Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cyclin and cyclin-dependent kinases (CDKs) play a key role in the progression of the cell cycle including transcription, metabolism, apoptosis, Different phases of the cell cycle like G1, S, G2, and M have specific cyclins and CDKs, each with specific functions as checkpoints to regulate the transfer of cells from one phase to another. The kinases ensure proper replication of DNA in the daughter cells while fault at any stage of the cell phase induces apoptosis of the faulty cell. Hence, CDKs are considered important targets for developing chemotherapeutics against cancers. So the published work on small molecules belonging to diverse chemical classes with potential CDK inhibitory and anticancer activities reported in the last ten years has been reviewed to give an overview of the chemical structures that may be employed in designing novel CDK inhibitors with improved cancer therapeutic. Literature search has been carried out using different search engines like Google, Elsevier, Science Direct, RSC, PubMed, for the publications of small molecules as CDK inhibitors and anticancer agents. Several classes of molecules, including nitrogen heterocycles, macrocyclic, and natural products have been the most promising CDK inhibitors with anticancer activities. Though CDK 4/6 inhibition is most significant for anticancer activity and has been shown by most of the molecules but the inhibition to other CDKs including 1, 2, 7, 9 has also been observed. Further CDK4/6 inhibitors have been investigated for the treatment of breast cancer in combination with radiotherapy where no untoward toxicities were observed. Several molecules have shown promising CDKs inhibition with anticancer activities against different cancer cell lines. The most important class being of nitrogen heterocycles. Though some of these molecules are in different phases of clinical trials and there are many lead molecules for judicious structural modulation to develop more specific and selective CDKs inhibitors as anticancer agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331685241205180307
2025-06-04
2025-11-01
Loading full text...

Full text loading...

References

  1. AlimbetovD. AskarovaS. UmbayevB. DavisT. KiplingD. Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells.Int. J. Mol. Sci.2018196169010.3390/ijms1906169029882812
    [Google Scholar]
  2. SantamariaD. OrtegaS. Cyclins and CDKS in development and cancer: lessons from genetically modified mice.Front. Biosci.20061111164118810.2741/187116146805
    [Google Scholar]
  3. ShapiroP. Next Generation Kinase Inhibitors.Springer International202010.1007/978‑3‑030‑48283‑1
    [Google Scholar]
  4. MalumbresM. BarbacidM. Mammalian cyclin-dependent kinases.Trends Biochem. Sci.2005301163064110.1016/j.tibs.2005.09.00516236519
    [Google Scholar]
  5. Martínez-AlonsoD. MalumbresM. Mammalian cell cycle cyclins.Semin. Cell Dev. Biol.2020107283510.1016/j.semcdb.2020.03.00932334991
    [Google Scholar]
  6. MusgroveE.A. LeeC.S. BuckleyM.F. SutherlandR.L. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle.Proc. Natl. Acad. Sci. USA199491178022802610.1073/pnas.91.17.80228058751
    [Google Scholar]
  7. MusgroveE.A. CaldonC.E. BarracloughJ. StoneA. SutherlandR.L. Cyclin D as a therapeutic target in cancer.Nat. Rev. Cancer201111855857210.1038/nrc309021734724
    [Google Scholar]
  8. FuM. WangC. LiZ. SakamakiT. PestellR.G. Minireview: Cyclin D1: normal and abnormal functions.Endocrinology2004145125439544710.1210/en.2004‑095915331580
    [Google Scholar]
  9. LiZ. WangC. PrendergastG. PestellR.G. Cyclin D1 functions in cell migration.Cell Cycle20065212440244210.4161/cc.5.21.342817106256
    [Google Scholar]
  10. LiZ. JiaoX. WangC. ShirleyL.A. ElsalehH. DahlO. WangM. SoutoglouE. KnudsenE.S. PestellR.G. Alternative cyclin D1 splice forms differentially regulate the DNA damage response.Cancer Res.201070218802881110.1158/0008‑5472.CAN‑10‑031220940395
    [Google Scholar]
  11. JirawatnotaiS. HuY. MichowskiW. EliasJ.E. BecksL. BienvenuF. ZagozdzonA. GoswamiT. WangY.E. ClarkA.B. KunkelT.A. van HarnT. XiaB. CorrellM. QuackenbushJ. LivingstonD.M. GygiS.P. SicinskiP. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers.Nature2011474735023023410.1038/nature1015521654808
    [Google Scholar]
  12. CasimiroM.C. CrosariolM. LoroE. ErtelA. YuZ. DampierW. SariaE.A. PapanikolaouA. StanekT.J. LiZ. WangC. FortinaP. AddyaS. TozerenA. KnudsenE.S. ArnoldA. PestellR.G. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice.J. Clin. Invest.2012122383384310.1172/JCI6025622307325
    [Google Scholar]
  13. ArsicN. BendrisN. PeterM. Begon-PesciaC. RebouissouC. GadéaG. BouquierN. BibeauF. LemmersB. BlanchardJ.M. A novel function for Cyclin A2: Control of cell invasion via RhoA signaling.J. Cell Biol.2012196114716210.1083/jcb.20110208522232705
    [Google Scholar]
  14. PhatnaniH.P. GreenleafA.L. Phosphorylation and functions of the RNA polymerase II CTD.Genes Dev.200620212922293610.1101/gad.147700617079683
    [Google Scholar]
  15. YankulovK.Y. BentleyD.L. Regulation of CDK7 substrate specificity by MAT1 and TFIIH.EMBO J.19971671638164610.1093/emboj/16.7.16389130709
    [Google Scholar]
  16. RoyR. AdamczewskiJ.P. SerozT. VermeulenW. TassanJ.P. SchaefferL. NiggE.A. HoeijmakersJ.H.J. EglyJ.M. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor.Cell19947961093110110.1016/0092‑8674(94)90039‑68001135
    [Google Scholar]
  17. DevaultA. MartinezA.M. FesquetD. LabbéJ.C. MorinN. TassanJ.P. NiggE.A. CavadoreJ.C. DoréeM. MAT1 (‘menage à trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK.EMBO J.199514205027503610.1002/j.1460‑2075.1995.tb00185.x7588631
    [Google Scholar]
  18. ShiekhattarR. MermelsteinF. FisherR.P. DrapkinR. DynlachtB. WesslingH.C. MorganD.O. ReinbergD. Cdk-activating kinase complex is a component of human transcription factor TFIIH.Nature1995374651928328710.1038/374283a07533895
    [Google Scholar]
  19. AdamczewskiJ.P. RossignolM. TassanJ.P. NiggE.A. MoncollinV. EglyJ.M. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.EMBO J.19961581877188410.1002/j.1460‑2075.1996.tb00538.x8617234
    [Google Scholar]
  20. PriceD.H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II.Mol. Cell. Biol.20002082629263410.1128/MCB.20.8.2629‑2634.200010733565
    [Google Scholar]
  21. PengJ. ZhuY. MiltonJ.T. PriceD.H. Identification of multiple cyclin subunits of human P-TEFb.Genes Dev.199812575576210.1101/gad.12.5.7559499409
    [Google Scholar]
  22. GegonneA. WeissmanJ.D. LuH. ZhouM. DasguptaA. RibbleR. BradyJ.N. SingerD.S. TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb.Proc. Natl. Acad. Sci. USA2008105145367537210.1073/pnas.080163710518391197
    [Google Scholar]
  23. YangL. LiN. WangC. YuY. YuanL. ZhangM. CaoX. Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells.J. Biol. Chem.200427912116391164810.1074/jbc.M31289520014684736
    [Google Scholar]
  24. DickinsonL.A. EdgarA.J. EhleyJ. GottesfeldJ.M. Cyclin L is an RS domain protein involved in pre-mRNA splicing.J. Biol. Chem.200227728254652547310.1074/jbc.M20226620011980906
    [Google Scholar]
  25. LoyerP. TrembleyJ.H. GrenetJ.A. BussonA. CorluA. ZhaoW. KocakM. KiddV.J. LahtiJ.M. Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors: influence of cyclin L isoforms on splice site selection.J. Biol. Chem.2008283127721773210.1074/jbc.M70818820018216018
    [Google Scholar]
  26. ChenZ. IndjeianV.B. McManusM. WangL. DynlachtB.D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells.Dev. Cell20023333935010.1016/S1534‑5807(02)00258‑712361598
    [Google Scholar]
  27. D’AngiolellaV. DonatoV. ForresterF.M. JeongY.T. PellacaniC. KudoY. SarafA. FlorensL. WashburnM.P. PaganoM. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair.Cell201214951023103410.1016/j.cell.2012.03.04322632967
    [Google Scholar]
  28. ShimizuA. NishidaJ. UeokaY. KatoK. HachiyaT. KuriakiY. WakeN. CyclinG contributes to G2/M arrest of cells in response to DNA damage.Biochem. Biophys. Res. Commun.1998242352953310.1006/bbrc.1997.80049464250
    [Google Scholar]
  29. KimuraS.H. IkawaM. ItoA. OkabeM. NojimaH. Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery.Oncogene200120253290330010.1038/sj.onc.120427011423978
    [Google Scholar]
  30. OkamotoK. PrivesC. A role of cyclin G in the process of apoptosis.Oncogene199918324606461510.1038/sj.onc.120282110467405
    [Google Scholar]
  31. SeoH.R. LeeD.H. LeeH.J. BaekM. BaeS. SohJ.W. LeeS.J. KimJ. LeeY.S. Cyclin G1 overcomes radiation-induced G2 arrest and increases cell death through transcriptional activation of cyclin B1.Cell Death Differ.20061391475148410.1038/sj.cdd.440182216322753
    [Google Scholar]
  32. ZimmermannM. Arachchige-DonA.S. DonaldsonM.S. DallapiazzaR.F. CowanC.E. HorneM.C. Elevated cyclin G2 expression intersects with DNA damage checkpoint signaling and is required for a potent G2/M checkpoint arrest response to doxorubicin.J. Biol. Chem.201228727228382285310.1074/jbc.M112.37685522589537
    [Google Scholar]
  33. AroozT. YamC.H. SiuW.Y. LauA. LiK.K.W. PoonR.Y.C. On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells.Biochemistry200039319494950110.1021/bi000964310924145
    [Google Scholar]
  34. CoverleyD. LamanH. LaskeyR.A. Distinct roles for cyclins E and A during DNA replication complex assembly and activation.Nat. Cell Biol.20024752352810.1038/ncb81312080347
    [Google Scholar]
  35. LahiryP. TorkamaniA. SchorkN.J. HegeleR.A. Kinase mutations in human disease: interpreting genotype–phenotype relationships.Nat. Rev. Genet.2010111607410.1038/nrg270720019687
    [Google Scholar]
  36. VelezA.M.A. HowardM. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin.N. Am. J. Med. Sci.20157517618810.4103/1947‑2714.15747626110128
    [Google Scholar]
  37. CicenasJ. KalyanK. SorokinasA. JatulyteA. ValiunasD. KaupinisA. ValiusM. Highlights of the latest advances in research on CDK inhibitors.Cancers (Basel)2014642224224210.3390/cancers604222425349887
    [Google Scholar]
  38. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  39. CasimiroM.C. Velasco-VelázquezM. Aguirre-AlvaradoC. PestellR.G. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present.Expert Opin. Investig. Drugs201423329530410.1517/13543784.2014.86701724387133
    [Google Scholar]
  40. EndicottJ.A. NobleM.E.M. Structural characterization of the cyclin-dependent protein kinase family.Biochem. Soc. Trans.20134141008101610.1042/BST2013009723863171
    [Google Scholar]
  41. AprelikovaO. XiongY. LiuE.T. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase.J. Biol. Chem.199527031181951819710.1074/jbc.270.31.181957629134
    [Google Scholar]
  42. NevinsJ.R. The Rb/E2F pathway and cancer.Hum. Mol. Genet.200110769970310.1093/hmg/10.7.69911257102
    [Google Scholar]
  43. WhittakerS.R. MallingerA. WorkmanP. ClarkeP.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics.Pharmacol. Ther.20171738310510.1016/j.pharmthera.2017.02.00828174091
    [Google Scholar]
  44. ShapiroG.I. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol.Clin. Cancer Res.200410124270s4275s10.1158/1078‑0432.CCR‑04002015217973
    [Google Scholar]
  45. Le TourneauC. FaivreS. LaurenceV. DelbaldoC. VeraK. GirreV. ChiaoJ. ArmourS. FrameS. GreenS.R. Gianella-BorradoriA. DiérasV. RaymondE. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies.Eur. J. Cancer201046183243325010.1016/j.ejca.2010.08.00120822897
    [Google Scholar]
  46. SimoneM. ErbaE. DamiaG. VikhanskayaF. Di FrancescoA.M. RiccardiR. BaillyC. CuevasC. Fernandez Sousa-FaroJ.M. D’IncalciM. Variolin B and its derivate deoxy-variolin B: New marine natural compounds with cyclin-dependent kinase inhibitor activity.Eur. J. Cancer200541152366237710.1016/j.ejca.2005.05.01516181779
    [Google Scholar]
  47. RoskoskiR.Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.Pharmacol. Res.2016103264810.1016/j.phrs.2015.10.02126529477
    [Google Scholar]
  48. JarryM. LecointreC. MallevalC. DesruesL. SchouftM.T. LejoncourV. LigerF. LyvinecG. JosephB. LoaëcN. MeijerL. HonnoratJ. GandolfoP. CastelH. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis.Neuro-oncol.201416111484149810.1093/neuonc/nou10224891448
    [Google Scholar]
  49. RoskoskiR. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update.Pharmacol. Res.202116510546310.1016/j.phrs.2021.10546333513356
    [Google Scholar]
  50. FischerP.M. Approved and experimental small-molecule oncology kinase inhibitor drugs: A mid-2016 overview.Med. Res. Rev.201737231436710.1002/med.2140927775829
    [Google Scholar]
  51. WuP. NielsenT.E. ClausenM.H. FDA-approved small-molecule kinase inhibitors.Trends Pharmacol. Sci.201536742243910.1016/j.tips.2015.04.00525975227
    [Google Scholar]
  52. HuangL. JiangS. ShiY. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020).J. Hematol. Oncol.202013114310.1186/s13045‑020‑00977‑033109256
    [Google Scholar]
  53. XieZ. YangX. DuanY. HanJ. LiaoC. Small-molecule kinase inhibitors for the treatment of nononcologic diseases.J. Med. Chem.20216431283134510.1021/acs.jmedchem.0c0151133481605
    [Google Scholar]
  54. Ayala-AguileraC.C. ValeroT. Lorente-MacíasÁ. BaillacheD.J. CrokeS. Unciti-BrocetaA. Small molecule kinase inhibitor drugs (1995-2021): Medical indication, pharmacology, and synthesis.J. Med. Chem.20226521047113110.1021/acs.jmedchem.1c0096334624192
    [Google Scholar]
  55. NandiS. DeyR. DeyS. SamadderA. SaxenaA.K. Naturally sourced CDK inhibitors and current trends in structure-based synthetic anticancer drug design by crystallography.Anticancer. Agents Med. Chem.202222348549810.2174/187152062166621090810175134503422
    [Google Scholar]
  56. ŁukasikP. ZałuskiM. GutowskaI. Cyclin-dependent kinases (CDK) and their role in diseases development–review.Int. J. Mol. Sci.2021226293510.3390/ijms2206293533805800
    [Google Scholar]
  57. JhaveriK. BurrisH.A.III YapT.A. HamiltonE. RugoH.S. GoldmanJ.W. DannS. LiuF. WongG.Y. KrupkaH. ShapiroG.I. The evolution of cyclin dependent kinase inhibitors in the treatment of cancer.Expert Rev. Anticancer Ther.202121101105112410.1080/14737140.2021.194410934176404
    [Google Scholar]
  58. Sánchez-MartínezC. LallenaM.J. SanfelicianoS.G. de DiosA. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019).Bioorg. Med. Chem. Lett.2019292012663710.1016/j.bmcl.2019.126637
    [Google Scholar]
  59. EttlT. SchulzD. BauerR. The Renaissance of Cyclin Dependent Kinase Inhibitors.Cancers (Basel)202214229310.3390/cancers1402029335053461
    [Google Scholar]
  60. ThomaO.M. NeurathM.F. WaldnerM.J. Cyclin-dependent kinase inhibitors and their therapeutic potential in colorectal cancer treatment.Front. Pharmacol.20211275712010.3389/fphar.2021.75712035002699
    [Google Scholar]
  61. SongX. FangC. DaiY. SunY. QiuC. LinX. XuR. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer.Br. J. Cancer202413081239124810.1038/s41416‑024‑02589‑838355840
    [Google Scholar]
  62. SrivastavaN. SaxenaA.K. Caspase-3 activators as anticancer agents.Curr. Protein Pept. Sci.2023241078380410.2174/138920372466623022711530536843371
    [Google Scholar]
  63. DiaoP.C. LinW.Y. JianX.E. LiY.H. YouW.W. ZhaoP.L. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase 2 inhibitors with anticancer activity.Eur. J. Med. Chem.201917919620710.1016/j.ejmech.2019.06.05531254921
    [Google Scholar]
  64. KhedrM.A. ZagharyW.A. ElsherifG.E. AzzamR.A. ElgemeieG.H. Purine analogs: synthesis, evaluation and molecular dynamics of pyrazolopyrimidines based benzothiazole as anticancer and antimicrobial CDK inhibitors.Nucleosides Nucleotides Nucleic Acids20234217710410.1080/15257770.2022.210916935949161
    [Google Scholar]
  65. GelbertL.M. CaiS. LinX. Sanchez-MartinezC. del PradoM. LallenaM.J. TorresR. AjamieR.T. WishartG.N. FlackR.S. NeubauerB.L. YoungJ. ChanE.M. IversenP. CronierD. KreklauE. de DiosA. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine.Invest. New Drugs201432582583710.1007/s10637‑014‑0120‑724919854
    [Google Scholar]
  66. ChenP. LeeN.V. HuW. XuM. FerreR.A. LamH. BergqvistS. SolowiejJ. DiehlW. HeY.A. YuX. NagataA. VanArsdaleT. MurrayB.W. Spectrum and degree of CDK drug interactions predicts clinical performance.Mol. Cancer Ther.201615102273228110.1158/1535‑7163.MCT‑16‑030027496135
    [Google Scholar]
  67. HafnerM. MillsC.E. SubramanianK. ChenC. ChungM. BoswellS.A. EverleyR.A. LiuC. WalmsleyC.S. JuricD. SorgerP.K. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity.Cell Chem. Biol.201926810671080.e810.1016/j.chembiol.2019.05.00531178407
    [Google Scholar]
  68. SumiN.J. KuenziB.M. KnezevicC.E. Remsing RixL.L. RixU. Chemoproteomics reveals novel protein and lipid kinase targets of clinical CDK4/6 inhibitors in lung cancer.ACS Chem. Biol.201510122680268610.1021/acschembio.5b0036826390342
    [Google Scholar]
  69. MarraA. CuriglianoG. Are all cyclin-dependent kinases 4/6 inhibitors created equal?NPJ Breast Cancer2019512710.1038/s41523‑019‑0121‑y31482107
    [Google Scholar]
  70. Trial tests abemaciclib as new option for early-stage breast cancer. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2021/abemaciclib-early-stage-breast-cancer (accessed on 8-10-2024)
  71. BosackiC. BouleftourW. SottonS. VallardA. DaguenetE. OuazH. CojocaruI. MoslemiD. MolekzadehmoghaniM. MagnéN. CDK 4/6 inhibitors combined with radiotherapy: A review of literature.Clin. Transl. Radiat. Oncol.202126798510.1016/j.ctro.2020.11.01033319074
    [Google Scholar]
  72. KubeczkoM. GabryśD. GawkowskaM. Polakiewicz-GilowskaA. CortezA.J. KrzywonA. WoźniakG. LatusekT. LeśniakA. ŚwiderskaK. Mianowska-MalecM. ŁanoszkaB. ChomikK. GajekM. MichalikA. NowickaE. TarnawskiR. RutkowskiT. JarząbM. Safety and feasibility of radiation therapy combined with CDK 4/6 inhibitors in the management of advanced breast cancer.Cancers (Basel)202315369010.3390/cancers1503069036765648
    [Google Scholar]
  73. WangY. WangJ. DingL. Preparation of (Heterocyclyl) azinylaminopyrimidinyl tetrahydrobenzimidazopyridines and dihydrobenzimidazooxazines as inhibitors of CDK4 and CDK6 for use as anticancer agents.Patent WO20181137712018
    [Google Scholar]
  74. ZhangJ. LiuR. GaoS. ChenW. HanX. MaY. DingL. WangJ. LanH. HuX. BPI-16350, a novel promising CDK4/6 inhibitor for HR+/HER2- metastatic breast cancer (MBC): Results from a phase I study.J. Clin. Oncol.20234116Suppl.e13051e1305110.1200/JCO.2023.41.16_suppl.e13051
    [Google Scholar]
  75. BistrovićA. KrstulovićL. HarejA. GrbčićP. SedićM. KoštrunS. PavelićS.K. BajićM. Raić-MalićS. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer.Eur. J. Med. Chem.20181431616163410.1016/j.ejmech.2017.10.06129133046
    [Google Scholar]
  76. TahlanS. KumarS. RamasamyK. LimS.M. ShahS.A.A. ManiV. NarasimhanB. In silico molecular design of heterocyclic benzimidazole scaffolds as prospective anticancer agents.BMC Chem.20191319010.1186/s13065‑019‑0608‑531384837
    [Google Scholar]
  77. El-HameedR.H.A. FatahalaS.S. SayedA.I. Synthesis of some novel benzimidazole derivatives as anticancer agent and evaluation for CDK2 inhibition activity.Med. Chem.202218223824810.2174/157340641766621030410083033663368
    [Google Scholar]
  78. AliA.M. TawfikS.S. BhongadeB.A. MassoudM.A.M. MostafaA.S. Design, synthesis, and in silico insights into dual-inhibition of CDK-6/Aurora A kinase by 2-phenylbenzimidazole-based small molecules.J. Mol. Struct.2024130013721510.1016/j.molstruc.2023.137215
    [Google Scholar]
  79. WidelskiJ. Kukula-KochW. BajT. KedzierskiB. FokialakisN. MagiatisP. PozarowskiP. RolinskiJ. GraikouK. ChinouI. Skalicka-WozniakK. Rare Coumarin induce apoptosis, G1 cell block and reduce RNA content in HL60 cells.Open Chem.20171511610.1515/chem‑2017‑0001
    [Google Scholar]
  80. MusaM.A. BadisaV.L.D. LatinwoL.M. NtantieE. 7,8-Dihydroxy-3-arylcoumarin induces cell death through S-phase arrest in MDA-MB-231 breast cancer cells.Anticancer Res.201838116091609810.21873/anticanres.1295930396923
    [Google Scholar]
  81. XuJ. LiH. WangX. HuangJ. LiS. LiuC. DongR. ZhuG. DuanC. JiangF. ZhangY. ZhuY. ZhangT. ChenY. TangW. LuT. Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity.Eur. J. Med. Chem.202020011242410.1016/j.ejmech.2020.11242432447197
    [Google Scholar]
  82. SarhanM.O. Abd El-KarimS.S. AnwarM.M. GoudaR.H. ZagharyW.A. KhedrM.A. Discovery of new coumarin-based lead with potential anticancer, CDK4 inhibition and selective radiotheranostic effect: Synthesis, 2D & 3D QSAR, molecular dynamics, in vitro cytotoxicity, radioiodination, and biodistribution studies.Molecules2021268227310.3390/molecules2608227333919867
    [Google Scholar]
  83. AzadC.S. SaxenaM. SiddiquiA.J. BhardwajJ. PuriS.K. DuttaG.P. AnandN. SaxenaA.K. Synthesis of primaquine glyco-conjugates as potential tissue schizontocidal antimalarial agents.Chem. Biol. Drug Des.201790225426110.1111/cbdd.1294428102941
    [Google Scholar]
  84. ErasA. CastilloD. SuárezM. VispoN.S. AlbericioF. RodriguezH. Chemical conjugation in drug delivery systems.Front Chem.20221088908310.3389/fchem.2022.88908335720996
    [Google Scholar]
  85. El-SayedW.A. AlminderejF.M. MounierM.M. NossierE.S. SalehS.M. KassemA.F. Novel 1,2,3-triazole-coumarin hybrid glycosides and their tetrazolyl analogues: design, anticancer evaluation and molecular docking targeting EGFR, VEGFR-2 and CDK-2.Molecules2022277204710.3390/molecules2707204735408446
    [Google Scholar]
  86. LiY. LiuS. WeiX. ZhangR. ZhangY. GuoC. Computational investigations of coumarin derivatives as cyclindependent kinase 9 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulation.Curr. Computeraided Drug Des.202218536338010.2174/157340991866622081710095935980073
    [Google Scholar]
  87. AssadM. ParachaR.N. SiddiqueA.B. ShaheenM.A. AhmadN. MustaqeemM. KanwalF. MustafaM.Z.U. RehmanM.F. FatimaS. LuC. In silico and in vitro studies of 4-hydroxycoumarin-based heterocyclic enamines as potential anti-tumor agents.Molecules20232815582810.3390/molecules2815582837570800
    [Google Scholar]
  88. HarnlyJ.M. DohertyR.F. BeecherG.R. HoldenJ.M. HaytowitzD.B. BhagwatS. GebhardtS. Flavonoid content of U.S. fruits, vegetables, and nuts.J. Agric. Food Chem.200654269966997710.1021/jf061478a17177529
    [Google Scholar]
  89. OngK.C. KhooH.E. Biological effects of myricetin.Gen. Pharmacol.199729212112610.1016/S0306‑3623(96)00421‑19251891
    [Google Scholar]
  90. MaggioniD. NicoliniG. RigolioR. BiffiL. PignataroL. GainiR. GaravelloW. Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro.Nutr. Cancer20146671257126710.1080/01635581.2014.95173225256786
    [Google Scholar]
  91. DeviK.P. RajavelT. HabtemariamS. NabaviS.F. NabaviS.M. Molecular mechanisms underlying anticancer effects of myricetin.Life Sci.2015142192510.1016/j.lfs.2015.10.00426455550
    [Google Scholar]
  92. HaT.K. JungI. KimM.E. BaeS.K. LeeJ.S. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction–mediated apoptosis.Biomed. Pharmacother.20179137838410.1016/j.biopha.2017.04.10028463801
    [Google Scholar]
  93. YousufM. KhanP. ShamsiA. ShahbaazM. HasanG.M. HaqueQ.M.R. ChristoffelsA. IslamA. HassanM.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy.ACS Omega2020542274802749110.1021/acsomega.0c0397533134711
    [Google Scholar]
  94. SankaranarayananR. ValivetiC. KumarD. Van slambrouck, S.; Kesharwani, S.; Seefeldt, T.; Scaria, J.; Tummala, H.; Bhat, G. The flavonoid metabolite 2,4,6-trihydroxybenzoic acid is a CDK inhibitor and an anti-proliferative agent: A potential role in cancer prevention.Cancers (Basel)201911342710.3390/cancers1103042730917530
    [Google Scholar]
  95. IbrahimN. BonnetP. BrionJ.D. PeyratJ.F. BignonJ. LevaiqueH. JosselinB. RobertT. ColasP. BachS. MessaoudiS. AlamiM. HamzeA. Identification of a new series of flavopiridol-like structures as kinase inhibitors with high cytotoxic potency.Eur. J. Med. Chem.202019911235510.1016/j.ejmech.2020.11235532402934
    [Google Scholar]
  96. FuL. MouJ. DengY. RenX. QiuS. Design, synthesis, and activity assays of cyclin-dependent kinase 1 inhibitors with flavone scaffolds.Front Chem.20221094042710.3389/fchem.2022.94042736003621
    [Google Scholar]
  97. RathodS. ShindeK. PorlekarJ. ChoudhariP. DhavaleR. MahuliD. TamboliY. BhatiaM. HavalK.P. Al-SehemiA.G. PanniparaM. Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: An in silico molecular docking and dynamic approach.ACS Omega20238139140910.1021/acsomega.2c0483736643495
    [Google Scholar]
  98. RoelM. RubioloJ.A. Guerra-VarelaJ. SilvaS.B.L. ThomasO.P. Cabezas-SainzP. SánchezL. LópezR. BotanaL.M. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model.Oncotarget2016750830718308710.18632/oncotarget.1306827825113
    [Google Scholar]
  99. ShresthaS. SorollaA. FromontJ. BlancafortP. FlemattiG. Crambescidin 800, isolated from the marine sponge monanchora viridis, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.Mar. Drugs20181625310.3390/md16020053
    [Google Scholar]
  100. MoussaA.Y. MostafaN.M. SingabA.N.B. PulchraninA. PulchraninA. First report of isolation from an endophytic fungus and its inhibitory activity on cyclin dependent kinases.Nat. Prod. Res.202034192715272210.1080/14786419.2019.158584630887847
    [Google Scholar]
  101. MahaleS. BharateS.B. MandaS. JoshiP. BharateS.S. JenkinsP.R. VishwakarmaR.A. ChaudhuriB. Biphenyl-4-carboxylic acid [2-(1H-indol-3-yl)-ethyl]-methylamide (CA224), a nonplanar analogue of fascaplysin, inhibits Cdk4 and tubulin polymerization: evaluation of in vitro and in vivo anticancer activity.J. Med. Chem.201457229658967210.1021/jm501474325368960
    [Google Scholar]
  102. ChiouC.T. LeeW.C. LiaoJ.H. ChengJ.J. LinL.C. ChenC.Y. SongJ.S. WuM.H. ShiaK.S. LiW.T. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents.Eur. J. Med. Chem.20159811210.1016/j.ejmech.2015.04.06225988923
    [Google Scholar]
  103. ZhangT. KwiatkowskiN. OlsonC.M. Dixon-ClarkeS.E. AbrahamB.J. GreifenbergA.K. FicarroS.B. ElkinsJ.M. LiangY. HannettN.M. ManzT. HaoM. BartkowiakB. GreenleafA.L. MartoJ.A. GeyerM. BullockA.N. YoungR.A. GrayN.S. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors.Nat. Chem. Biol.2016121087688410.1038/nchembio.216627571479
    [Google Scholar]
  104. KamalA. MaheshR. NayakV.L. BabuK.S. KumarG.B. ShaikA.B. KapureJ.S. AlarifiA. Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach.Eur. J. Med. Chem.201610847648510.1016/j.ejmech.2015.11.04626708114
    [Google Scholar]
  105. ParrinoB. AttanzioA. SpanòV. CascioferroS. MontalbanoA. BarrajaP. TesoriereL. DianaP. CirrincioneG. CarboneA. Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues.Eur. J. Med. Chem.201713837138310.1016/j.ejmech.2017.06.05228688277
    [Google Scholar]
  106. GaoY. ZhangT. TeraiH. FicarroS.B. KwiatkowskiN. HaoM.F. SharmaB. ChristensenC.L. ChipumuroE. WongK. MartoJ.A. HammermanP.S. GrayN.S. GeorgeR.E. Overcoming resistance to the THZ series of covalent transcriptional CDK inhibitors.Cell Chem. Biol.2018252135142.e510.1016/j.chembiol.2017.11.00729276047
    [Google Scholar]
  107. HuS. MarineauJ.J. RajagopalN. HammanK.B. ChoiY.J. SchmidtD.R. KeN. JohannessenL. BradleyM.J. OrlandoD.A. AlnemyS.R. RenY. CiblatS. WinterD.K. KabroA. SprottK.T. HodgsonJ.G. FritzC.C. CarulliJ.P. di TomasoE. OlsonE.R. Discovery and characterization of SY-1365, a selective, covalent inhibitor of CDK7.Cancer Res.201979133479349110.1158/0008‑5472.CAN‑19‑011931064851
    [Google Scholar]
  108. LiuC. LiuB. XuC. ZhangP. LiB. JiB. ZhangB. LiuQ. ZhangJ. YuC. ETH-155008, a novel selective dual inhibitor of FLT3 and CDK4/6 in preclinical treatment of acute myeloid leukemia.Blood2019134Suppl. 1514110.1182/blood‑2019‑123589
    [Google Scholar]
  109. Al-WarhiT. El KerdawyA.M. AljaeedN. IsmaelO.E. AyyadR.R. EldehnaW.M. Abdel-AzizH.A. Al-AnsaryG.H. Synthesis, biological evaluation and in silico studies of certain oxindole-indole conjugates as anticancer CDK inhibitors.Molecules2020259203110.3390/molecules2509203132349307
    [Google Scholar]
  110. KuoK.L. LinW.C. LiuS.H. HsuF.S. KuoY. LiaoS.M. YangS.P. WangZ.H. HsuC.H. HuangK.H. THZ1, a covalent CDK7 inhibitor, enhances gemcitabine-induced cytotoxicity via suppression of Bcl-2 in urothelial carcinoma.Am. J. Cancer Res.202111117118033520367
    [Google Scholar]
  111. HassanA.S. MoustafaG.O. AwadH.M. NossierE.S. MadyM.F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole–indole hybrids.ACS Omega2021618123611237410.1021/acsomega.1c0160434056388
    [Google Scholar]
  112. ShawishI. NafieM.S. BarakatA. AldalbahiA. Al-RasheedH.H. AliM. AlshaerW. Al ZoubiM. Al AyoubiS. De la TorreB.G. AlbericioF. El-FahamA. Pyrazolyl-s-triazine with indole motif as a novel of epidermal growth factor receptor/cyclin-dependent kinase 2 dual inhibitors.Front Chem.20221010107816310.3389/fchem.2022.107816336505739
    [Google Scholar]
  113. MohamedF.A.M. AlakilliS.Y.M. El AzabE.F. BaawadF.A.M. ShaabanE.I.A. AlrubH.A. HendawyO. GomaaH.A.M. BakrA.G. AbdelrahmanM.H. TrembleauL. MohammedA.F. YoussifB.G.M. Discovery of new 5-substituted-indole-2-carboxamides as dual epidermal growth factor receptor (EGFR)/cyclin dependent kinase-2 (CDK2) inhibitors with potent antiproliferative action.RSC Med. Chem.202314473474410.1039/D3MD00038A
    [Google Scholar]
  114. SalamaE.E. YoussefM.F. AboelmagdA. BoraeiA.T.A. NafieM.S. HaukkaM. BarakatA. SarhanA.A.M. Discovery of potent indolyl-hydrazones as kinase inhibitors for breast cancer: Synthesis, X-ray single-crystal analysis, and in vitro and in vivo anti-cancer activity evaluation.Pharmaceuticals (Basel)20231612172410.3390/ph1612172438139850
    [Google Scholar]
  115. MohamedM.F. IbrahimN.S. SaddiqA.A. AbdelhamidI.A. Novel 3-(pyrazol-4-yl)-2-(1H-indole-3-carbonyl) acrylonitrile derivatives induce intrinsic and extrinsic apoptotic death mediated P53 in HCT116 colon carcinoma.Sci. Rep.20231312248610.1038/s41598‑023‑48494‑738110432
    [Google Scholar]
  116. SalehM.M. El-MoselhyT. El-BastawissyE. IbrahimM.A.A. SayedS.R.M. HegazyM.E.F. EfferthT. Jaragh-AlhadadL.A. SidhomP.A. The mystery of titan hunter: Rationalized striking of the MAPK pathway via Newly synthesized 6-indolylpyridone-3-carbonitrile derivatives.Eur. J. Med. Chem.202325911567510.1016/j.ejmech.2023.11567537506545
    [Google Scholar]
  117. SuY.T. ChenR. WangH. SongH. ZhangQ. ChenL.Y. LappinH. VasconcelosG. LitaA. MaricD. LiA. CelikuO. ZhangW. MeetzeK. EstokT. LarionM. Abu-AsabM. ZhuangZ. YangC. GilbertM.R. WuJ. Novel targeting of transcription and metabolism in glioblastoma.Clin. Cancer Res.20182451124113710.1158/1078‑0432.CCR‑17‑203229254993
    [Google Scholar]
  118. GohK.C. Novotny-DiermayrV. HartS. OngL.C. LohY.K. CheongA. TanY.C. HuC. JayaramanR. WilliamA.D. SunE.T. DymockB.W. OngK.H. EthirajuluK. BurrowsF. WoodJ.M. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties.Leukemia201226223624310.1038/leu.2011.21821860433
    [Google Scholar]
  119. PonderK.G. MatulisS.M. HitosugiS. GuptaV.A. SharpC. BurrowsF. NookaA.K. KaufmanJ.L. LonialS. BoiseL.H. Dual inhibition of Mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma.Cancer Biol. Ther.201617776977710.1080/15384047.2016.119208627246906
    [Google Scholar]
  120. YuY. HuangJ. HeH. HanJ. YeG. XuT. SunX. ChenX. RenX. LiC. LiH. HuangW. LiuY. WangX. GaoY. ChengN. GuoN. ChenX. FengJ. HuaY. LiuC. ZhuG. XieZ. YaoL. ZhongW. ChenX. LiuW. LiH. Accelerated discovery of macrocyclic CDK2 inhibitor QR-6401 by generative models and structure-based drug design.ACS Med. Chem. Lett.202314329730410.1021/acsmedchemlett.2c0051536923916
    [Google Scholar]
  121. MengF. LiuJ. CaoZ. YuJ. SteurerB. YangY. WangY. CaiX. ZhangM. RenF. AliperA. DingX. ZhavoronkovA. Discovery of macrocyclic CDK2/4/6 inhibitors with improved potency and DMPK properties through a highly efficient macrocyclic drug design platform.Bioorg. Chem.202414610728510.1016/j.bioorg.2024.10728538547721
    [Google Scholar]
  122. CirsteaD. HideshimaT. SantoL. EdaH. MishimaY. NemaniN. HuY. MimuraN. CottiniF. GorgunG. OhguchiH. SuzukiR. LofererH. MunshiN.C. AndersonK.C. RajeN. Small-molecule multi-targeted kinase inhibitor RGB-286638 triggers P53-dependent and -independent anti-multiple myeloma activity through inhibition of transcriptional CDKs.Leukemia201327122366237510.1038/leu.2013.19423807770
    [Google Scholar]
  123. van der BiessenD.A.J. BurgerH. de BruijnP. LamersC.H.J. NausN. LofererH. WiemerE.A.C. MathijssenR.H.J. de JongeM.J.A. Phase I study of RGB-286638, a novel, multitargeted cyclin-dependent kinase inhibitor in patients with solid tumors.Clin. Cancer Res.201420184776478310.1158/1078‑0432.CCR‑14‑032525024258
    [Google Scholar]
  124. LiZ. WangX. EksterowiczJ. GribbleM.W.Jr AlbaG.Q. AyresM. CarlsonT.J. ChenA. ChenX. ChoR. ConnorsR.V. DeGraffenreidM. DeignanJ.T. DuquetteJ. FanP. FisherB. FuJ. HuardJ.N. KaizermanJ. KeeganK.S. LiC. LiK. LiY. LiangL. LiuW. LivelyS.E. LoM.C. MaJ. McMinnD.L. MihalicJ.T. ModiK. NgoR. PattabiramanK. PiperD.E. QuevaC. RagainsM.L. SuchomelJ. ThibaultS. WalkerN. WangX. WangZ. WanskaM. WehnP.M. WeidnerM.F. ZhangA.J. ZhaoX. KambA. WickramasingheD. DaiK. McGeeL.R. MedinaJ.C. Discovery of AMG 925, a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3.J. Med. Chem.20145783430344910.1021/jm500118j24641103
    [Google Scholar]
  125. RoccaA. FarolfiA. BravacciniS. SchironeA. AmadoriD. Palbociclib (PD 0332991): targeting the cell cycle machinery in breast cancer.Expert Opin. Pharmacother.201415340742010.1517/14656566.2014.87055524369047
    [Google Scholar]
  126. VillaE. PiscagliaF. GevaR. DalecosG. PapatheodoridisG. CiomeiM. DaviteC. CrivoriP. PalejwalaV. JacobJ. HamzehF. ShailubhaiK. SantoroA. SangiovanniA. Phase IIa safety and efficacy of milciclib, a pan-cyclin dependent kinase inhibitor, in unresectable, sorafenib-refractory or intolerant hepatocellular carcinoma patients.J. Clin. Oncol.20203815Suppl.e1671110.1200/JCO.2020.38.15_suppl.e16711
    [Google Scholar]
  127. Milciclib. 2024. Available from: http://www.tizianalifesciences.com/drug-pipeline/milciclib/ (accessed on 8-10-2024)
  128. ToogoodP.L. HarveyP.J. RepineJ.T. SheehanD.J. VanderWelS.N. ZhouH. KellerP.R. McNamaraD.J. SherryD. ZhuT. BrodfuehrerJ. ChoiC. BarvianM.R. FryD.W. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6.J. Med. Chem.20054872388240610.1021/jm049354h15801831
    [Google Scholar]
  129. BeaverJ.A. Amiri-KordestaniL. CharlabR. ChenW. PalmbyT. TilleyA. ZirkelbachJ.F. YuJ. LiuQ. ZhaoL. CrichJ. ChenX.H. HughesM. BloomquistE. TangS. SridharaR. KluetzP.G. KimG. IbrahimA. PazdurR. CortazarP. FDA Approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor–positive, HER2-negative metastatic breast cancer.Clin. Cancer Res.201521214760476610.1158/1078‑0432.CCR‑15‑118526324739
    [Google Scholar]
  130. FinnR.S. CrownJ.P. LangI. BoerK. BondarenkoI.M. KulykS.O. EttlJ. PatelR. PinterT. SchmidtM. ShparykY. ThummalaA.R. VoytkoN.L. FowstC. HuangX. KimS.T. RandolphS. SlamonD.J. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study.Lancet Oncol.2015161253510.1016/S1470‑2045(14)71159‑325524798
    [Google Scholar]
  131. RoskoskiR.Jr Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs.Pharmacol. Res.201610724927510.1016/j.phrs.2016.03.01226995305
    [Google Scholar]
  132. FryD.W. HarveyP.J. KellerP.R. ElliottW.L. MeadeM. TrachetE. AlbassamM. ZhengX. LeopoldW.R. PryerN.K. ToogoodP.L. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts.Mol. Cancer Ther.20043111427143810.1158/1535‑7163.1427.3.1115542782
    [Google Scholar]
  133. O’LearyB. FinnR.S. TurnerN.C. Treating cancer with selective CDK4/6 inhibitors.Nat. Rev. Clin. Oncol.201613741743010.1038/nrclinonc.2016.2627030077
    [Google Scholar]
  134. AlexanderL.T. MöbitzH. DrueckesP. SavitskyP. FedorovO. ElkinsJ.M. DeaneC.M. Cowan-JacobS.W. KnappS. TypeI.I. Inhibitors Targeting CDK2.ACS Chem. Biol.20151092116212510.1021/acschembio.5b0039826158339
    [Google Scholar]
  135. BisiJ.E. SorrentinoJ.A. JordanJ.L. DarrD.D. RobertsP.J. TavaresF.X. StrumJ.C. Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors.Oncotarget2017826423434235810.18632/oncotarget.1621628418845
    [Google Scholar]
  136. ZhaoH. HuX. CaoK. ZhangY. ZhaoK. TangC. FengB. Synthesis and SAR of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent and selective CDK4/6 inhibitors.Eur. J. Med. Chem.201815793594510.1016/j.ejmech.2018.08.04330165341
    [Google Scholar]
  137. GaoJ.J. OsgoodC.L. FengZ. BloomquistE.W. TangS. ChangC.J.G. RicksT.K. HouS.C. PierceW.F. RiveraD.R. PazdurR. KluetzP.G. Amiri-KordestaniL. FDA approval summary: Ribociclib indicated for male patients with hormone receptor–positive, HER2-negative advanced or metastatic breast cancer.Clin. Cancer Res.202329245008501110.1158/1078‑0432.CCR‑23‑113337594723
    [Google Scholar]
  138. TripathyD. BardiaA. SellersW.R. Ribociclib (LEE011): Mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors.Clin. Cancer Res.201723133251326210.1158/1078‑0432.CCR‑16‑315728351928
    [Google Scholar]
  139. SyedY.Y. Ribociclib: First Global Approval.Drugs201777779980710.1007/s40265‑017‑0742‑028417244
    [Google Scholar]
  140. TadesseS. ZhuG. MekonnenL.B. LenjisaJ.L. YuM. BrownM.P. WangS. A novel series of N-(pyridin-2-yl)-4-(thiazol-5-yl)pyrimidin-2-amines as highly potent CDK4/6 inhibitors.Future Med. Chem.20179131495150610.4155/fmc‑2017‑007628795589
    [Google Scholar]
  141. TadesseS. BantieL. TomusangeK. YuM. IslamS. BykovskaN. NollB. ZhuG. LiP. LamF. KumarasiriM. MilneR. WangS. Discovery and pharmacological characterization of a novel series of highly selective inhibitors of cyclin-dependent kinases 4 and 6 as anticancer agents.Br. J. Pharmacol.2018175122399241310.1111/bph.1397428800675
    [Google Scholar]
  142. ShiC. WangQ. LiaoX. GeH. HuoG. ZhangL. ChenN. ZhaiX. HongY. WangL. WangZ. ShiW. MaoY. YuJ. KeY. XiaG. Discovery of a novel series of imidazo[1′,2′:1,6]pyrido[2,3-d]pyrimidin derivatives as potent cyclin-dependent kinase 4/6 inhibitors.Eur. J. Med. Chem.202019311223910.1016/j.ejmech.2020.11223932200202
    [Google Scholar]
  143. WeissJ.M. CsosziT. MaglakelidzeM. HoyerR.J. BeckJ.T. Domine GomezM. LowczakA. AljumailyR. Rocha LimaC.M. BocciaR.V. HannaW. NikolinakosP. ChiuV.K. OwonikokoT.K. SchusterS.R. HusseinM.A. RichardsD.A. SawryckiP. BulatI. HammJ.T. HartL.L. AdlerS. AntalJ.M. LaiA.Y. SorrentinoJ.A. YangZ. MalikR.K. MorrisS.R. RobertsP.J. DragnevK.H. Myelopreservation with the CDK4/6 inhibitor trilaciclib in patients with small-cell lung cancer receiving first-line chemotherapy: a phase Ib/randomized phase II trial.Ann. Oncol.201930101613162110.1093/annonc/mdz27831504118
    [Google Scholar]
  144. FDA approves drug to reduce bone marrow suppression caused by chemotherapy. 2021. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-drug-reduce-bone-marrow-suppression-caused-chemotherapy (accessed on 8-10-2024)
  145. ShiX. QuanY. WangY. WangY. LiY. Design, synthesis, and biological evaluation of 2,6,7-substituted pyrrolo[2,3-d]pyrimidines as cyclin dependent kinase inhibitor in pancreatic cancer cells.Bioorg. Med. Chem. Lett.20213312772510.1016/j.bmcl.2020.12772533316409
    [Google Scholar]
  146. ShanH. MaX. YanG. LuoM. ZhongX. LanS. YangJ. LiuY. PuC. TongY. LiR. Discovery of a novel covalent CDK4/6 inhibitor based on palbociclib scaffold.Eur. J. Med. Chem.202121911343210.1016/j.ejmech.2021.11343233857728
    [Google Scholar]
  147. YuanK. KuangW. ChenW. JiM. MinW. ZhuY. HouY. WangX. LiJ. WangL. YangP. Discovery of novel and orally bioavailable CDK 4/6 inhibitors with high kinome selectivity, low toxicity and long-acting stability for the treatment of multiple myeloma.Eur. J. Med. Chem.202222811402410.1016/j.ejmech.2021.11402434875521
    [Google Scholar]
  148. LiangH. ZhuY. ZhaoZ. DuJ. YangX. FangH. HouX. Structure-based design of 2-aminopurine derivatives as CDK2 inhibitors for triple-negative breast cancer.Front. Pharmacol.2022131386434210.3389/fphar.2022.86434235592410
    [Google Scholar]
  149. KuchukullaR.R. HwangI. ParkS.W. MoonS. KimS.H. KimS. ChungH.W. JiM.J. ParkH.M. KongG. HurW. Novel 2,6,9-trisubstituted purines as potent CDK inhibitors alleviating trastuzumab-resistance of HER2-positive breast cancers.Pharmaceuticals (Basel)2022159104110.3390/ph1509104136145262
    [Google Scholar]
  150. HusseinyE.M. AbulkhairH.S. SalehA. AltwaijryN. ZidanR.A. AbdulrahmanF.G. Molecular overlay-guided design of new CDK2 inhibitor thiazepinopurines: Synthesis, anticancer, and mechanistic investigations.Bioorg. Chem.202314010678910.1016/j.bioorg.2023.106789
    [Google Scholar]
  151. AlsfoukA.A. AlshiblH.M. AltwaijryN.A. AlanaziA. AlKamalyO. SultanA. AlsfoukB.A. New imadazopyrazines with CDK9 inhibitory activity as anticancer and antiviral: Synthesis, in silico, and in vitro evaluation approaches.Pharmaceuticals (Basel)2023167101810.3390/ph1607101837513929
    [Google Scholar]
  152. HashemH.E. AmrA.E.G.E. AlmehiziaA.A. NaglahA.M. KariukiB.M. EassaH.A. NossierE.S. Nanoparticles of a pyrazolo-pyridazine derivative as potential EGFR and CDK-2 inhibitors: Design, structure determination, anticancer evaluation and in silico studies.Molecules20232821725210.3390/molecules2821725237959672
    [Google Scholar]
  153. ZhangY. WuC. ZhangN. FanR. YeY. XuJ. Recent advances in the development of pyrazole derivatives as anticancer agents.Int. J. Mol. Sci.202324161272410.3390/ijms24161272437628906
    [Google Scholar]
  154. DolmanM.E.M. PoonE. EbusM.E. den HartogI.J.M. van NoeselC.J.M. JaminY. HallsworthA. RobinsonS.P. PetrieK. SparidansR.W. KokR.J. VersteegR. CaronH.N. CheslerL. MolenaarJ.J. Cyclin-dependent kinase inhibitor AT7519 as a potential drug for MYCN-dependent neuroblastoma.Clin. Cancer Res.201521225100510910.1158/1078‑0432.CCR‑15‑031326202950
    [Google Scholar]
  155. DorwardD.A. FeltonJ.M. RobbC.T. CravenT. KipariT. WalshT.S. HaslettC. KefalaK. RossiA.G. LucasC.D. The cyclin-dependent kinase inhibitor AT7519 accelerates neutrophil apoptosis in sepsis-related acute respiratory distress syndrome.Thorax201772218218510.1136/thoraxjnl‑2016‑20922927965411
    [Google Scholar]
  156. ChenE.X. HotteS. HirteH. SiuL.L. LyonsJ. SquiresM. LovellS. TurnerS. McIntoshL. SeymourL. A Phase I study of cyclin-dependent kinase inhibitor, AT7519, in patients with advanced cancer: NCIC Clinical Trials Group IND 177.Br. J. Cancer2014111122262226710.1038/bjc.2014.56525393368
    [Google Scholar]
  157. GoyA. BernsteinS.H. KahlB.S. DjulbegovicB. RobertsonM.J. de VosS. EpnerE. KrishnanA. LeonardJ.P. LonialS. NastaS. O’ConnorO.A. ShiH. BoralA.L. FisherR.I. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study.Ann. Oncol.200920352052510.1093/annonc/mdn65619074748
    [Google Scholar]
  158. ZhaoW. ZhangL. ZhangY. JiangZ. LuH. XieY. HanW. ZhaoW. HeJ. ShiZ. YangH. ChenJ. ChenS. LiZ. MaoJ. ZhouL. GaoX. LiW. TanG. ZhangB. WangZ. The CDK inhibitor AT7519 inhibits human glioblastoma cell growth by inducing apoptosis, pyroptosis and cell cycle arrest.Cell Death Dis.20231411110.1038/s41419‑022‑05528‑836624090
    [Google Scholar]
  159. KanQ. TianX. ZhangX. YangZ. DuY. ChengW. YuanY. WangS. Pyrimidine derivative useful in treatment of cancer and its preparation.Patent CN1082993122018
    [Google Scholar]
  160. WangH. BaJ. KangY. GongZ. LiangT. ZhangY. QiJ. WangJ. Recent progress in CDK4/6 inhibitors and PROTACs.Molecules20232824806010.3390/molecules2824806038138549
    [Google Scholar]
  161. HarrasM.F. SabourR. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma.Bioorg. Chem.20187814915710.1016/j.bioorg.2018.03.01429567429
    [Google Scholar]
  162. AliG.M.E. IbrahimD.A. ElmetwaliA.M. IsmailN.S.M. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity.Bioorg. Chem.20198611410.1016/j.bioorg.2019.01.00830682722
    [Google Scholar]
  163. KuthyalaS. SheikhS. PrabhuA. RekhaP.D. KarikannarN.G. ShankarM.K. Synthesis, characterization, and anticancer studies of some pyrazole-based hybrid heteroatomics.ChemistrySelect2020535108271083410.1002/slct.202002483
    [Google Scholar]
  164. MohammedE.Z. MahmoudW.R. GeorgeR.F. HassanG.S. OmarF.A. GeorgeyH.H. Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs).Bioorg. Chem.202111610534710.1016/j.bioorg.2021.10534734555628
    [Google Scholar]
  165. MetwallyN.H. MohamedM.S. DeebE.A. Synthesis, anticancer evaluation, CDK2 inhibition, and apoptotic activity assessment with molecular docking modeling of new class of pyrazolo[1,5-a]pyrimidines.Res. Chem. Intermed.202147125027506010.1007/s11164‑021‑04564‑x
    [Google Scholar]
  166. WangY. ShiW. WuC. WanL. ZhaoY. ZhangC. GuW. WangS. Pyrazole ring-containing isolongifolanone derivatives as potential CDK2 inhibitors: Evaluation of anticancer activity and investigation of action mechanism.Biomed. Pharmacother.202113911166310.1016/j.biopha.2021.11166334243605
    [Google Scholar]
  167. GhorbanpourM. SoltaniB. MotaA. Jahanbin SardroodiJ. Mehdizadeh AghdamE. ShayanfarA. MolaviO. Mohammad-RezaeiR. Ebadi-NahariM. ZieglerC.J. Copper (II) complexes with N, S donor pyrazole-based ligands as anticancer agents.Biometals20223551095111110.1007/s10534‑022‑00426‑036001216
    [Google Scholar]
  168. HusseinyE.M. S. AbulkhairH. El-DydamonyN.M. AnwerK.E. Exploring the cytotoxic effect and CDK-9 inhibition potential of novel sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles.Bioorg. Chem.202313310639710.1016/j.bioorg.2023.10639736753965
    [Google Scholar]
  169. AlmansourB.S. BinjubairF.A. Abdel-AzizA.A.M. Al-RashoodS.T. Synthesis and in vitro anticancer activity of novel 4-aryl-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo [3,4-b]pyridines arrest cell cycle and induce cell apoptosis by inhibiting CDK2 and/or CDK9.Molecules20232817642810.3390/molecules2817642837687256
    [Google Scholar]
  170. SaqubH. Proetsch-GugerbauerH. BezrookoveV. NosratiM. VaqueroE.M. de SemirD. IceR.J. McAllisterS. SoroceanuL. Kashani-SabetM. OsorioR. DarA.A. Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9.Sci. Rep.20201011848910.1038/s41598‑020‑75578‑533116269
    [Google Scholar]
  171. MandourA.A. NassarI.F. Abdel AalM.T. ShahinM.A.E. El-SayedW.A. HegazyM. YehiaA.M. IsmailA. HagrasM. ElkaeedE.B. RefaatH.M. IsmailN.S.M. Synthesis, biological evaluation, and in silico studies of new CDK2 inhibitors based on pyrazolo[3,4- d]pyrimidine and pyrazolo[4,3- e][1,2,4]triazolo[1,5- c]pyrimidine scaffold with apoptotic activity.J. Enzyme Inhib. Med. Chem.20223711957197310.1080/14756366.2022.208686635815597
    [Google Scholar]
  172. ZakiW.A. El-SayedS.M. AlswahM. El-MorsyA. BayoumiA.H. MayhoubA.S. MoustafaW.H. AwajiA.A. RohE.J. HassanA.H.E. MahmoudK. Design, synthesis, in vitro, and in silico studies of new n5-substituted-pyrazolo[3,4-d]pyrimidinone derivatives as anticancer CDK2 inhibitors.Pharmaceuticals (Basel)20231611159310.3390/ph1611159338004458
    [Google Scholar]
  173. FreemanD.B. HopkinsT.D. MikochikP.J. VaccaJ.P. GaoH. Naylor-OlsenA. RudraS. LiH. PopM.S. VillagomezR.A. LeeC. LiH. ZhouM. SaffranD.C. RiouxN. HoodT.R. DayM.A.L. McKeownM.R. LinC.Y. BischofbergerN. TrotterB.W. Discovery of KB-0742, a potent, selective, orally bioavailable small molecule inhibitor of CDK9 for MYC-dependent cancers.J. Med. Chem.20236623156291564710.1021/acs.jmedchem.3c0123337967851
    [Google Scholar]
  174. CarlinoL. ChristodoulouM.S. RestelliV. CaporuscioF. FoschiF. SemrauM.S. CostanziE. TinivellaA. PinziL. Lo PrestiL. BattistuttaR. StoriciP. BrogginiM. PassarellaD. RastelliG. Structure-activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR.ChemMedChem201813242627263410.1002/cmdc.20180068730457710
    [Google Scholar]
  175. El-GamalM.I. OhC.H. Pyrrolo[3,2-c]pyridine derivatives with potential inhibitory effect against FMS kinase: in vitro biological studies.J. Enzyme Inhib. Med. Chem.20183311160116610.1080/14756366.2018.149156330070930
    [Google Scholar]
  176. ZhangX.X. XiaoY. YanY.Y. WangY.M. JiangH. WuL. ShiJ. LiuX.H. Discovery of the novel 1H-pyrrolo[2,3-b]pyridine derivative as a potent type II CDK8 inhibitor against colorectal cancer.J. Med. Chem.20226518120951212310.1021/acs.jmedchem.2c00820
    [Google Scholar]
  177. BelalA. Abdel GawadN.M. MehanyA.B.M. AbourehabM.A.S. ElkadyH. Al-KarmalawyA.A. IsmaelA.S. Design, synthesis and molecular docking of new fused 1H-pyrroles, pyrrolo[3,2-d]pyrimidines and pyrrolo[3,2-e][1,4]diazepine derivatives as potent EGFR/CDK2 inhibitors.J. Enzyme Inhib. Med. Chem.20223711884190210.1080/14756366.2022.209601935801486
    [Google Scholar]
  178. YangB. QuanY. ZhaoW. JiY. YangX. LiJ. LiY. LiuX. WangY. LiY. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors.J. Enzyme Inhib. Med. Chem.2023381216928210.1080/14756366.2023.216928236656085
    [Google Scholar]
  179. Abdel-RahmanA.A.H. ShabanA.K.F. NassarI.F. EL-Kady, D.S.; Ismail, N.S.M.; Mahmoud, S.F.; Awad, H.M.; El-Sayed, W.A. Discovery of new pyrazolopyridine, furopyridine, and pyridine derivatives as CDK2 inhibitors: Design, synthesis, docking studies, and anti-proliferative activity.Molecules20212613392310.3390/molecules2613392334206976
    [Google Scholar]
  180. AbbasS.E.S. GeorgeR.F. SamirE.M. ArefM.M.A. Abdel-AzizH.A. Synthesis and anticancer activity of some pyrido[2,3-d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors.Future Med. Chem.201911182395241410.4155/fmc‑2019‑005031544523
    [Google Scholar]
  181. Abdel-MagidA.F. Potential of cyclin-dependent kinase inhibitors as cancer therapy.ACS Med. Chem. Lett.202112218218410.1021/acsmedchemlett.1c0001733603963
    [Google Scholar]
  182. ZhangH. YanS. ZhanY. MaS. BianY. LiS. TianJ. LiG. ZhongD. DiaoX. MiaoL. A mass balance study of [14C]SHR6390 (dalpiciclib), a selective and potent CDK4/6 inhibitor in humans.Front. Pharmacol.202314111607310.3389/fphar.2023.111607337063263
    [Google Scholar]
  183. Profitós-PelejàN. RibeiroM.L. ParraJ. Fernández-SerranoM. Marín-EscuderoP. Makovski-SilversteinA. CosenzaS. EstellerM. RouéG. Prolonged cell cycle arrest by the CDK4/6 antagonist narazaciclib restores ibrutinib response in preclinical models of BTKi-resistant mantle cell lymphoma.Hematol. Oncol.202341S255355410.1002/hon.3164_414
    [Google Scholar]
  184. Freeman-CookK.D. HoffmanR.L. BehennaD.C. BorasB. CarelliJ. DiehlW. FerreR.A. HeY.A. HuiA. HuangB. HuserN. JonesR. KephartS.E. LapekJ. McTigueM. MillerN. MurrayB.W. NagataA. NguyenL. NiessenS. NinkovicS. O’DohertyI. OrnelasM.A. SolowiejJ. SuttonS.C. TranK. TsengE. VisswanathanR. XuM. ZehnderL. ZhangQ. ZhangC. DannS. Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer.J. Med. Chem.202164139056907710.1021/acs.jmedchem.1c0015934110834
    [Google Scholar]
  185. YapT.A. BasuC. GoldmanJ.W. Abstract P5-16-06: a first-in-human phase 1/2a dose escalation/expansion study of the first-in-class CDK2/4/6 inhibitor PF-06873600 alone or with endocrine therapy in patients with breast or ovarian cancer.Cancer Res.2022824P5P1610.1158/1538‑7445.SABCS21‑P5‑16‑06
    [Google Scholar]
  186. HeH. LiuQ. ChenL. WangJ. YuanY. LiH. QianX. ZhaoZ. ChenZ. Design, synthesis and biological evaluation of pteridine-7(8H)-one derivatives as potent and selective CDK4/6 inhibitors.Bioorg. Med. Chem. Lett.20227612899110.1016/j.bmcl.2022.12899136130661
    [Google Scholar]
  187. WangX. DingL. JiangH. YuanX. XiangL. TangC. Synthesis and biological evaluation of novel pteridin-7(8H)-one derivatives as potent CDK2 inhibitors.Bioorg. Med. Chem. Lett.20238812928410.1016/j.bmcl.2023.12928437060933
    [Google Scholar]
  188. TadesseS. YuM. MekonnenL.B. LamF. IslamS. TomusangeK. RahamanM.H. NollB. BasnetS.K.C. TeoT. AlbrechtH. MilneR. WangS. Highly potent, selective, and orally bioavailable 4-thiazol-n-(pyridin-2-yl)pyrimidin-2-amine cyclin-dependent kinases 4 and 6 inhibitors as anticancer drug candidates: Design, synthesis, and evaluation.J. Med. Chem.20176051892191510.1021/acs.jmedchem.6b0167028156111
    [Google Scholar]
  189. PhadkeM. Remsing RixL.L. SmalleyI. BryantA.T. LuoY. LawrenceH.R. SchaibleB.J. ChenY.A. RixU. SmalleyK.S.M. Dabrafenib inhibits the growth of BRAF-WT cancers through CDK16 and NEK9 inhibition.Mol. Oncol.2018121748810.1002/1878‑0261.1215229112787
    [Google Scholar]
  190. SynN.L. LimP.L. KongL.R. WangL. WongA.L.A. LimC.M. LohT.K.S. SiemeisterG. GohB.C. HsiehW.S. Pan-CDK inhibition augments cisplatin lethality in nasopharyngeal carcinoma cell lines and xenograft models.Signal Transduct. Target. Ther.201831910.1038/s41392‑018‑0010‑029666673
    [Google Scholar]
  191. LinS.F. LinJ.D. HsuehC. ChouT.C. WongR.J. Activity of roniciclib in medullary thyroid cancer.Oncotarget2018946280302804110.18632/oncotarget.2555529963260
    [Google Scholar]
  192. BahledaR. Grilley-OlsonJ.E. GovindanR. BarlesiF. GreillierL. PerolM. Ray-CoquardI. StrumbergD. SchultheisB. DyG.K. ZalcmanG. WeissG.J. WalterA.O. KornackerM. RajagopalanP. HendersonD. NogaiH. OckerM. SoriaJ.C. Phase I dose-escalation studies of roniciclib, a pan-cyclin-dependent kinase inhibitor, in advanced malignancies.Br. J. Cancer2017116121505151210.1038/bjc.2017.9228463960
    [Google Scholar]
  193. ChoB.C. DyG.K. GovindanR. KimD.W. PennellN.A. ZalcmanG. BesseB. KimJ.H. KocaG. RajagopalanP. LangerS. OckerM. NogaiH. BarlesiF. Phase Ib/II study of the pan-cyclin-dependent kinase inhibitor roniciclib in combination with chemotherapy in patients with extensive-disease small-cell lung cancer.Lung Cancer2018123142110.1016/j.lungcan.2018.04.02230089585
    [Google Scholar]
  194. YinL. LiH. LiuW. YaoZ. ChengZ. ZhangH. ZouH. A highly potent CDK4/6 inhibitor was rationally designed to overcome blood brain barrier in gliobastoma therapy.Eur. J. Med. Chem.201814412810.1016/j.ejmech.2017.12.00329247857
    [Google Scholar]
  195. WangY. LiuW.J. YinL. LiH. ChenZ.H. ZhuD.X. SongX.Q. ChengZ.Z. SongP. WangZ. LiZ.G. Design and synthesis of 4-(2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-7-yl)-N-(5-(piperazin-1-ylmethyl)pyridine-2-yl)pyrimidin-2-amine as a highly potent and selective cyclin-dependent kinases 4 and 6 inhibitors and the discovery of structure-activity relationships.Bioorg. Med. Chem. Lett.201828597497810.1016/j.bmcl.2017.12.06829429832
    [Google Scholar]
  196. ZhaC. DengW. FuY. TangS. LanX. YeY. SuY. JiangL. ChenY. HuangY. DingJ. GengM. HuangM. WanH. Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy.Eur. J. Med. Chem.201814814015310.1016/j.ejmech.2018.02.02229459274
    [Google Scholar]
  197. ShiC. WangQ. LiaoX. GeH. HuoG. ZhangL. ChenN. ZhaiX. HongY. WangL. HanY. XiaoW. WangZ. ShiW. MaoY. YuJ. XiaG. LiuY. Discovery of 6-(2-(dimethylamino)ethyl)-N-(5-fluoro-4-(4-fluoro-1-isopropyl-2-methyl-1H-benzo[d]imidazole-6-yl)pyrimidin-2-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-2-amine as a highly potent cyclin-dependent kinase 4/6 inhibitor for treatment of cancer.Eur. J. Med. Chem.201917835236410.1016/j.ejmech.2019.06.00531200237
    [Google Scholar]
  198. HuangZ. ZhaoB. QinZ. LiY. WangT. ZhouW. ZhengJ. YangS. ShiY. FanY. XiangR. Novel dual inhibitors targeting CDK4 and VEGFR2 synergistically suppressed cancer progression and angiogenesis.Eur. J. Med. Chem.201918111154110.1016/j.ejmech.2019.07.04431382120
    [Google Scholar]
  199. ChenX. ShuC. LiW. HouQ. LuoG. YangK. WuX. Discovery of a novel SRC homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) and cyclin-dependent kinase 4 (CDK4) dual inhibitor for the treatment of triple-negative breast cancer.J. Med. Chem.20226596729674710.1021/acs.jmedchem.2c0006335447031
    [Google Scholar]
  200. WangY. LiY. LiuD. ZhengD. LiX. LiC. HuangC. WangY. WangX. LiQ. XuJ. A potential anti-glioblastoma compound LH20 induces apoptosis and arrest of human glioblastoma cells via CDK4/6 inhibition.Molecules20232813504710.3390/molecules2813504737446710
    [Google Scholar]
  201. FantaB.S. MekonnenL. BasnetS.K.C. TeoT. LenjisaJ. KhairN.Z. KouL. TadesseS. SykesM.J. YuM. WangS. 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine-derived CDK2 inhibitors as anticancer agents: Design, synthesis & evaluation.Bioorg. Med. Chem.20238011715810.1016/j.bmc.2023.11715836706608
    [Google Scholar]
  202. EskandraniR. Al-RasheedL.S. AnsariS.A. BakheitA.H. AlmehiziaA.A. AlmutairiM. AlkahtaniH.M. Targeting transcriptional CDKs 7, 8, and 9 with anilinopyrimidine derivatives as anticancer agents: Design, synthesis, biological evaluation and in silico studies.Molecules20232811427110.3390/molecules2811427137298748
    [Google Scholar]
  203. AzmyE.M. HagrasM. EwidaM.A. DoghishA.S. Gamil KhidrE. El-HusseinyA.A. GomaaM.H. RefaatH.M. IsmailN.S.M. NassarI.F. LashinW.H. Development of pyrolo[2,3-c]pyrazole, pyrolo[2,3-d]pyrimidine and their bioisosteres as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological evaluation and molecular dynamics investigations.Bioorg. Chem.202313910672910.1016/j.bioorg.2023.106729
    [Google Scholar]
  204. DengY. ShippsG.W.Jr ZhaoL. SiddiquiM.A. Popovici-MullerJ. CurranP.J. DucaJ.S. HruzaA.W. FischmannT.O. MadisonV.S. ZhangR. McNemarC.W. MayhoodT.W. SytoR. AnnisA. KirschmeierP. LeesE.M. ParryD.A. WindsorW.T. Modulating the interaction between CDK2 and cyclin A with a quinoline-based inhibitor.Bioorg. Med. Chem. Lett.201424119920310.1016/j.bmcl.2013.11.04124332088
    [Google Scholar]
  205. YadavD.K. RaiR. KumarN. SinghS. MisraS. SharmaP. ShawP. Pérez-SánchezH. ManceraR.L. ChoiE.H. KimM. PratapR. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.Sci. Rep.2016613812810.1038/srep3812827922047
    [Google Scholar]
  206. HuangY. LiuW. HuangS. LiD. XuC. JiangX. LiuM. LiuX. ZhuC. WuL. ChenH. XuZ. ZhaoQ. Discovery of novel benzofuro[3,2-b]quinoline derivatives as dual CDK2/Topo I inhibitors.Bioorg. Chem.202212610587010.1016/j.bioorg.2022.10587035636125
    [Google Scholar]
  207. SayedE.M. BakhiteE.A. HassanienR. FarhanN. AlyH.F. MorsyS.G. HassanN.A. Novel tetrahydroisoquinolines as DHFR and CDK2 inhibitors: synthesis, characterization, anticancer activity and antioxidant properties.BMC Chem.20241813410.1186/s13065‑024‑01139‑w38365746
    [Google Scholar]
  208. ChenH. HeL. LiS. ZhangY. HuangJ. QinH. WangJ. LiQ. YangD. A derivate of benzimidazole-isoquinolinone induces SKP2 transcriptional inhibition to exert anti-tumor activity in glioblastoma cells.Molecules20192415272210.3390/molecules2415272231357480
    [Google Scholar]
  209. HuangJ. WangX. DongR. LiuX. LiH. ZhangT. XuJ. LiuC. ZhangY. HouS. TangW. LuT. ChenY. Discovery of N -(4-(3-isopropyl-2-methyl-2 H-indazol-5-yl)pyrimidin-2-yl)-4-(4-methylpiperazin-1-yl)quinazolin-7-amine as a novel, potent, and oral cyclin-dependent kinase inhibitor against haematological malignancies.J. Med. Chem.20216417125481257110.1021/acs.jmedchem.1c0027134415148
    [Google Scholar]
  210. MohammedE.R. ElmasryG.F. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma.J. Enzyme Inhib. Med. Chem.202237168670010.1080/14756366.2022.203698535139719
    [Google Scholar]
  211. IbrahimB.T. AllamH.A. El-DydamonyN.M. FouadM.A. MohammedE.R. Exploring new quinazolin-4(3H)-one derivatives as CDK2 inhibitors: Design, synthesis, and anticancer evaluation.Drug Dev. Res.2024852e2216310.1002/ddr.22163
    [Google Scholar]
  212. BarakatA. AlshahraniS. Al-MajidA.M. AlamaryA.S. HaukkaM. Abu-SerieM.M. DomingoL.R. AshrafS. Ul-HaqZ. NafieM.S. TelebM. New spiro-indeno[1,2- b]quinoxalines clubbed with benzimidazole scaffold as CDK2 inhibitors for halting non-small cell lung cancer; stereoselective synthesis, molecular dynamics and structural insights.J. Enzyme Inhib. Med. Chem.2023381228126010.1080/14756366.2023.228126037994663
    [Google Scholar]
  213. Abd El-KarimS.S. SyamY.M. El KerdawyA.M. AbdelghanyT.M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies.Bioorg. Chem.201986809610.1016/j.bioorg.2019.01.02630685646
    [Google Scholar]
  214. ZhangJ. LiuS. YeQ. PanJ. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma.Mol. Cancer201918114010.1186/s12943‑019‑1070‑731526394
    [Google Scholar]
  215. AlyA.A. BräseS. HassanA.A. MohamedN.K. El-HaleemL.E.A. NiegerM. MorsyN.M. AlshammariM.B. IbrahimM.A.A. AbdelhafezE.M.N. Design, synthesis, and molecular docking of paracyclophanyl-thiazole hybrids as novel CDK1 inhibitors and apoptosis inducing anti-melanoma agents.Molecules20202523556910.3390/molecules2523556933260954
    [Google Scholar]
  216. ObakachiV.A. KehindeI. KushwahaN.D. AkinpeluO.I. KushwahaB. MeruguS.R. KayambaF. KumaloH.M. KarpoormathR. Structural based investigation of novel pyrazole-thiazole Hybrids as dual CDK-1 and CDK-2 inhibitors for cancer chemotherapy.Mol. Simul.202248868770110.1080/08927022.2022.2045016
    [Google Scholar]
  217. FarghalyT.A. Al-HasaniW.A. IbrahimM.H. AbdellattifM.H. AbdallahZ.A. Design, synthesis, anticancer activity and docking studies of thiazole linked phenylsulfone moiety as cyclin-dependent kinase 2 (cdk2) inhibitors.Polycycl. Aromat. Compd.20234365001502010.1080/10406638.2022.2097715
    [Google Scholar]
  218. Al-SalmiF.A. AlrohaimiA.H. BeheryM.E. Anticancer studies of newly synthesized thiazole derivatives: Synthesis, characterization, biological activity, and molecular docking.Crystals202313154610.3390/cryst13111546
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331685241205180307
Loading
/content/journals/cmc/10.2174/0109298673331685241205180307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test