RameshG.T. SharmaS.C. Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: Role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation.Mol. Cell. Biochem.20133801-214315110.1007/s11010‑013‑1667‑x23625206
    [Google Scholar]
  39. BozecA. BakiriL. JimenezM. SchinkeT. AmlingM. WagnerE.F. Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production.J. Cell Biol.201019061093110610.1083/jcb.20100211120837772
    [Google Scholar]
  40. JiC. HongX. LanB. LinY. HeY. ChenJ. LiuX. YeW. MoZ. SheZ. LinS. Circ_0091581 promotes the progression of hepatocellular carcinoma through targeting miR-591/FOSL2 Axis.Dig. Dis. Sci.20216693074308510.1007/s10620‑020‑06641‑433040214
    [Google Scholar]
  41. LiZ. NiuH. QinQ. YangS. WangQ. YuC. WeiZ. JinZ. WangX. YangA. ChenX. lncRNA UCA1 mediates resistance to cisplatin by regulating the miR-143/FOSL2-signaling pathway in ovarian cancer.Mol. Ther. Nucleic Acids2019179210110.1016/j.omtn.2019.05.00731234009
    [Google Scholar]
  42. LinkW.A. LedoF. TorresB. PalczewskaM. MadsenT.M. SavignacM. AlbarJ.P. MellströmB. NaranjoJ.R. Day-night changes in downstream regulatory element antagonist modulator/potassium channel interacting protein activity contribute to circadian gene expression in pineal gland.J. Neurosci.200424235346535510.1523/JNEUROSCI.1460‑04.200415190107
    [Google Scholar]
  43. RenouxF. StellatoM. HaftmannC. VogetsederA. HuangR. SubramaniamA. BeckerM.O. BlyszczukP. BecherB. DistlerJ.H.W. KaniaG. BoymanO. DistlerO. The AP1 transcription factor Fosl2 promotes systemic autoimmunity and inflammation by repressing treg development.Cell Rep.2020311310782610.1016/j.celrep.2020.10782632610127
    [Google Scholar]
  44. UceroA.C. BakiriL. RoedigerB. SuzukiM. JimenezM. MandalP. BraghettaP. BonaldoP. Paz-AresL. Fustero-TorreC. Ximenez-EmbunP. HernandezA.I. MegiasD. WagnerE.F. Fra-2–expressing macrophages promote lung fibrosis.J. Clin. Invest.201912983293330910.1172/JCI12536631135379
    [Google Scholar]
  45. LiS. FangX. WangX. FeiB. Fos-like antigen 2 (FOSL2) promotes metastasis in colon cancer.Exp. Cell Res.20183731-2576110.1016/j.yexcr.2018.08.01630114390
    [Google Scholar]
  46. LiS. LiuZ. FangX. WangX. FeiB. MicroRNA (miR)-597-5p inhibits colon cancer cell migration and invasion by targeting FOS-Like antigen 2 (FOSL2).Front. Oncol.2019949510.3389/fonc.2019.0049531245295
    [Google Scholar]
  47. LinY.J. ShyuW.C. ChangC.W. WangC.C. WuC.P. LeeH.T. ChenL.J. HsiehC.H. Tumor hypoxia regulates forkhead box C1 to promote lung cancer progression.Theranostics2017751177119110.7150/thno.1789528435457
    [Google Scholar]
  48. ChenH.Y. XiaoZ.Z. LingX. XuR.N. ZhuP. ZhengS.Y. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy.Mol. Med.20212711410.1186/s10020‑021‑00271‑w33568052
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306760240802062909
Loading
/content/journals/cmc/10.2174/0109298673306760240802062909
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CGs; ferroptosis; FOSL2; FOXC1; migration; TNBC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test