Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

CDK2 plays a pivotal role in controlling the cell cycle progression in eukaryotes and for this reason, it has been the subject of several studies for suitable inhibitors in the last decades. But more than 30 years of basic research have not generated an inhibitor as marketed drugs. Some inhibitors are to date in early phase clinical development. Moreover, most efforts to develop CDK2 inhibitors have been oriented towards orthosteric inhibitors, which block the kinase activity by binding to the ATP binding site, competing directly with ATP. These compounds have off-target kinase activity, because of the structural homology of the active sites of several other kinases. Targeting the CDK2 allosteric binding pocket could produce successful CDK2 inhibitors. Few examples of high-affinity allosteric CDK2 inhibitors are known. Despite promising research results, none has been approved for marketing. In recent years, various methodologies have been reported capable of identifying new and never-discovered portions of the target protein, which present adequate druggability characteristics. In this paper, we have highlighted and discussed the more recent findings on allosteric inhibitors intending to encouraging further exploration mainly focused on drug discovery.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331207241019085108
2025-01-07
2025-11-03
Loading full text...

Full text loading...

References

  1. OumataN. BettayebK. FerandinY. DemangeL. Lopez-GiralA. GoddardM.L. MyrianthopoulosV. MikrosE. FlajoletM. GreengardP. MeijerL. GalonsH. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1.J. Med. Chem.200851175229524210.1021/jm800109e18698753
    [Google Scholar]
  2. Van DuyneR. GuendelI. JaworskiE. SampeyG. KlaseZ. ChenH. ZengC. KovalskyyD. el KouniM.H. LepeneB. PatanarutA. NekhaiS. PriceD.H. KashanchiF. Effect of mimetic CDK9 inhibitors on HIV-1-activated transcription.J. Mol. Biol.2013425481282910.1016/j.jmb.2012.12.00523247501
    [Google Scholar]
  3. HoriuchiD. HuskeyN.E. KusdraL. WohlboldL. MerrickK.A. ZhangC. CreasmanK.J. ShokatK.M. FisherR.P. GogaA. Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways.Proc. Natl. Acad. Sci. USA201210917E1019E102710.1073/pnas.111131710922474407
    [Google Scholar]
  4. AkliS. Van PeltC.S. BuiT. MeijerL. KeyomarsiK. CDK2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E.Cancer Res.20117193377338610.1158/0008‑5472.CAN‑10‑408621385896
    [Google Scholar]
  5. YangL. FangD. ChenH. LuY. DongZ. DingH.F. JingQ. SuS.B. HuangS. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression.Oncotarget2015625208012081210.18632/oncotarget.460026204491
    [Google Scholar]
  6. GengY. YuQ. SicinskaE. DasM. SchneiderJ.E. BhattacharyaS. RideoutW.M.III BronsonR.T. GardnerH. SicinskiP. CyclinE. Cyclin E ablation in the mouse.Cell2003114443144310.1016/S0092‑8674(03)00645‑712941272
    [Google Scholar]
  7. BajuszD. FerenczyG.G. KeseruG.M. Structure-based virtual screening approaches in kinase-directed drug discovery.Curr. Top. Med. Chem.201717202235225928240180
    [Google Scholar]
  8. FDA-approved protein kinase inhibitors 2024. Available from: www.brimr.org/PKI/PKIs.htm Accessed Feb 7, 2024
  9. VerkhivkerG.M. Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms.Mol. Biosyst.201713112235225310.1039/C7MB00355B28926061
    [Google Scholar]
  10. FaberE.B. WangN. GeorgG.I. Review of rationale and progress toward targeting cyclin-dependent kinase 2 (CDK2) for male contraception.Biol. Reprod.2020103235736710.1093/biolre/ioaa10732543655
    [Google Scholar]
  11. SaidM.A. AbdelrahmanM.A. AbourehabM.A.S. FaresM. EldehnaW.M. A patent review of anticancer CDK2 inhibitors (2017–present).Expert Opin. Ther. Pat.202232888589810.1080/13543776.2022.207819335583393
    [Google Scholar]
  12. YapT.A. ElhaddadA.M. GrishamR.M. First-in-human phase 1/2a study of a potent and novel CDK2-selective inhibitor PF-07104091 in patients (pts) with advanced solid tumors, enriched for CDK4/6 inhibitor resistant HR+/HER2-breast cancer.Breast Cancer202341163010301010.1200/JCO.2023.41.16_suppl.3010
    [Google Scholar]
  13. Blueprint Medicines Corp. Blueprint medicines announces lift of partial clinical hold on phase 1/2 vela trial of blu-222 (no date) Blueprint Medicines Corp. 2023. Available from: https://ir.blueprintmedicines.com/news-releases/news-release-details/blueprint-medicines-announces-lift-partial-clinical-hold-phase
  14. DietrichC. TrubA. AhnA. TaylorM. AmbaniK. ChanK.T. LuK.H. MahendraC.A. BlythC. CoulsonR. RammS. WattA.C. MatsaS.K. BisiJ. StrumJ. RobertsP. GoelS. INX-315, a selective CDK2 inhibitor, induces cell cycle arrest and senescence in solid tumors.Cancer Discov.202414344646710.1158/2159‑8290.CD‑23‑095438047585
    [Google Scholar]
  15. LiangJ. ChengD. GuoY. ZhangX. LiuX. FuJ. DingQ. XiongW. LiF. ChenY. ShengmQ. ARTS-021 is a potent and selective CDK2 inhibitor that demonstrates anti-cancer activity in preclinical cancer models with CCNE1 amplification.Cancer Res.20228212Suppl.256810.1158/1538‑7445.AM2022‑2568
    [Google Scholar]
  16. WangY. ShengQ. JiT. LiangJ. SchomerN. FuJ. ZhangT. XiongW. ChengD. LiuZ. DingQ. LiF. ChenY. BerkG. 715TiP ARTS-021-1001: Phase I/II study of ARTS-021, a potent, oral administrated, selective CDK2 inhibitor, in advanced or metastatic solid tumors.Ann. Oncol.202334Suppl. 2S49410.1016/j.annonc.2023.09.1901
    [Google Scholar]
  17. ZuccottoF. ArdiniE. CasaleE. AngioliniM. Through the “gatekeeper door”: exploiting the active kinase conformation.J. Med. Chem.20105372681269410.1021/jm901443h20000735
    [Google Scholar]
  18. AlexanderL.T. MöbitzH. DrueckesP. SavitskyP. FedorovO. ElkinsJ.M. DeaneC.M. Cowan-JacobS.W. KnappS. Type II inhibitors targeting CDK2.ACS Chem. Biol.20151092116212510.1021/acschembio.5b0039826158339
    [Google Scholar]
  19. ŁukasikP. Baranowska-BosiackaI. KulczyckaK. GutowskaI. Inhibitors of cyclin-dependent kinases: Types and their mechanism of action.Int. J. Mol. Sci.2021226280610.3390/ijms2206280633802080
    [Google Scholar]
  20. FangZ. GrütterC. RauhD. Strategies for the selective regulation of kinases with allosteric modulators: Exploiting exclusive structural features.ACS Chem. Biol.201381587010.1021/cb300663j23249378
    [Google Scholar]
  21. TutoneM. AlmericoA.M. Recent advances on CDK inhibitors: An insight by means of in silico methods.Eur. J. Med. Chem.201714230031510.1016/j.ejmech.2017.07.06728802482
    [Google Scholar]
  22. RussoA.A. JeffreyP.D. PattenA.K. MassaguéJ. PavletichN.P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inibitor bound to the cyclin A-CDK2 complex.Nature1996382658932533110.1038/382325a08684460
    [Google Scholar]
  23. CullettaG. AlmericoA.M. TutoneM. Comparing molecular dynamics-derived pharmacophore models with docking: A study on CDK-2 inhibitors.Chem. Data Collect.20202810048510.1016/j.cdc.2020.100485
    [Google Scholar]
  24. ZhouY. Al-JarfR. AlaviA. NguyenT.B. RodriguesC.H.M. PiresD.E.V. AscherD.B. KINCSM: Using graph‐based signatures to predict small molecule CDK2 inhibitors.Protein Sci.20223111e445310.1002/pro.445336305769
    [Google Scholar]
  25. TutoneM. CullettaG. LivecchiL. AlmericoA.M. A definitive pharmacophore modelling study on CDK2 ATP pocket binders: Tracing the path of new virtual high-throughput screenings.Curr. Drug Discov. Technol.202017574074710.2174/157016381666619062011394431250757
    [Google Scholar]
  26. CullettaG. TutoneM. ZappalàM. AlmericoA.M. Sulfonamide moiety as “molecular chimera” in the design of new drugs.Curr. Med. Chem.202330212816310.2174/092986732966622072915150035909290
    [Google Scholar]
  27. HopeI. EndicottJ.A. WattJ.E. Emerging approaches to CDK inhibitor development, a structural perspective.RSC Chem. Biol.20234214616410.1039/D2CB00201A36794018
    [Google Scholar]
  28. YuehC. RettenmaierJ. XiaB. HallD.R. AlekseenkoA. PorterK.A. BarkovichK. KeseruG. WhittyA. WellsJ.A. VajdaS. KozakovD. Kinase atlas: Druggability analysis of potential allosteric sites in kinases.J. Med. Chem.201962146512652410.1021/acs.jmedchem.9b0008931274316
    [Google Scholar]
  29. van WestenG.J.P. GaultonA. OveringtonJ.P. Chemical, target, and bioactive properties of allosteric modulation.PLOS Comput. Biol.2014104e100355910.1371/journal.pcbi.100355924699297
    [Google Scholar]
  30. PittW.R. MontalvãoR.W. BlundellT.L. Polyphony: Superposition independent methods for ensemble-based drug discovery.BMC Bioinformatics201415132410.1186/1471‑2105‑15‑32425265915
    [Google Scholar]
  31. CockP.J.A. AntaoT. ChangJ.T. ChapmanB.A. CoxC.J. DalkeA. FriedbergI. HamelryckT. KauffF. WilczynskiB. de HoonM.J.L. Biopython: Freely available Python tools for computational molecular biology and bioinformatics.Bioinformatics200925111422142310.1093/bioinformatics/btp16319304878
    [Google Scholar]
  32. NumPy, scientific computing with Python. 2024. Available from: http://www.numpy.org
  33. Python software for mathematics, science, and engineering. 2020. Available from: www.scipy.org
  34. Polyphony: superposition independent methods for ensemble-based drug discovery. 2014. Available from: http://wrpitt.bitbucket.org/polyphony
  35. BarrettC.P. NobleM.E.M. Molecular motions of human cyclin-dependent kinase 2.J. Biol. Chem.200528014139931400510.1074/jbc.M40737120015695825
    [Google Scholar]
  36. XieZ. HouS. YangX. DuanY. HanJ. WangQ. LiaoC. Lessons learned from past cyclin-dependent kinase drug discovery efforts.J. Med. Chem.20226596356638910.1021/acs.jmedchem.1c0219035235745
    [Google Scholar]
  37. TadesseS. CaldonE.C. TilleyW. WangS. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update.J. Med. Chem.20196294233425110.1021/acs.jmedchem.8b0146930543440
    [Google Scholar]
  38. RoskoskiR.Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.Pharmacol. Res.2016103264810.1016/j.phrs.2015.10.02126529477
    [Google Scholar]
  39. FaberE.B. SunL. TangJ. RobertsE. GaneshkumarS. WangN. RasmussenD. MajumdarA. HirschL.E. JohnK. YangA. KhalidH. HawkinsonJ.E. LevinsonN.M. ChennathukuzhiV. HarkiD.A. SchönbrunnE. GeorgG.I. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding.Nat. Commun.2023141321310.1038/s41467‑023‑38732‑x37270540
    [Google Scholar]
  40. FaberE.B. TangJ. RobertsE. GaneshkumarS. SunL. WangN. RasmussenD. MajumbarA. JohnK. YangA. KhalidH. HawkinsonJ.E. LevinsonN.M. SchonbrunnE. ChennathukuzhiV. HarkiD.A. GeorgG.I. Development of allosteric, selective cyclindependent kinase 2 (CDK2) inhibitors that are negatively cooperative with cyclin binding and show potential as contraceptive agents.Pharmacol. Toxicol.202249781810.1101/2022.06.30.497818
    [Google Scholar]
  41. MajumdarA. BurbanD.J. MurettaJ.M. ThompsonA.R. EngelT.A. RasmussenD.M. SubrahmanianM.V. VegliaG. ThomasD.D. LevinsonN.M. Allostery governs CDK2 activation and differential recognition of CDK2 inhibitors.Nat. Chem. Biol.202117445646410.1038/s41589‑020‑00725‑y33526892
    [Google Scholar]
  42. FaberE.B. TianD. BurbanD. LevinsonN.M. HawkinsonJ.E. GeorgG.I. Cooperativity between orthosteric inhibitors and allosteric inhibitor 8-anilino-1-naphthalene sulfonic acid (ANS) in cyclin-dependent kinase 2.ACS Chem. Biol.20201571759176410.1021/acschembio.0c0016932433863
    [Google Scholar]
  43. FaberE.B. WangN. JohnK. SunL. BurbanD. WongH. The discovery of high affinity and metabolically stable allosteric cyclin-dependent kinase 2 (CDK2) inhibitors from screening through lead optimization.ChemRxiv202221610.26434/chemrxiv‑2022‑4h8lf‑v2
    [Google Scholar]
  44. FaberE.B. WangN. JohnK. SunL. WongH.L. BurbanD. FrancisR. TianD. HongK.H. YangA. WangL. ElsaidM. KhalidH. LevinsonN.M. SchönbrunnE. HawkinsonJ.E. GeorgG.I. Screening through lead optimization of high affinity, allosteric cyclin-dependent kinase 2 (CDK2) inhibitors as male contraceptives that reduce sperm counts in mice.J. Med. Chem.20236631928194010.1021/acs.jmedchem.2c0173136701569
    [Google Scholar]
  45. BetziS. AlamR. MartinM. LubbersD.J. HanH. JakkarajS.R. GeorgG.I. SchönbrunnE. Discovery of a potential allosteric ligand binding site in CDK2.ACS Chem. Biol.20116549250110.1021/cb100410m21291269
    [Google Scholar]
  46. ChenH. ZhaoY. LiH. ZhangD. HuangY. ShenQ. Van DuyneR. KashanchiF. ZengC. LiuS. Break CDK2/Cyclin E1 interface allosterically with small peptides.PLoS One2014910e10915410.1371/journal.pone.010915425290691
    [Google Scholar]
  47. LondonN. RavehB. Movshovitz-AttiasD. Schueler-FurmanO. Can self‐inhibitory peptides be derived from the interfaces of globular protein–protein interactions?Proteins201078153140314910.1002/prot.2278520607702
    [Google Scholar]
  48. HuY. LiS. LiuF. GengL. ShuX. ZhangJ. Discovery of novel nonpeptide allosteric inhibitors interrupting the interaction of CDK2/cyclin A3 by virtual screening and bioassays.Bioorg. Med. Chem. Lett.201525194069407310.1016/j.bmcl.2015.08.05026316466
    [Google Scholar]
  49. RastelliG. AnighoroA. ChripkovaM. CarrassaL. BrogginiM. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2.Cell Cycle201413142296230510.4161/cc.2929524911186
    [Google Scholar]
  50. ChristodoulouM.S. CaporuscioF. RestelliV. CarlinoL. CannazzaG. CostanziE. CittiC. Lo PrestiL. PisaniP. BattistuttaR. BrogginiM. PassarellaD. RastelliG. Probing an allosteric pocket of CDK2 with small molecules.ChemMedChem2017121334110.1002/cmdc.20160047427860401
    [Google Scholar]
  51. CarlinoL. ChristodoulouM.S. RestelliV. CaporuscioF. FoschiF. SemrauM.S. CostanziE. TinivellaA. PinziL. Lo PrestiL. BattistuttaR. StoriciP. BrogginiM. PassarellaD. RastelliG. Structure–activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR.ChemMedChem201813242627263410.1002/cmdc.20180068730457710
    [Google Scholar]
  52. PisaniP. CaporuscioF. CarlinoL. RastelliG. Molecular dynamics simulations and classical multidimensional scaling unveil new metastable states in the conformational landscape of CDK2.PLoS One2016114e015406610.1371/journal.pone.015406627100206
    [Google Scholar]
  53. CullettaG. ZappalàM. EttariR. AlmericoA.M. TutoneM. Immunoproteasome and non-covalent inhibition: Exploration by advanced molecular dynamics and docking methods.Molecules20212613404610.3390/molecules2613404634279386
    [Google Scholar]
  54. SheetzJ.B. LemmonM.A. TsutsuiY. Dynamics of protein kinases and pseudokinases by HDX-MS.Methods Enzymol.202266730333810.1016/bs.mie.2022.03.03735525545
    [Google Scholar]
  55. PelleranoM. TcherniukS. PeralsC. Ngoc VanT.N. GarcinE. Mahuteau-BetzerF. Teulade-FichouM.P. MorrisM.C. Targeting conformational activation of CDK2 kinase.Biotechnol. J.2017128160053110.1002/biot.20160053128430399
    [Google Scholar]
  56. CravenG.B. AffronD.P. AllenC.E. MatthiesS. GreenerJ.G. MorganR.M.L. TateE.W. ArmstrongA. MannD.J. High‐throughput kinetic analysis for target‐directed covalent ligand discovery.Angew. Chem. Int. Ed.201857195257526110.1002/anie.20171182529480525
    [Google Scholar]
  57. WoodD.J. Lopez-FernandezJ.D. KnightL.E. Al-KhawaldehI. GaiC. LinS. MartinM.P. MillerD.C. CanoC. EndicottJ.A. HardcastleI.R. NobleM.E.M. WaringM.J. FragLites—minimal, halogenated fragments displaying pharmacophore doublets. An efficient approach to druggability assessment and hit generation.J. Med. Chem.20196273741375210.1021/acs.jmedchem.9b0030430860382
    [Google Scholar]
  58. RamanE.P. LakkarajuS.K. DennyR.A. MacKerellA.D. Jr. Estimation of relative free energies of binding using pre‐computed ensembles based on the single‐step free energy perturbation and the site‐identification by Ligand competitive saturation approaches.J. Comput. Chem.201738151238125110.1002/jcc.2452227782307
    [Google Scholar]
  59. UstachV.D. LakkarajuS.K. JoS. YuW. JiangW. MacKerellA.D. Jr. Optimization and evaluation of site-identification by ligand competitive saturation (SILCS) as a tool for target-based ligand optimization.J. Chem. Inf. Model.20195963018303510.1021/acs.jcim.9b0021031034213
    [Google Scholar]
  60. MacKerellA.D. Jr.; Jo, S.; Lakkaraju, S.K.; Lind, C.; Yu, W. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots).Biochim. Biophys. Acta, Gen. Subj.20201864412951910.1016/j.bbagen.2020.12951931911242
    [Google Scholar]
  61. Traditional Chinese medicine database (TCMD)In: Accelrys Inc; Springer: Beijing, China20096111
    [Google Scholar]
  62. LuF. LuoG. QiaoL. JiangL. LiG. ZhangY. Virtual screening for potential allosteric inhibitors of cyclin-dependent kinase 2 from traditional Chinese medicine.Molecules2016219125910.3390/molecules2109125927657032
    [Google Scholar]
  63. VásquezA.F. Reyes MuñozA. DuitamaJ. González BarriosA. Discovery of new potential CDK2/VEGFR2 type II inhibitors by fragmentation and virtual screening of natural products.J. Biomol. Struct. Dyn.20213993285329932362218
    [Google Scholar]
  64. VásquezA.F. González BarriosA.F. Classical MD and metadynamics simulations on back-pocket binders of CDK2 and VEGFR2: a guidepost to design novel small-molecule dual inhibitors.J. Biomol. Struct. Dyn.202240199030904110.1080/07391102.2021.192231133949282
    [Google Scholar]
  65. Al-WahaibiL.H. MostafaY.A. AbdelrahmanM.H. El-BahrawyA.H. TrembleauL. YoussifB.G.M. Synthesis and biological evaluation of indole-2-carboxamides with potent apoptotic antiproliferative activity as EGFR/CDK2 dual inhibitors.Pharmaceuticals2022158100610.3390/ph1508100636015154
    [Google Scholar]
  66. WangL. LuD. WangY. XuX. ZhongP. YangZ. Binding selectivity-dependent molecular mechanism of inhibitors towards CDK2 and CDK6 investigated by multiple short molecular dynamics and free energy landscapes.J. Enzyme Inhib. Med. Chem.2023381849910.1080/14756366.2022.213551136342274
    [Google Scholar]
  67. Wah TanZ. TeeW.V. BerezovskyI.N. Learning about allosteric drugs and ways to design them.J. Mol. Biol.20224341716769210.1016/j.jmb.2022.16769235738428
    [Google Scholar]
  68. JiX. CuiX. LiZ. ChoiT. WangY. XiaoW. ZhaoY. ZhaJ. ZhangJ. ChenH.F. YuZ. Research and evaluation of the allosteric protein-specific force field based on a pre-training deep learning model.J. Chem. Inf. Model.20236382456246810.1021/acs.jcim.2c0136937057817
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331207241019085108
Loading
/content/journals/cmc/10.2174/0109298673331207241019085108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test