Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Methamphetamine (METH), an amphetamine-type stimulant, has been extensively abused globally in the past decades. METH use causes great harm to the major systems of the human body. Specifically, METH has a negative impact on the hypothalamic-pituitary-testicular axis, testicular structure, sperm function, ovarian folliculogenesis, oocyte quality, embryo development, and newborns. However, the mechanisms underlying these toxic effects have not yet been fully described. This study reviews the evidence concerning the impact of METH on male and female reproduction in the context of the testis, sperm, ovaries, oocytes, reproductive hormones, embryo development, and newborns, discussing the potential pathophysiological mechanisms in the reproductive toxicity induced by METH.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673299759240603091021
2024-06-12
2025-09-11
Loading full text...

Full text loading...

References

  1. ShresthaP. KatilaN. LeeS. SeoJ.H. JeongJ.H. YookS. Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies.Biomed. Pharmacother.202215411359110.1016/j.biopha.2022.11359136007276
    [Google Scholar]
  2. ShaerzadehF. StreitW.J. HeysieattalabS. KhoshboueiH. Methamphetamine neurotoxicity, microglia, and neuroinflammation.J. Neuroinflammation201815134110.1186/s12974‑018‑1385‑030541633
    [Google Scholar]
  3. YangX. WangY. LiQ. ZhongY. ChenL. DuY. HeJ. LiaoL. XiongK. YiC. YanJ. The main molecular mechanisms underlying methamphetamine induced neurotoxicity and implications for pharmacological treatment.Front. Mol. Neurosci.20181118610.3389/fnmol.2018.0018629915529
    [Google Scholar]
  4. NordahlT.E. SaloR. LeamonM. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review.J. Neuropsychiatry Clin. Neurosci.200315331732510.1176/jnp.15.3.31712928507
    [Google Scholar]
  5. DixonS.D. Effects of transplacental exposure to cocaine and methamphetamine on the neonate.West. J. Med.198915044364422735049
    [Google Scholar]
  6. PrakashM.D. TangalakisK. AntonipillaiJ. StojanovskaL. NurgaliK. ApostolopoulosV. Methamphetamine: Effects on the brain, gut and immune system.Pharmacol. Res.2017120606710.1016/j.phrs.2017.03.00928302577
    [Google Scholar]
  7. LiS. LiY. DengB. YanJ. WangY. Identification of the differentially expressed genes involved in the synergistic neurotoxicity of an hiv protease inhibitor and methamphetamine.Curr. HIV Res.201917429030310.2174/1570162X1766619092420035431550215
    [Google Scholar]
  8. LiY. LiS. XiaY. LiX. ChenT. YanJ. WangY. Alteration of liver immunity by increasing inflammatory response during co-administration of methamphetamine and atazanavir.Immunopharmacol. Immunotoxicol.202042323724510.1080/08923973.2020.174582932249638
    [Google Scholar]
  9. LiJ.H. LiuJ.L. ZhangK.K. ChenL.J. XuJ.T. XieX.L. The adverse effects of prenatal meth exposure on the offspring: A review.Front. Pharmacol.20211271517610.3389/fphar.2021.71517634335277
    [Google Scholar]
  10. KittirattanapaiboonP. SrikosaiS. WittayanookullukA. Methamphetamine use and dependence in vulnerable female populations.Curr. Opin. Psychiatry201730424725210.1097/YCO.000000000000033528426546
    [Google Scholar]
  11. LakeC.R. QuirkR.S. CNS stimulants and the look alike drugs.Psychiatr. Clin. North Am.19847468970110.1016/S0193‑953X(18)30723‑86151645
    [Google Scholar]
  12. DengB. ZhangZ. ZhouH. ZhangX. NiuS. YanX. YanJ. MicroRNAs in methamphetamine-induced neurotoxicity and addiction.Front. Pharmacol.20221387566610.3389/fphar.2022.87566635496314
    [Google Scholar]
  13. FanE. XuZ. YanJ. WangF. SunS. ZhangY. ZhengS. WangX. RaoY. Acute exposure to N-Ethylpentylone induces developmental toxicity and dopaminergic receptor-regulated aberrances in zebrafish larvae.Toxicol. Appl. Pharmacol.202141711547710.1016/j.taap.2021.11547733667508
    [Google Scholar]
  14. CrimeU.N.O.o.D.a. World Drug Report 2021 (United Nations publication, Sales No. E.21.XI.8)2021Available from: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html
  15. JonesC.M. ComptonW.M. MustaquimD. Patterns and characteristics of methamphetamine use among adults : United States, 2015–2018.MMWR Morb. Mortal. Wkly. Rep.2020691231732310.15585/mmwr.mm6912a132214077
    [Google Scholar]
  16. DaiwileA.P. JayanthiS. CadetJ.L. Sex differences in methamphetamine use disorder perused from pre-clinical and clinical studies: Potential therapeutic impacts.Neurosci. Biobehav. Rev.202213710467410.1016/j.neubiorev.2022.10467435452744
    [Google Scholar]
  17. YenC.F. YangY.H. KoC.H. YenJ.U.Y.U. Substance initiation sequences among Taiwanese adolescents using methamphetamine.Psychiatry Clin. Neurosci.200559668368910.1111/j.1440‑1819.2005.01437.x16401244
    [Google Scholar]
  18. YimsaardP. MaesM.M. VerachaiV. KalayasiriR. Pattern of methamphetamine use and the time lag to methamphetamine dependence.J. Addict. Med.2018122929810.1097/ADM.000000000000037129176447
    [Google Scholar]
  19. HendricksE. Off-label drugs for weight management.Diabetes Metab. Syndr. Obes.20171022323410.2147/DMSO.S9529928652791
    [Google Scholar]
  20. SankaranD. LakshminrusimhaS. ManjaV. Methamphetamine: burden, mechanism and impact on pregnancy, the fetus, and newborn.J. Perinatol.202242329329910.1038/s41372‑021‑01271‑834785765
    [Google Scholar]
  21. McKetinR. LeungJ. StockingsE. HuoY. FouldsJ. LappinJ.M. CummingC. ArunogiriS. YoungJ.T. SaraG. FarrellM. DegenhardtL. Mental health outcomes associated with the use of amphetamines: A systematic review and meta-analysis.EClinicalMedicine201916819710.1016/j.eclinm.2019.09.01431832623
    [Google Scholar]
  22. LappinJ.M. SaraG.E. Psychostimulant use and the brain.Addiction2019114112065207710.1111/add.1470831321819
    [Google Scholar]
  23. VargaZ.V. FerdinandyP. LiaudetL. PacherP. Drug-induced mitochondrial dysfunction and cardiotoxicity.Am. J. Physiol. Heart Circ. Physiol.20153099H1453H146710.1152/ajpheart.00554.201526386112
    [Google Scholar]
  24. LappinJ.M. DarkeS. FarrellM. Stroke and methamphetamine use in young adults: A review.J. Neurol. Neurosurg. Psychiatry201788121079109110.1136/jnnp‑2017‑31607128835475
    [Google Scholar]
  25. SworD.E. MaasM.B. WaliaS.S. BissigD.P. LiottaE.M. NaidechA.M. NgK.L. Clinical characteristics and outcomes of methamphetamine-associated intracerebral hemorrhage.Neurology2019931e1e710.1212/WNL.000000000000766631142634
    [Google Scholar]
  26. PendergraftW.F.III HerlitzL.C. Thornley-BrownD. RosnerM. NilesJ.L. Nephrotoxic effects of common and emerging drugs of abuse.Clin. J. Am. Soc. Nephrol.20149111996200510.2215/CJN.0036011425035273
    [Google Scholar]
  27. ZenilmanJ.M. Behavioral interventions rationale, measurement, and effectiveness.Infect. Dis. Clin. North Am.200519254156210.1016/j.idc.2005.04.00215963887
    [Google Scholar]
  28. RudzinskasS.A. WilliamsK.M. MongJ.A. HolderM.K. Sex, drugs, and the medial amygdala: A model of enhanced sexual motivation in the female rat.Front. Behav. Neurosci.20191320310.3389/fnbeh.2019.0020331551730
    [Google Scholar]
  29. HittnerJ.B. Meta-analysis of the association between methamphetamine use and high-risk sexual behavior among heterosexuals.Psychol. Addict. Behav.201630214715710.1037/adb000016226866782
    [Google Scholar]
  30. TerplanM. SmithE.J. KozloskiM.J. PollackH.A. Methamphetamine use among pregnant women.Obstet. Gynecol.200911361285129110.1097/AOG.0b013e3181a5ec6f19461424
    [Google Scholar]
  31. LisaP. FeliciaK. LauraH. DanielaK. MarliesR. StefanieN. MaikS.J. AnneS. MaximilianS. KirsiM. MichaelS. GabiK. Associations between methamphetamine use, psychiatric comorbidities and treatment outcome in two inpatient rehabilitation centers.Psychiatry Res.201928011250510.1016/j.psychres.2019.11250531382181
    [Google Scholar]
  32. Glasner-EdwardsS. MooneyL.J. Methamphetamine psychosis: Epidemiology and management.CNS Drugs201428121115112610.1007/s40263‑014‑0209‑825373627
    [Google Scholar]
  33. ChenL. YanH. WangY. HeZ. LengQ. HuangS. WuF. FengX. YanJ. The mechanisms and boundary conditions of drug memory reconsolidation.Front. Neurosci.20211571795610.3389/fnins.2021.71795634421529
    [Google Scholar]
  34. DarkeS. KayeS. McKETINR.E.B.E.C.C.A. DuflouJ. Major physical and psychological harms of methamphetamine use.Drug Alcohol Rev.200827325326210.1080/0959523080192370218368606
    [Google Scholar]
  35. KwiatkowskiM.A. RoosA. SteinD.J. ThomasK.G.F. DonaldK. Effects of prenatal methamphetamine exposure: A review of cognitive and neuroimaging studies.Metab. Brain Dis.201429224525410.1007/s11011‑013‑9470‑724370774
    [Google Scholar]
  36. BehnkeM. SmithV.C. BehnkeM. SmithV.C. LevyS. AmmermanS.D. GonzalezP.K. RyanS.A. SmithV.C. WunschM.D.M.J. PapileL-A. BaleyJ.E. CarloW.A. CummingsJ.J. KumarP. PolinR.A. TanR.C. WatterbergK.L. Prenatal substance abuse: Short and long-term effects on the exposed fetus.Pediatrics20131313e1009e102410.1542/peds.2012‑393123439891
    [Google Scholar]
  37. KaufmanJ.M. LapauwB. MahmoudA. T’SjoenG. HuhtaniemiI.T. Aging and the male reproductive system.Endocr. Rev.201940490697210.1210/er.2018‑0017830888401
    [Google Scholar]
  38. MäkeläJ.A. KoskenniemiJ.J. VirtanenH.E. ToppariJ. Testis development.Endocr. Rev.201940485790510.1210/er.2018‑0014030590466
    [Google Scholar]
  39. SaberiA. SepehriG. SafiZ. RazaviB. JahandariF. DivsalarK. SalarkiaE. Effects of methamphetamine on testes histopathology and spermatogenesis indices of adult male rats.Addict. Health20179419920530574282
    [Google Scholar]
  40. SabourM. KhoradmehrA. KalantarS.M. DanafarA.H. OmidiM. HalvaeiI. NabiA. Ghasemi- EsmailabadS. TalebiA.R. Administration of high dose of methamphetamine has detrimental effects on sperm parameters and DNA integrity in mice.Int. J. Reprod. Biomed.201715316116810.29252/ijrm.15.3.16128580449
    [Google Scholar]
  41. Nudmamud-ThanoiS. ThanoiS. Methamphetamine induces abnormal sperm morphology, low sperm concentration and apoptosis in the testis of male rats.Andrologia201143427828210.1111/j.1439‑0272.2010.01071.x21486410
    [Google Scholar]
  42. PeirouviT. RaziM. Molecular mechanism behind methamphetamine-induced damages in testicular tissue: Evidences for oxidative stress, autophagy, and apoptosis.Andrologia20225410e1453410.1111/and.1453435801363
    [Google Scholar]
  43. YamamotoY. YamamotoK. HayaseT. AbiruH. ShiotaK. MoriC. Methamphetamine induces apoptosis in seminiferous tubules in male mice testis.Toxicol. Appl. Pharmacol.2002178315516010.1006/taap.2001.933011858731
    [Google Scholar]
  44. AlaviS.H. TaghaviM.M. MoallemS.A. Evaluation of effects of methamphetamine repeated dosing on proliferation and apoptosis of rat germ cells.Syst Biol Reprod Med2008542859110.1080/1939636080195207818446649
    [Google Scholar]
  45. MelegaW.P. ChoA.K. HarveyD. LaćanG. Methamphetamine blood concentrations in human abusers: Application to pharmacokinetic modeling.Synapse200761421622010.1002/syn.2036517230548
    [Google Scholar]
  46. HassaninA.M. AhmedH.H. KaddahA.N. A global view of the pathophysiology of varicocele.Andrology20186565466110.1111/andr.1251129978951
    [Google Scholar]
  47. Sanchez-AlavezM. BortellN. BasovaL. SamadF. MarcondesM.C.G. Macrophages and brown adipocytes cross-communicate to modulate a thermogenic program following methamphetamine exposure.Int. J. Hyperthermia20203711368138210.1080/02656736.2020.184982233307890
    [Google Scholar]
  48. LiaoL.S. The Role of HSP90 alpha in methamphetamine/hyperthermia-induced necroptosis in rat striatal neurons.Front. Pharmacol.20218712
    [Google Scholar]
  49. CostaG. GołembiowskaK. Neurotoxicity of MDMA: Main effects and mechanisms.Exp. Neurol.202234711389410.1016/j.expneurol.2021.11389434655576
    [Google Scholar]
  50. RaziM. TavalaeeM. Sarrafzadeh-RezaeiF. MoazamianA. GharagozlooP. DrevetJ.R. Nasr-EshafaniM.H. Varicocoele and oxidative stress: New perspectives from animal and human studies.Andrology20219254655810.1111/andr.1294033145958
    [Google Scholar]
  51. HamedM.A. EkundinaV.O. AkhigbeR.E. Psychoactive drugs and male fertility: Impacts and mechanisms.Reprod. Biol. Endocrinol.20232116910.1186/s12958‑023‑01098‑237507788
    [Google Scholar]
  52. BishtS. FaiqM. TolahunaseM. DadaR. Oxidative stress and male infertility.Nat. Rev. Urol.201714847048510.1038/nrurol.2017.6928508879
    [Google Scholar]
  53. AitkenR.J. BakerM.A. SawyerD. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease.Reprod. Biomed. Online200371657010.1016/S1472‑6483(10)61730‑012930576
    [Google Scholar]
  54. BaratiE. NikzadH. KarimianM. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management.Cell. Mol. Life Sci.20207719311310.1007/s00018‑019‑03253‑831377843
    [Google Scholar]
  55. YangL. ShenJ. ChenJ. LiW. XieX. Reduced glycolysis contributed to inhibition of testis spermatogenesis in rats after chronic methamphetamine exposure.Med. Sci. Monit.2019255453546410.12659/MSM.91749131332157
    [Google Scholar]
  56. FleckD. KenzlerL. MundtN. StrauchM. UesakaN. MoosmannR. BruentgensF. MisselA. MayerhoferA. MerhofD. SpehrJ. SpehrM. ATP activation of peritubular cells drives testicular sperm transport.eLife202110e6288510.7554/eLife.6288533502316
    [Google Scholar]
  57. MansourD.F. SalehD.O. Ahmed-FaridO.A. RadyM. BakeerR.M. HashadI.M. Ginkgo biloba extract (EGb 761) mitigates methotrexate-induced testicular insult in rats: Targeting oxidative stress, energy deficit and spermatogenesis.Biomed. Pharmacother.202114311220110.1016/j.biopha.2021.11220134560547
    [Google Scholar]
  58. JudgeA. DoddM.S. Metabolism.Essays Biochem.202064460764710.1042/EBC2019004132830223
    [Google Scholar]
  59. Nudmamud-ThanoiS. SueudomW. TangsrisakdaN. ThanoiS. Changes of sperm quality and hormone receptors in the rat testis after exposure to methamphetamine.Drug Chem. Toxicol.201639443243810.3109/01480545.2016.114142126864947
    [Google Scholar]
  60. BiscontiM. SimonJ.F. GrassiS. LeroyB. MartinetB. ArcoliaV. IsachenkoV. HennebertE. Influence of risk factors for male infertility on sperm protein composition.Int. J. Mol. Sci.202122231316410.3390/ijms22231316434884971
    [Google Scholar]
  61. Allaeian JahromiZ. MeshkibafM.H. NaghdiM. VahdatiA. MakoolatiZ. Methamphetamine downregulates the sperm-specific calcium channels involved in sperm motility in rats.ACS Omega2022765190519610.1021/acsomega.1c0624235187334
    [Google Scholar]
  62. LinS. KeM. ZhangY. YanZ. WuJ. Structure of a mammalian sperm cation channel complex.Nature2021595786974675010.1038/s41586‑021‑03742‑634225353
    [Google Scholar]
  63. WangH. McGoldrickL.L. ChungJ.J. Sperm ion channels and transporters in male fertility and infertility.Nat. Rev. Urol.2021181466610.1038/s41585‑020‑00390‑933214707
    [Google Scholar]
  64. HwangJ.Y. MaziarzJ. WagnerG.P. ChungJ.J. Molecular Evolution of CatSper in mammals and function of sperm hyperactivation in gray short-tailed opossum.Cells2021105104710.3390/cells1005104733946695
    [Google Scholar]
  65. YangC. LiP. LiZ. Clinical application of aromatase inhibitors to treat male infertility.Hum. Reprod. Update2021281305010.1093/humupd/dmab03634871401
    [Google Scholar]
  66. MihalčíkováL. ŠlamberováR. An overview of the methamphetamine effect on male sexual behavior and reproductive system.Physiol. Res.202372S5Suppl. 5S445S45910.33549/physiolres.93522638165750
    [Google Scholar]
  67. YamamotoY. YamamotoK. HayaseT. Effect of methamphetamine on male mice fertility.J. Obstet. Gynaecol. Res.199925535335810.1111/j.1447‑0756.1999.tb01176.x10533332
    [Google Scholar]
  68. LinJ.F. LinY.H. LiaoP.C. LinY.C. TsaiT.F. ChouK.Y. ChenH.E. TsaiS.C. HwangT.I. Induction of testicular damage by daily methamphetamine administration in rats.Chin. J. Physiol.2014571193010.4077/CJP.2014.BAB15524621335
    [Google Scholar]
  69. Khoshgoftar Some SaraiiZ. DianatyS. RouhollahF. ZareN. Ghorbani YektaB. Reproductive status of male rat offspring following exposure to methamphetamine during intrauterine life: An experimental study.Int. J. Reprod. Biomed.202321217518437034297
    [Google Scholar]
  70. KaewmanP. Nudmamud-ThanoiS. ThanoiS. GABAergic alterations in the rat testis after methamphetamine exposure.Int. J. Med. Sci.201815121349135410.7150/ijms.2760930275762
    [Google Scholar]
  71. HuJ.H. ZhangJ.F. MaY.H. JiangJ. YangN. LiX.B. ChiZ.G.Y.U. FeiJ. GuoL.H. Impaired reproduction in transgenic mice overexpressing γ-aminobutyric acid transporter I (GAT1).Cell Res.2004141545910.1038/sj.cr.729020215040890
    [Google Scholar]
  72. DuY. DuZ. ZhengH. WangD. LiS. YanY. LiY. GABA exists as a negative regulator of cell proliferation in spermaogonial stem cells.Cell. Mol. Biol. Lett.201318214916210.2478/s11658‑013‑0081‑423430456
    [Google Scholar]
  73. MaggiR. CariboniA.M. MarelliM.M. MorettiR.M. AndrèV. MarzagalliM. LimontaP. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system.Hum. Reprod. Update201622335838110.1093/humupd/dmv05926715597
    [Google Scholar]
  74. DickersonS.M. WalkerD.M. ReveronM.E. DuvauchelleC.L. GoreA.C. The recreational drug ecstasy disrupts the hypothalamic-pituitary-gonadal reproductive axis in adult male rats.Neuroendocrinology20088829510210.1159/00011969118309234
    [Google Scholar]
  75. KohnoM. DennisL.E. McCreadyH. HoffmanW.F. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment.Mol. Psychiatry202227122022910.1038/s41380‑021‑01180‑434117366
    [Google Scholar]
  76. HamiltonK.J. HewittS.C. AraoY. KorachK.S. Estrogen hormone biology.Curr. Top. Dev. Biol.201712510914610.1016/bs.ctdb.2016.12.00528527569
    [Google Scholar]
  77. ShenW. ZhangY.S. LiL. LiuY. HuangX. ChenL. ZhouW. Long-term use of methamphetamine disrupts the menstrual cycles and hypothalamic-pituitary-ovarian axis.J. Addict. Med.20148318318810.1097/ADM.000000000000002124695019
    [Google Scholar]
  78. AhmedR. ZylaS. HammondN. BlumK. ThanosP.K. The role of estrogen signaling and exercise in drug abuse: A review.Clin. Pract.202414114816310.3390/clinpract1401001238248436
    [Google Scholar]
  79. WangL. QuG. DongX. HuangK. KumarM. JiL. WangY. YaoJ. YangS. WuR. ZhangH. Long-term effects of methamphetamine exposure in adolescent mice on the future ovarian reserve in adulthood.Toxicol. Lett.20162421810.1016/j.toxlet.2015.11.02926657179
    [Google Scholar]
  80. ChenC.Y. ChenC.R. ChenC.N. WangP. MündelT. LiaoY.H. TsaiS.C. Amphetamine-decreased progesterone and estradiol release in rat granulosa cells: the regulatory role of cAMP- and Ca2+-mediated signaling pathways.Biomedicines20219549310.3390/biomedicines905049333947083
    [Google Scholar]
  81. PargianasM. KosmasI. PapageorgiouK. KitsouC. Papoudou-BaiA. BatistatouA. MarkoulaS. SaltaS. DalkalitsisA. KolibianakisS. TarlatzisB.C. GeorgiouI. MichaelidisT.M. Follicle inhibition at the primordial stage without increasing apoptosis, with a combination of everolimus, verapamil.Mol. Biol. Rep.202047118711872610.1007/s11033‑020‑05917‑233079326
    [Google Scholar]
  82. ZorickT. MandelkernM.A. LeeB. WongM.L. MiottoK. ShahbazianJ. LondonE.D. Elevated plasma prolactin in abstinent methamphetamine-dependent subjects.Am. J. Drug Alcohol Abuse2011371626710.3109/00952990.2010.53894521142706
    [Google Scholar]
  83. Hidalgo-FigueroaM. SalazarA. Romero-López-AlbercaC. MacDowellK.S. García-BuenoB. BioqueM. BernardoM. ParelladaM. González-PintoA. García PortillaM.P. LoboA. Rodriguez-JimenezR. BerrocosoE. LezaJ.C. The influence of oxytocin and prolactin during a first episode of psychosis: the implication of sex differences, clinical features, and cognitive performance.Int. J. Neuropsychopharmacol.202225866667710.1093/ijnp/pyac02335353882
    [Google Scholar]
  84. RanaM. JainS. ChoubeyP. Prolactin and its significance in the placenta.Hormones202221220921910.1007/s42000‑022‑00373‑y35545690
    [Google Scholar]
  85. Rosas-HernandezH. CuevasE. Lantz-MPeakS. AliS. GonzalezC. Prolactin protects against the methamphetamine-induced cerebral vascular toxicity.Curr. Neurovasc. Res.201310434635510.2174/1567202611310999003123988027
    [Google Scholar]
  86. WróblewskaB. Wolińska-WitortE. DomańskiE. The effect of dopamine on the release of prolactin in sheep with lesions of the hypothetical centre producing prolactin inhibiting factor (PIF).Acta Physiol. Pol.19803143333396778075
    [Google Scholar]
  87. CaiJ. CheX. XuT. LuoY. YinM. LuX. WuC. YangJ. Repeated oxytocin treatment during abstinence inhibited context or restraint stress-induced reinstatement of methamphetamine-conditioned place preference and promoted adult hippocampal neurogenesis in mice.Exp. Neurol.202234711390710.1016/j.expneurol.2021.11390734715133
    [Google Scholar]
  88. Nezhad SistaniM. Ghaffari NovinM. Fadaee FathabadiF. SalehiM. SalimiM. Shams MofaraheZ. HadiM. The effect of methamphetamine on oocyte quality, fertilization rate and embryo development in mice.Int. J. Women’s Health Reprod. Sci.20164181210.15296/ijwhr.2016.03
    [Google Scholar]
  89. PotulaR. HawkinsB.J. CennaJ.M. FanS. DykstraH. RamirezS.H. MorseyB. BrodieM.R. PersidskyY. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment.J. Immunol.201018552867287610.4049/jimmunol.090369120668216
    [Google Scholar]
  90. WellsP.G. BhatiaS. DrakeD.M. Miller-PinslerL. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine.Birth Defects Res. C Embryo Today2016108210813010.1002/bdrc.2113427345013
    [Google Scholar]
  91. LiC.L. S.X., Chen XQ, Liu YW, Yi HL, Ma BM. Effect of Methamphetamine on Embryonic Development in Rats.7th International Conference on Applied Science, Engineering and Technology (ICASET)20172326
    [Google Scholar]
  92. YamamotoY. YamamotoK. AbiruH. FukuiY. ShiotaK. Effects of methamphetamine on rat embryos cultured in vitro.Neonatology1995681333810.1159/0002442157578635
    [Google Scholar]
  93. LiT.D. FengG.H. LiY.F. WangM. MaoJ.J. WangJ.Q. LiX. WangX.P. QuB. WangL.Y. ZhangX.X. WanH.F. CuiT.T. WanC. LiuL. ZhaoX.Y. HuB.Y. LiW. ZhouQ. Rat embryonic stem cells produce fertile offspring through tetraploid complementation.Proc. Natl. Acad. Sci.201711445119741197910.1073/pnas.170871011429078333
    [Google Scholar]
  94. JengW. WongA.W. Ting-A-KeeR. WellsP.G. Methamphetamine-enhanced embryonic oxidative DNA damage and neurodevelopmental deficits.Free Radic. Biol. Med.200539331732610.1016/j.freeradbiomed.2005.03.01515993330
    [Google Scholar]
  95. DangJ. TiwariS.K. AgrawalK. HuiH. QinY. RanaT.M. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids.Mol. Psychiatry20212641194120710.1038/s41380‑020‑0676‑x32051547
    [Google Scholar]
  96. Benya-aphikulH. PongrakhananonV. ChetprayoonP. SooksawateT. RodsiriR. Neuronal growth and synaptogenesis are inhibited by prenatal methamphetamine exposure leading to memory impairment in adolescent and adult mice.Toxicol. Lett.20213519911010.1016/j.toxlet.2021.08.01234461196
    [Google Scholar]
  97. CarterR.C. WainwrightH. MoltenoC.D. GeorgieffM.K. DodgeN.C. WartonF. MeintjesE.M. JacobsonJ.L. JacobsonS.W. Alcohol, methamphetamine, and marijuana exposure have distinct effects on the human placenta.Alcohol. Clin. Exp. Res.201640475376410.1111/acer.1302227038593
    [Google Scholar]
  98. StewartJ.L. MeekerJ.E. Fetal and infant deaths associated with maternal methamphetamine abuse.J. Anal. Toxicol.199721651551710.1093/jat/21.6.5159323536
    [Google Scholar]
  99. ŠlamberováR. PometlováM. CharousováP. Postnatal development of rat pups is altered by prenatal methamphetamine exposure.Prog. Neuropsychopharmacol. Biol. Psychiatry2006301828810.1016/j.pnpbp.2005.06.00616046043
    [Google Scholar]
  100. HrubáL. SchutováB. ŠlamberováR. PometlováM. RokytaR. Effect of methamphetamine exposure and cross-fostering on sensorimotor development of male and female rat pups.Dev. Psychobiol.2009511738310.1002/dev.2034618846502
    [Google Scholar]
  101. WhiteS.J. HendricksonH.P. AtchleyW.T. LaurenzanaE.M. GentryW.B. WilliamsD.K. OwensS.M. Treatment with a monoclonal antibody against methamphetamine and amphetamine reduces maternal and fetal rat brain concentrations in late pregnancy.Drug Metab. Dispos.20144281285129110.1124/dmd.114.05687924839971
    [Google Scholar]
  102. SakaiK. IwadateK. MaebashiK. MatsumotoS. TakasuS. Infant death associated with maternal methamphetamine use during pregnancy and delivery: A case report.Leg. Med. (Tokyo)201517540941410.1016/j.legalmed.2015.06.00426113251
    [Google Scholar]
  103. KenneallyM. ByardR.W. Increasing methamphetamine detection in cases of early childhood fatalities.J. Forensic Sci.20206541376137810.1111/1556‑4029.1432132202648
    [Google Scholar]
  104. Garcia-BournissenF. RokachB. KaraskovT. KorenG. Methamphetamine detection in maternal and neonatal hair: Implications for fetal safety.Arch. Dis. Child. Fetal Neonatal Ed.200792535135510.1136/adc.2006.10015617077112
    [Google Scholar]
  105. KorenG. HutsonJ. GareriJ. Novel methods for the detection of drug and alcohol exposure during pregnancy: Implications for maternal and child health.Clin. Pharmacol. Ther.200883463163410.1038/sj.clpt.610050618288086
    [Google Scholar]
  106. RamamoorthyJ.D. RamamoorthyS. LeibachF.H. GanapathyV. Human placental monoamine transporters as targets for amphetamines.Am. J. Obstet. Gynecol.199517361782178710.1016/0002‑9378(95)90427‑18610762
    [Google Scholar]
  107. GlantzJ.C. WoodsJ.R.Jr. Obstetrical issues in substance abuse.Pediatr. Ann.1991201053153910.3928/0090‑4481‑19911001‑041945532
    [Google Scholar]
  108. Sanjari MoghaddamH. Mobarak AbadiM. DolatshahiM. Bayani ErshadiS. Abbasi-FeijaniF. RezaeiS. CattarinussiG. AarabiM.H. Effects of prenatal methamphetamine exposure on the developing human brain: A systematic review of neuroimaging studies.ACS Chem. Neurosci.202112152729274810.1021/acschemneuro.1c0021334297546
    [Google Scholar]
  109. OeiJ. Abdel-LatifM.E. ClarkR. CraigF. LuiK. Short-term outcomes of mothers and infants exposed to antenatal amphetamines.Arch. Dis. Child. Fetal Neonatal Ed.2010951F36F4110.1136/adc.2008.15730519679891
    [Google Scholar]
  110. WrightT.E. SchuetterR. TelleiJ. SauvageL. Methamphetamines and pregnancy outcomes.J. Addict. Med.20159211111710.1097/ADM.000000000000010125599434
    [Google Scholar]
  111. ShahR. DiazS. ArriaA. LaGasseL. DeraufC. NewmanE. SmithL. HuestisM. HaningW. StraussA. Della GrottaS. DansereauL. RobertsM. NealC. LesterB. Prenatal methamphetamine exposure and short-term maternal and infant medical outcomes.Am. J. Perinatol.201229539140010.1055/s‑0032‑130481822399214
    [Google Scholar]
  112. AmezcuaL.J.A. García MoralesE. Pérez-Rulfo IbarraD. Solís PachecoJ.R. Aguilar UscangaB.R. Effects of maternal toxic substance consumption during breastfeeding on lactic acid bacteria abundance and nutritional content.Int. J. Med. Sci.202320121513152610.7150/ijms.8799537859696
    [Google Scholar]
  113. BrechtM.L. HerbeckD.M. Pregnancy and fetal loss reported by methamphetamine-using women.Subst. Abuse20148SART.S1412510.4137/SART.S1412524855369
    [Google Scholar]
  114. KalaitzopoulosD.R. ChatzistergiouK. AmylidiA.L. KokkinidisD.G. GoulisD.G. Effect of methamphetamine hydrochloride on pregnancy outcome: A systematic review and meta-analysis.J. Addict. Med.201812322022610.1097/ADM.000000000000039129509557
    [Google Scholar]
  115. DoiM. NakamaN. SumiT. UsuiN. ShimadaS. Prenatal methamphetamine exposure causes dysfunction in glucose metabolism and low birthweight.Front. Endocrinol.202213102398410.3389/fendo.2022.102398436353228
    [Google Scholar]
  116. NguyenD. SmithL.M. LaGasseL.L. DeraufC. GrantP. ShahR. ArriaA. HuestisM.A. HaningW. StraussA. Della GrottaS. LiuJ. LesterB.M. Intrauterine growth of infants exposed to prenatal methamphetamine: results from the infant development, environment, and lifestyle study.J. Pediatr.2010157233733910.1016/j.jpeds.2010.04.02420570284
    [Google Scholar]
  117. Rüedi-BettschenD. PlattD.M. Detrimental effects of self-administered methamphetamine during pregnancy on offspring development in the rat.Drug Alcohol Depend.201717717117710.1016/j.drugalcdep.2017.03.04228600929
    [Google Scholar]
  118. GoodM.M. SoltI. AcunaJ.G. RotmenschS. KimM.J. Methamphetamine use during pregnancy: maternal and neonatal implications.Obstet. Gynecol.2010116233033410.1097/AOG.0b013e3181e6709420664393
    [Google Scholar]
  119. ChomchaiC. ChomchaiS. KitsommartR. Transfer of Methamphetamine (MA) into breast milk and urine of postpartum women who smoked ma tablets during pregnancy.J. Hum. Lact.201632233333910.1177/089033441561008026452730
    [Google Scholar]
  120. ChinJ.M. BartholomewM.L. Methamphetamine use in pregnant women in hawai’i: a case series.Hawaii J. Health Soc. Welf.2020795Suppl. 1404332490384
    [Google Scholar]
  121. RorabaughB.R. Does prenatal exposure to cns stimulants increase the risk of cardiovascular disease in adult offspring?Front. Cardiovasc. Med.2021865263410.3389/fcvm.2021.65263433748200
    [Google Scholar]
  122. RorabaughB.R. SeeleyS.L. BuiA.D. SpragueL. D’SouzaM.S. Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts.Am. J. Physiol. Heart Circ. Physiol.20163104H516H52310.1152/ajpheart.00642.201526683901
    [Google Scholar]
  123. ŠlamberováR. PometlováM. SyllabováL. MančuškováM. Learning in the Place navigation task, not the New-learning task, is altered by prenatal methamphetamine exposure.Brain Res. Dev. Brain Res.2005157221721910.1016/j.devbrainres.2005.04.00515936828
    [Google Scholar]
  124. FialováM. ŠírováJ. Bubeníková-ValešováV. ŠlamberováR. The effect of prenatal methamphetamine exposure on recognition memory in adult rats.Prague Med. Rep.20151161313910.14712/23362936.2015.4325923968
    [Google Scholar]
  125. CaetanoT. PinhoM.S. RamadasE. LopesJ. AreosaT. FerreiraD. DixeM.A. Substance abuse and susceptibility to false memory formation: A systematic review and meta-analysis.Front. Psychol.202314117656410.3389/fpsyg.2023.117656437213356
    [Google Scholar]
  126. DongN. ZhuJ. HanW. WangS. YanZ. MaD. GohE.L.K. ChenT. Maternal methamphetamine exposure causes cognitive impairment and alteration of neurodevelopment-related genes in adult offspring mice.Neuropharmacology2018140253410.1016/j.neuropharm.2018.07.02430048643
    [Google Scholar]
  127. ItzhakY. ErguiI. YoungJ.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring.Mol. Psychiatry201520223223910.1038/mp.2014.724535458
    [Google Scholar]
  128. DongN. ZhuJ. WangR. WangS. ChenY. WangC. GohE.L.K. ChenT. Maternal methamphetamine exposure influences behavioral sensitization and nucleus accumbens dna methylation in subsequent generation.Front. Pharmacol.20221394079810.3389/fphar.2022.94079835928279
    [Google Scholar]
  129. BillingL. ErikssonM. JonssonB. StenerothG. ZetterströmR. The influence of environmental factors on behavioural problems in 8-year-old children exposed to amphetamine during fetal life.Child Abuse Negl.19941813910.1016/0145‑2134(94)90091‑47510211
    [Google Scholar]
  130. CernerudL. ErikssonM. JonssonB. StenerothG. ZetterströmR. Amphetamine addiction during pregnancy: 14-year follow-up of growth and school performance.Acta Paediatr.199685220420810.1111/j.1651‑2227.1996.tb13993.x8640051
    [Google Scholar]
  131. ChuE.K. SmithL.M. DeraufC. NewmanE. NealC.R. ArriaA.M. HuestisM.A. DellaGrottaS.A. RobertsM.B. DansereauL.M. LesterB.M. Behavior problems during early childhood in children with prenatal methamphetamine exposure.Pediatrics20201466e2019027010.1542/peds.2019‑027033172920
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673299759240603091021
Loading
/content/journals/cmc/10.2174/0109298673299759240603091021
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): embryo development; Methamphetamine; newborns; oocyte; reproduction; sperm; testis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test