Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

CDK2 plays a pivotal role in controlling the progression of the cell cycle and is a target for anticancer drugs. The last 30 years of structural studies focused on CDK2 provided the basis for understanding its inhibition and furnished the data to develop machine-learning models to study intermolecular interactions. This review addresses the application of computational models to estimate the inhibition of CDK2. It focuses on machine-learning models developed to predict binding affinity against CDK2 using the program SAnDReS. A search of previously published articles on PubMed showed machine-learning models built to evaluate CDK2 inhibition. BindingDB information for CDK2 furnished the data to generate updated machine-learning models to predict the inhibition of this enzyme. The application of SAnDReS to model CDK2-inhibitor interactions showed that this approach can build machine-learning models with superior predictive performance compared with classical and deep-learning scoring functions. Also, the innovative DOME analysis of the predictive performance of machine learning and universal scoring function indicates that this method is adequate to select computational models to address protein-ligand interactions. The available structural and functional data about CDK2 is a rich source of information to build machine-learning models to predict the inhibition of this protein target. SAnDReS can build superior models to predict pK and outperform universal scoring functions, including one developed using deep learning.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673313727240819070317
2024-08-30
2025-11-01
Loading full text...

Full text loading...

References

  1. LiJ. FuA. ZhangL. An overview of scoring functions used for protein–ligand interactions in molecular docking.Interdiscip. Sci.201911232032810.1007/s12539‑019‑00327‑w30877639
    [Google Scholar]
  2. YangC. ChenE.A. ZhangY. Protein–ligand docking in the machine-learning era.Molecules20222714456810.3390/molecules2714456835889440
    [Google Scholar]
  3. Mena-UleciaK. TiznadoW. CaballeroJ. Study of the Differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA.PLoS One20151011e014277410.1371/journal.pone.014277426599107
    [Google Scholar]
  4. ZhaoL. ZhuY. WangJ. WenN. WangC. ChengL. A brief review of protein–ligand interaction prediction.Comput. Struct. Biotechnol. J.2022202831283810.1016/j.csbj.2022.06.00435765652
    [Google Scholar]
  5. WójcikowskiM. SiedleckiP. BallesterP.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity.Methods Mol. Biol.2019205311210.1007/978‑1‑4939‑9752‑7_131452095
    [Google Scholar]
  6. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  7. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  8. BredaA. BassoL. SantosD. de AzevedoW.Jr. Virtual screening of drugs: Score functions, docking, and drug design.Curr. Computeraided Drug Des.20084426527210.2174/157340908786786047
    [Google Scholar]
  9. SeifertM.H.J. Targeted scoring functions for virtual screening.Drug Discov. Today20091411-1256256910.1016/j.drudis.2009.03.01319508918
    [Google Scholar]
  10. ZhangX. ShenC. WangT. DengY. KangY. LiD. HouT. PanP. ML-PLIC: A web platform for characterizing protein–ligand interactions and developing machine learning-based scoring functions.Brief. Bioinform.2023245bbad29510.1093/bib/bbad29537738401
    [Google Scholar]
  11. PintroV.O. de AzevedoW.F.Jr. Optimized virtual screening workflow: Towards target-based polynomial scoring functions for HIV-1 protease.Comb. Chem. High Throughput Screen.201820982082710.2174/138620732066617112111001929165067
    [Google Scholar]
  12. Bitencourt-FerreiraG. de AzevedoW.F.Jr. Machine learning to predict binding affinity.Methods Mol. Biol.2019205325127310.1007/978‑1‑4939‑9752‑7_1631452110
    [Google Scholar]
  13. GilsonM.K. LiuT. BaitalukM. NicolaG. HwangL. ChongJ. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.Nucleic Acids Res.201644D1D1045D105310.1093/nar/gkv107226481362
    [Google Scholar]
  14. LiuZ. LiY. HanL. LiJ. LiuJ. ZhaoZ. NieW. LiuY. WangR. PDB-wide collection of binding data: Current status of the PDBbind database.Bioinformatics201531340541210.1093/bioinformatics/btu62625301850
    [Google Scholar]
  15. WagleS. SmithR.D. DominicA.J.III DasGuptaD. TripathiS.K. CarlsonH.A. Sunsetting Binding MOAD with its last data update and the addition of 3D-ligand polypharmacology tools.Sci. Rep.2023131300810.1038/s41598‑023‑29996‑w36810894
    [Google Scholar]
  16. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  17. BermanH.M. BattistuzT. BhatT.N. BluhmW.F. BourneP.E. BurkhardtK. FengZ. GillilandG.L. IypeL. JainS. FaganP. MarvinJ. PadillaD. RavichandranV. SchneiderB. ThankiN. WeissigH. WestbrookJ.D. ZardeckiC. The Protein Data Bank.Acta Crystallogr D Biol Crystallogr2002581899907
    [Google Scholar]
  18. WestbrookJ. FengZ. ChenL. YangH. BermanH.M. The Protein Data Bank and structural genomics.Nucleic Acids Res.200331148949110.1093/nar/gkg06812520059
    [Google Scholar]
  19. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  20. PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. PrettenhoferP. WeissR. DubourgV. VerplasJ. PassosA. CournapeauD. BrucherM. PerrotM. DuchesnayE. Scikitlearn: Machine learning in python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  21. Erdas-CicekO. AtacA.O. Gurkan-AlpA.S. BuyukbingolE. AlpaslanF.N. Three-dimensional analysis of binding sites for predicting binding affinities in drug design.J. Chem. Inf. Model.201959114654466210.1021/acs.jcim.9b0020631596082
    [Google Scholar]
  22. MohammadiS. NarimaniZ. AshouriM. FirouziR. Karimi-JafariM.H. Ensemble learning from ensemble docking: Revisiting the optimum ensemble size problem.Sci. Rep.202212141010.1038/s41598‑021‑04448‑535013496
    [Google Scholar]
  23. GuptaS. BaudryJ. MenonV. Big data analytics for improved prediction of ligand binding and conformational selection.Front. Mol. Biosci.2023995398410.3389/fmolb.2022.95398436710883
    [Google Scholar]
  24. ZarJ.H. Significance testing of the spearman rank correlation coefficient.J. Am. Stat. Assoc.19726733957858010.1080/01621459.1972.10481251
    [Google Scholar]
  25. LiuJ. WangR. Classification of current scoring functions.J. Chem. Inf. Model.201555347548210.1021/ci500731a25647463
    [Google Scholar]
  26. DengW. BrenemanC. EmbrechtsM.J. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods.J. Chem. Inf. Comput. Sci.200444269970310.1021/ci034246+15032552
    [Google Scholar]
  27. ZhangS. GolbraikhA. TropshaA. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces.J. Med. Chem.20064992713272410.1021/jm050260x16640331
    [Google Scholar]
  28. XavierM.M. HeckG.S. AvilaM.B. LevinN.M.B. PintroV.O. CarvalhoN.L. AzevedoW.F.Jr. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions.Comb. Chem. High Throughput Screen.2016191080181227686428
    [Google Scholar]
  29. JiménezJ. ŠkaličM. Martínez-RosellG. De FabritiisG. K DEEP: Protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks.J. Chem. Inf. Model.201858228729610.1021/acs.jcim.7b0065029309725
    [Google Scholar]
  30. Varela-RialA. MaryanowI. MajewskiM. DoerrS. SchapinN. Jiménez-LunaJ. De FabritiisG. PlayMolecule glimpse: Understanding protein–ligand property predictions with interpretable neural networks.J. Chem. Inf. Model.202262222523110.1021/acs.jcim.1c0069134978201
    [Google Scholar]
  31. RossG.A. MorrisG.M. BigginP.C. One size does not fit all: The limits of structure-based models in drug discovery.J. Chem. Theory Comput.2013994266427410.1021/ct400422824124403
    [Google Scholar]
  32. Bitencourt-FerreiraG. de AzevedoW.F.Jr. Exploring the scoring function space.Methods Mol. Biol.2019205327528110.1007/978‑1‑4939‑9752‑7_1731452111
    [Google Scholar]
  33. VeríssimoG.C. SerafimM.S.M. KronenbergerT. FerreiraR.S. HonorioK.M. MaltarolloV.G. Designing drugs when there is low data availability: One-shot learning and other approaches to face the issues of a long-term concern.Expert Opin. Drug Discov.202217992994710.1080/17460441.2022.211445135983695
    [Google Scholar]
  34. Bitencourt-FerreiraG. VillarrealM.A. QuirogaR. BiziukovaN. PoroikovV. TarasovaO. de Azevedo JuniorW.F. Exploring scoring function space: Developing computational models for drug discovery.Curr. Med. Chem.202431172361237710.2174/092986733066623032110373136944627
    [Google Scholar]
  35. GoelG. ChouI.C. VoitE.O. Biological systems modeling and analysis: A biomolecular technique of the twenty- first century.J. Biomol. Tech.200617425226917028166
    [Google Scholar]
  36. KitanoH. Computational systems biology.Nature2002420691220621010.1038/nature0125412432404
    [Google Scholar]
  37. MarkowetzF. All biology is computational biology.PLoS Biol.2017153e200205010.1371/journal.pbio.200205028278152
    [Google Scholar]
  38. LeccaP. LeccaM. Graph embedding and geometric deep learning relevance to network biology and structural chemistry.Front. Arti. Intell.20236125635210.3389/frai.2023.125635238035201
    [Google Scholar]
  39. ProcopioA. CesarelliG. DonisiL. MerolaA. AmatoF. CosentinoC. Combined mechanistic modeling and machine-learning approaches in systems biology – a systematic literature review.Comput. Methods Programs Biomed.202324010768110.1016/j.cmpb.2023.10768137385142
    [Google Scholar]
  40. WangH. FuT. DuY. GaoW. HuangK. LiuZ. ChandakP. LiuS. Van KatwykP. DeacA. AnandkumarA. BergenK. GomesC.P. HoS. KohliP. LasenbyJ. LeskovecJ. LiuT.Y. ManraiA. MarksD. RamsundarB. SongL. SunJ. TangJ. VeličkovićP. WellingM. ZhangL. ColeyC.W. BengioY. ZitnikM. Scientific discovery in the age of artificial intelligence.Nature20236207972476010.1038/s41586‑023‑06221‑237532811
    [Google Scholar]
  41. HouJ. JunS.R. ZhangC. KimS.H. Global mapping of the protein structure space and application in structure-based inference of protein function.Proc. Natl. Acad. Sci. USA2005102103651365610.1073/pnas.040977210215705717
    [Google Scholar]
  42. VendruscoloM. DobsonC.M. A glimpse at the organization of the protein universe.Proc. Natl. Acad. Sci. USA2005102165641564210.1073/pnas.050027410215827120
    [Google Scholar]
  43. BohacekR.S. McMartinC. GuidaW.C. The art and practice of structure-based drug design: A molecular modeling perspective.Med. Res. Rev.199616135010.1002/(SICI)1098‑1128(199601)16:1<3::AID‑MED1>3.0.CO;2‑68788213
    [Google Scholar]
  44. DobsonC.M. Chemical space and biology.Nature2004432701982482810.1038/nature0319215602547
    [Google Scholar]
  45. KhamidullinaA.I. AbramenkoY.E. BruterA.V. TatarskiyV.V. Key proteins of replication stress response and cell cycle control as cancer therapy targets.Int. J. Mol. Sci.2024252126310.3390/ijms2502126338279263
    [Google Scholar]
  46. ShaikhJ. PatelK. KhanT. Advances in pyrazole based scaffold as cyclin-dependent kinase 2 inhibitors for the treatment of cancer.Mini Rev. Med. Chem.20222281197121510.2174/138955752166621102710495734711160
    [Google Scholar]
  47. SmithH.L. SouthgateH. TweddleD.A. CurtinN.J. DNA damage checkpoint kinases in cancer.Expert Rev. Mol. Med.202022e210.1017/erm.2020.332508294
    [Google Scholar]
  48. TadesseS. AnshaboA.T. PortmanN. LimE. TilleyW. CaldonC.E. WangS. Targeting CDK2 in cancer: Challenges and opportunities for therapy.Drug Discov. Today202025240641310.1016/j.drudis.2019.12.00131839441
    [Google Scholar]
  49. MouJ. ChenD. DengY. Inhibitors of cyclin-dependent kinase 1/2 for anticancer treatment.Med. Chem.202016330732510.2174/157340641566619062611390031241436
    [Google Scholar]
  50. TadesseS. CaldonE.C. TilleyW. WangS. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update.J. Med. Chem.20196294233425110.1021/acs.jmedchem.8b0146930543440
    [Google Scholar]
  51. De BondtH.L. RosenblattJ. JancarikJ. JonesH.D. MorganD.O. KimS.H. Crystal structure of cyclin-dependent kinase 2.Nature1993363643059560210.1038/363595a08510751
    [Google Scholar]
  52. MorganD.O. De BondtH.L. Protein kinase regulation: Insights from crystal structure analysis.Curr. Opin. Cell Biol.19946223924610.1016/0955‑0674(94)90142‑27517688
    [Google Scholar]
  53. Schulze-GahmenU. BrandsenJ. JonesH.D. MorganD.O. MeijerL. VeselyJ. KimS.H. Multiple modes of ligand recognition: Crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine.Proteins199522437839110.1002/prot.3402204087479711
    [Google Scholar]
  54. De AzevedoW.F.Jr. Mueller-DieckmannH.J. Schulze- GahmenU. WorlandP.J. SausvilleE. KimS.H. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase.Proc. Natl. Acad. Sci. USA19969372735274010.1073/pnas.93.7.27358610110
    [Google Scholar]
  55. Schulze-GahmenU. De BondtH.L. KimS.H. High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: Bound waters and natural ligand as guides for inhibitor design.J. Med. Chem.199639234540454610.1021/jm960402a8917641
    [Google Scholar]
  56. Bitencourt-FerreiraG. RizzottoC. de Azevedo JuniorW.F. Machine learning-based scoring functions, development and applications with SAnDReS.Curr. Med. Chem.20212891746175610.2174/1875533XMTA25NjQu432410551
    [Google Scholar]
  57. Bitencourt-FerreiraG. de AzevedoW.F.Jr. SAnDReS: A computational tool for docking.Methods Mol. Biol.20192053516510.1007/978‑1‑4939‑9752‑7_431452098
    [Google Scholar]
  58. KawanishiN. SugimotoT. ShibataJ. NakamuraK. MasutaniK. IkutaM. HiraiH. Structure-based drug design of a highly potent CDK1,2,4,6 inhibitor with novel macrocyclic quinoxalin-2-one structure.Bioorg. Med. Chem. Lett.200616195122512610.1016/j.bmcl.2006.07.02616876403
    [Google Scholar]
  59. BetziS. AlamR. MartinM. LubbersD.J. HanH. JakkarajS.R. GeorgG.I. SchönbrunnE. Discovery of a potential allosteric ligand binding site in CDK2.ACS Chem. Biol.20116549250110.1021/cb100410m21291269
    [Google Scholar]
  60. SchonbrunnE. BetziS. AlamR. MartinM.P. BeckerA. HanH. FrancisR. ChakrasaliR. JakkarajS. KaziA. SebtiS.M. CubittC.L. GebhardA.W. HazlehurstL.A. TashJ.S. GeorgG.I. Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases.J. Med. Chem.201356103768378210.1021/jm301234k23600925
    [Google Scholar]
  61. VulpettiA. CasaleE. RolettoF. AmiciR. VillaM. PevarelloP. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors.J. Mol. Graph. Model.200624534134810.1016/j.jmgm.2005.09.01216260160
    [Google Scholar]
  62. MartinM.P. ZhuJ.Y. LawrenceH.R. PiredduR. LuoY. AlamR. OzcanS. SebtiS.M. LawrenceN.J. SchönbrunnE. A novel mechanism by which small molecule inhibitors induce the DFG flip in Aurora A.ACS Chem. Biol.20127469870610.1021/cb200508b22248356
    [Google Scholar]
  63. AndersonM. AndrewsD.M. BarkerA.J. BrassingtonC.A. BreedJ. BythK.F. CulshawJ.D. FinlayM.R.V. FisherE. McMikenH.H.J. GreenC.P. HeatonD.W. NashI.A. NewcombeN.J. OakesS.E. PauptitR.A. RobertsA. StanwayJ.J. ThomasA.P. TuckerJ.A. WalkerM. WeirH.M. Imidazoles: SAR and development of a potent class of cyclin-dependent kinase inhibitors.Bioorg. Med. Chem. Lett.200818205487549210.1016/j.bmcl.2008.09.02418815031
    [Google Scholar]
  64. WyattP.G. WoodheadA.J. BerdiniV. BoulstridgeJ.A. CarrM.G. CrossD.M. DavisD.J. DevineL.A. EarlyT.R. FeltellR.E. LewisE.J. McMenaminR.L. NavarroE.F. O’BrienM.A. O’ReillyM. ReuleM. SaxtyG. SeaversL.C.A. SmithD.M. SquiresM.S. TrewarthaG. WalkerM.T. WoolfordA.J.A. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design.J. Med. Chem.200851164986499910.1021/jm800382h18656911
    [Google Scholar]
  65. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  66. VaradiM. AnyangoS. DeshpandeM. NairS. NatassiaC. YordanovaG. YuanD. StroeO. WoodG. LaydonA. ŽídekA. GreenT. TunyasuvunakoolK. PetersenS. JumperJ. ClancyE. GreenR. VoraA. LutfiM. FigurnovM. CowieA. HobbsN. KohliP. KleywegtG. BirneyE. HassabisD. VelankarS. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab106134791371
    [Google Scholar]
  67. JumperJ. HassabisD. Protein structure predictions to atomic accuracy with AlphaFold.Nat. Methods2022191111210.1038/s41592‑021‑01362‑635017726
    [Google Scholar]
  68. RothmanJ.E. Starting at Go: Protein structure prediction succumbs to machine learning.Proc. Natl. Acad. Sci. USA202312039e231112812010.1073/pnas.231112812037732752
    [Google Scholar]
  69. WalshI. FishmanD. Garcia-GasullaD. TitmaT. PollastriG. CapriottiE. CasadioR. Capella-GutierrezS. CirilloD. Del ConteA. DimopoulosA.C. Del AngelV.D. DopazoJ. FariselliP. FernándezJ.M. HuberF. KreshukA. LenaertsT. MartelliP.L. NavarroA. BroinP.Ó. PiñeroJ. PiovesanD. ReczkoM. RonzanoF. SatagopamV. SavojardoC. SpiwokV. TangaroM.A. TartariG. SalgadoD. ValenciaA. ZambelliF. HarrowJ. PsomopoulosF.E. TosattoS.C.E. DOME: Recommendations for supervised machine learning validation in biology.Nat. Methods202118101122112710.1038/s41592‑021‑01205‑434316068
    [Google Scholar]
  70. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e16722650
    [Google Scholar]
  71. Bitencourt-FerreiraG. de AzevedoW.F.Jr. Molegro virtual docker for docking.Methods Mol. Biol.2019205314916710.1007/978‑1‑4939‑9752‑7_1031452104
    [Google Scholar]
  72. Vazquez-RodriguezS. Ramírez-ContrerasD. NoriegaL. García-GarcíaA. Sánchez-GaytánB.L. MelendezF.J. CastroM.E. de AzevedoW.F.Jr. González-VergaraE. Interaction of copper potential metallodrugs with TMPRSS2: A comparative study of docking tools and its implications on COVID-19.Front Chem.202311112885910.3389/fchem.2023.112885936778030
    [Google Scholar]
  73. KorbO. StützleT. ExnerT.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS.J. Chem. Inf. Model.2009491849610.1021/ci800298z19125657
    [Google Scholar]
  74. GorgullaC. ÇınaroğluS.S. FischerP.D. FackeldeyK. WagnerG. ArthanariH. VirtualFlow ants—ultra-large virtual screenings with artificial intelligence driven docking algorithm based on ant colony optimization.Int. J. Mol. Sci.20212211580710.3390/ijms2211580734071676
    [Google Scholar]
  75. LevinN.M.B. PintroV.O. Bitencourt-FerreiraG. de MattosB.B. de Castro SilvérioA. de AzevedoW.F.Jr. Development of CDK-targeted scoring functions for prediction of binding affinity.Biophys. Chem.20182351810.1016/j.bpc.2018.01.00429407904
    [Google Scholar]
  76. de ÁvilaM.B. XavierM.M. PintroV.O. de AzevedoW.F.Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.Biochem. Biophys. Res. Commun.20174941-230531010.1016/j.bbrc.2017.10.03529017921
    [Google Scholar]
  77. Bitencourt-FerreiraG. de AzevedoW.F.Jr. Molecular dynamics simulations with NAMD2.Methods Mol. Biol.2019205310912410.1007/978‑1‑4939‑9752‑7_831452102
    [Google Scholar]
  78. SantosL.H.S. FerreiraR.S. CaffarenaE.R. Integrating molecular docking and molecular dynamics simulations.Methods Mol. Biol.20192053133410.1007/978‑1‑4939‑9752‑7_231452096
    [Google Scholar]
  79. de AzevedoW.F.Jr. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem.20111891353136610.2174/09298671179502951921366529
    [Google Scholar]
  80. SforçaM.L. OyamaS.Jr. CanduriF. LorenziC.C.B. PertinhezT.A. KonnoK. SouzaB.M. PalmaM.S. Ruggiero NetoJ. AzevedoW.F.Jr. SpisniA. How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp.Biochemistry200443195608561710.1021/bi036091515134435
    [Google Scholar]
  81. CaiL. HanF. JiB. HeX. WangL. NiuT. ZhaiJ. WangJ. In silico screening of natural flavonoids against 3-chymotrypsin-like protease of SARS-COV-2 using machine learning and molecular modeling.Molecules20232824803410.3390/molecules2824803438138524
    [Google Scholar]
  82. ZhaoX. LiH. ZhangK. HuangS.Y. Iterative knowledge-based scoring function for protein–ligand interactions by considering binding affinity information.J. Phys. Chem. B2023127429021903410.1021/acs.jpcb.3c0442137822259
    [Google Scholar]
  83. WeiX. YangQ. YangZ. HuangT. YangH. WangL. PanL. DingJ. Discovery of novel TRPV1 modulators through machine learning-based molecular docking and molecular similarity searching.Chem. Biol. Drug Des.2023102340942310.1111/cbdd.1427037489095
    [Google Scholar]
  84. ShenC. ZhangX. HsiehC.Y. DengY. WangD. XuL. WuJ. LiD. KangY. HouT. PanP. A generalized protein–ligand scoring framework with balanced scoring, docking, ranking and screening powers.Chem. Sci.202314308129814610.1039/D3SC02044D37538816
    [Google Scholar]
  85. ZhangX. ShenC. JiangD. ZhangJ. YeQ. XuL. HouT. PanP. KangY. TB-IECS: An accurate machine learning-based scoring function for virtual screening.J. Cheminform.20231516310.1186/s13321‑023‑00731‑x37403155
    [Google Scholar]
  86. ScantleburyJ. VostL. CarberyA. HadfieldT.E. TurnbullO.M. BrownN. ChenthamarakshanV. DasP. GrosjeanH. von DelftF. DeaneC.M. A small step toward generalizability: Training a machine learning scoring function for structure-based virtual screening.J. Chem. Inf. Model.202363102960297410.1021/acs.jcim.3c0032237166179
    [Google Scholar]
  87. Walter FA.J. Machine learning for drug science.Explor Drug Sci202312778010.37349/eds.2023.00007
    [Google Scholar]
  88. McGibbonM. Money-KyrleS. BlayV. HoustonD.R. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.J. Adv. Res.20234613514710.1016/j.jare.2022.07.00135901959
    [Google Scholar]
  89. CanduriF. de AzevedoW.Jr. Protein crystallography in drug discovery.Curr. Drug Targets20089121048105310.2174/13894500878694942319128214
    [Google Scholar]
  90. IlariA. SavinoC. A practical approach to protein crystallography.Methods Mol. Biol.20171525477810.1007/978‑1‑4939‑6622‑6_327896717
    [Google Scholar]
  91. WlodawerA. Protein crystallography: Alive and well.FEBS J.2021288205786578710.1111/febs.1582233759375
    [Google Scholar]
  92. FadelV. BettendorffP. HerrmannT. de AzevedoW.F.Jr. OliveiraE.B. YamaneT. WüthrichK. Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus.Toxicon200546775976710.1016/j.toxicon.2005.07.01816185738
    [Google Scholar]
  93. ShimadaI. UedaT. KofukuY. EddyM.T. WüthrichK. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures.Nat. Rev. Drug Discov.2019181598210.1038/nrd.2018.18030410121
    [Google Scholar]
  94. CebiE. LeeJ. SubramaniV.K. BakN. OhC. KimK.K. Cryo-electron microscopy-based drug design.Front. Mol. Biosci.202411134217910.3389/fmolb.2024.134217938501110
    [Google Scholar]
  95. WangZ. PatwardhanA. KleywegtG.J. Validation analysis of EMDB entries.Acta Crystallogr. D Struct. Biol.202278554255210.1107/S205979832200328X35503203
    [Google Scholar]
  96. BermanH.M. GieraschL.M. How the Protein Data Bank changed biology: An introduction to the JBC Reviews thematic series, part 1.J. Biol. Chem.202129610060810.1016/j.jbc.2021.10060833785358
    [Google Scholar]
  97. LiebschnerD. AfonineP.V. MoriartyN.W. PoonB.K. ChenV.B. AdamsP.D. CERES : A cryo-EM re-refinement system for continuous improvement of deposited models.Acta Crystallogr. D Struct. Biol.2021771486110.1107/S205979832001587933404525
    [Google Scholar]
  98. LawsonC.L. BermanH.M. ChiuW. Evolving data standards for cryo-EM structures.Struct. Dyn.20207101470110.1063/1.513858932002441
    [Google Scholar]
  99. CoatesL. MylesD.A. Prospects for atomic resolution and neutron crystallography in drug design.Curr. Drug Targets20045217317810.2174/138945004349061315011950
    [Google Scholar]
  100. LöweJ. LiH. DowningK.H. NogalesE. Refined structure of αβ-tubulin at 3.5 Å resolution 1 1Edited by I. A. Wilson.J. Mol. Biol.200131351045105710.1006/jmbi.2001.507711700061
    [Google Scholar]
  101. Veit-AcostaM. de Azevedo JuniorW.F. The impact of crystallographic data for the development of machine learning models to predict protein-ligand binding affinity.Curr. Med. Chem.202128347006702210.2174/092986732866621021012132033568025
    [Google Scholar]
  102. GasteigerJ. MarsiliM. A new model for calculating atomic charges in molecules.Tetrahedron Lett.197819343181318410.1016/S0040‑4039(01)94977‑9
    [Google Scholar]
  103. YinZ. ChenY. HaoY. PandiyanS. ShaoJ. WangL. FOTF-CPI: A compound-protein interaction prediction transformer based on the fusion of optimal transport fragments.iScience202427110875610.1016/j.isci.2023.10875638230261
    [Google Scholar]
  104. LiZ. HuangR. XiaM. PattersonT.A. HongH. Fingerprinting interactions between proteins and ligands for facilitating machine learning in drug discovery.Biomolecules20241417210.3390/biom1401007238254672
    [Google Scholar]
  105. GuoJ. Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning.PLoS One2024191e029667610.1371/journal.pone.029667638232063
    [Google Scholar]
  106. D’SouzaS. PremaK.V. BalajiS. Machine learning models for drug–target interactions: Current knowledge and future directions.Drug Discov. Today202025474875610.1016/j.drudis.2020.03.00332171918
    [Google Scholar]
  107. KimberT.B. ChenY. VolkamerA. Deep learning in virtual screening: Recent applications and developments.Int. J. Mol. Sci.2021229443510.3390/ijms2209443533922714
    [Google Scholar]
  108. KwonY. ShinW.H. KoJ. LeeJ. AK-Score: Accurate protein-ligand binding affinity prediction using an ensemble of 3d-convolutional neural networks.Int. J. Mol. Sci.20202122842410.3390/ijms2122842433182567
    [Google Scholar]
  109. LiY. FanZ. RaoJ. ChenZ. ChuQ. ZhengM. LiX. An overview of recent advances and challenges in predicting compound-protein interaction (CPI).Med. Rev.202320216465486
    [Google Scholar]
  110. CabaK. Tran-NguyenV.K. RahmanT. BallesterP.J. Comprehensive machine learning boosts structure-based virtual screening for PARP1 inhibitors.J. Cheminform.20241614010.1186/s13321‑024‑00832‑138582911
    [Google Scholar]
  111. WangZ. WangS. LiY. GuoJ. WeiY. MuY. ZhengL. LiW. A new paradigm for applying deep learning to protein–ligand interaction prediction.Brief. Bioinform.2024253bbae14510.1093/bib/bbae14538581420
    [Google Scholar]
  112. LuoD. LiuD. QuX. DongL. WangB. Enhancing generalizability in protein–ligand binding affinity prediction with multimodal contrastive learning.J. Chem. Inf. Model.20246461892190610.1021/acs.jcim.3c0196138441880
    [Google Scholar]
  113. RaykaM. MirzaeiM. Mohammad LatifiA. An ensemble-based approach to estimate confidence of predicted protein–ligand binding affinity values.Mol. Inform.2024434e20230029210.1002/minf.20230029238358080
    [Google Scholar]
  114. ChuntakarukH. BoonpalitK. KinchagawatJ. NakarinF. KhotavivattanaT. AonbangkhenC. ShigetaY. HengphasatpornK. NutanongS. RungrotmongkolT. HannongbuaS. Machine learning-guided design of potent darunavir analogs targeting HIV-1 proteases: A computational approach for antiretroviral drug discovery.J. Comput. Chem.2024451395396810.1002/jcc.2729838174739
    [Google Scholar]
  115. UgraniS. Inhibitor design for TMPRSS2: Insights from computational analysis of its backbone hydrogen bonds using a simple descriptor.Eur. Biophys. J.2024531-2274610.1007/s00249‑023‑01695‑438157015
    [Google Scholar]
  116. ZhouH. SkolnickJ. FRAGSITE2 : A structure and fragment-based approach for virtual ligand screening.Protein Sci.2024331e486910.1002/pro.486938100293
    [Google Scholar]
  117. LiF. WangC. GuoX. AkutsuT. WebbG.I. CoinL.J.M. KurganL. SongJ. ProsperousPlus : A one-stop and comprehensive platform for accurate protease-specific substrate cleavage prediction and machine-learning model construction.Brief. Bioinform.2023246bbad37210.1093/bib/bbad37237874948
    [Google Scholar]
  118. WallnerB. Improved multimer prediction using massive sampling with AlphaFold in CASP15.Proteins202391121734174610.1002/prot.2656237548092
    [Google Scholar]
  119. LinY. SunM. ZhangJ. LiM. YangK. WuC. ZulfiqarH. LaiH. Computational identification of promoters in Klebsiella aerogenes by using support vector machine.Front. Microbiol.202314120067810.3389/fmicb.2023.120067837250059
    [Google Scholar]
  120. OlsonR.S. CavaW.L. MustahsanZ. VarikA. MooreJ.H. Data-driven advice for applying machine learning to bioinformatics problems.Pac. Symp. Biocomput.20182319220310.1142/9789813235533_001829218881
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673313727240819070317
Loading
/content/journals/cmc/10.2174/0109298673313727240819070317
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test