Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cerebral infarction, the blockage of blood vessels in the brain, is generally an age-related illness. Factors such as unhealthy diets, stressful behaviours and decreased environmental consistency with physiological barriers also contribute to increased casualties. Long-term brain function reconstruction and successful drug therapy are needed. The most frequent malignant brain tumour, glioblastoma, has been linked to variations in mitochondrial ROS, chaperone-mediated autophagy, and the interaction between lncRNA (BC200) and miRNA. Glioblastoma stem cells express high levels of ATP/P2X7 receptors, promoting survival by activating M2 muscarinic receptors.

This expert opinion provides an overview of the latest experimental drug therapies aimed at protecting against and restoring cerebral stroke.

Nanomedicine overcomes the challenges associated with traditional therapy and physiological obstacles in the treatment of cerebral infarction by improving stroke management, including diagnosis, imaging, and treatment, addressing a diverse range of associated factors.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306668240829144324
2024-09-13
2025-09-06
Loading full text...

Full text loading...

References

  1. ZhuW. GaoY. WanJ. LanX. HanX. ZhuS. ZangW. ChenX. ZiaiW. HanleyD.F. RussoS.J. JorgeR.E. WangJ. Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse.Brain Behav. Immun.20186956858110.1016/j.bbi.2018.02.00429458197
    [Google Scholar]
  2. DalgleishT. The emotional brain.Nat. Rev. Neurosci.20045758358910.1038/nrn143215208700
    [Google Scholar]
  3. BenbrikaS. DesgrangesB. EustacheF. ViaderF. Cognitive, emotional and psychological manifestations in amyotrophic lateral sclerosis at baseline and overtime: A review.Front. Neurosci.20191395110.3389/fnins.2019.0095131551700
    [Google Scholar]
  4. BenbrikaS. DoidyF. CarluerL. MondouA. PélerinA. EustacheF. ViaderF. DesgrangesB. Longitudinal study of cognitive and emotional alterations in amyotrophic lateral sclerosis: Clinical and imaging data.Front. Neurol.20211262019810.3389/fneur.2021.62019834305771
    [Google Scholar]
  5. ShenY. GuJ. LiuZ. XuC. QianS. ZhangX. ZhouB. GuanQ. SunY. WangY. JinX. Inhibition of HIF-1α reduced blood brain barrier damage by regulating MMP-2 and VEGF during acute cerebral ischemia.Front. Cell. Neurosci.20181228810.3389/fncel.2018.00288
    [Google Scholar]
  6. AzamiS. ShahriariZ. AsgharzadeS. FarkhondehT. SadeghiM. AhmadiF. Therapeutic potential of saffron (Crocus sativus L.) in ischemic stroke.Evid. Based Complement. Alternat. Med.20212021
    [Google Scholar]
  7. DucaA. JagodaA. Transient ischemic attacks.Emerg. Med. Clin. North Am.201634481183510.1016/j.emc.2016.06.00727741990
    [Google Scholar]
  8. SparacoM. CiolliL. ZiniA. Posterior circulation ischemic stroke-a review part II: Imaging and acute treatment.Neurol. Sci.201940102007201510.1007/s10072‑019‑03936‑x31127426
    [Google Scholar]
  9. StegnerD. KlausV. NieswandtB. Platelets as modulators of cerebral ischemia/reperfusion injury.Front. Immunol.201910250510.3389/fimmu.2019.0250531736950
    [Google Scholar]
  10. ToyodaK. YoshimuraS. NakaiM. KogaM. SasaharaY. SonodaK. KamiyamaK. YazawaY. KawadaS. SasakiM. TerasakiT. MiwaK. KogeJ. IshigamiA. WadaS. IwanagaY. MiyamotoY. MinematsuK. KobayashiS. IiharaK. ItabashiR. KitazonoT. OgasawaraK. NogawaS. UnoM. IkawaF. YamaguchiS. ItoA. Japan Stroke Data Bank Investigators Twenty-year change in severity and outcome of ischemic and hemorrhagic strokes.JAMA Neurol.2022791616910.1001/jamaneurol.2021.434634870689
    [Google Scholar]
  11. Heras-GonzálezL. LatorreJ.A. Martinez-BebiaM. EspinoD. Olea-SerranoF. Mariscal-ArcasM. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals.Food Chem. Toxicol.202013611098310.1016/j.fct.2019.11098331759064
    [Google Scholar]
  12. BarthelsD. DasH. Current advances in ischemic stroke research and therapies.Biochim. Biophys. Acta - Mol. Basis Dis.2020186610.1016/j.bbadis.2018.09.012
    [Google Scholar]
  13. NikitinD. ChoiS. MicanJ. ToulM. RyuW.S. DamborskyJ. MikulikR. KimD.E. Development and testing of thrombolytics in stroke.J. Stroke2021231123610.5853/jos.2020.0334933600700
    [Google Scholar]
  14. PilatoF. CalandrelliR. CaponeF. AlessianiM. FerranteM. IaccarinoG. Di LazzaroV. New perspectives in stroke management: Old issues and new pathways.Brain Sci.202111676710.3390/brainsci1106076734207637
    [Google Scholar]
  15. Knight-GreenfieldA. NarioJ.J.Q. GuptaA. Causes of acute stroke.Radiol. Clin. North Am.20195761093110810.1016/j.rcl.2019.07.00731582037
    [Google Scholar]
  16. LiangZ. CurraisA. Soriano-CastellD. SchubertD. MaherP. Natural products targeting mitochondria: Emerging therapeutics for age-associated neurological disorders.Pharmacol. Ther.202122110774910.1016/j.pharmthera.2020.10774933227325
    [Google Scholar]
  17. Cabral-CostaJ.V. KowaltowskiA.J. Neurological disorders and mitochondria.Mol. Aspects Med.20207110082610.1016/j.mam.2019.10.00331630771
    [Google Scholar]
  18. AlbersG.W. BatesV.E. ClarkW.M. BellR. VerroP. HamiltonS.A. Intravenous tissue-type plasminogen activator for treatment of acute stroke: The Standard Treatment with Alteplase to Reverse Stroke (STARS) study.JAMA200028391145115010.1001/jama.283.9.114510703776
    [Google Scholar]
  19. LinL. WangX. YuZ. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies.Biochem. Pharmacol. Open Access201654213
    [Google Scholar]
  20. ChenW. ZhangH.T. QinS.C. Neuroprotective effects of molecular hydrogen: A critical review.Neurosci. Bull.202137338940410.1007/s12264‑020‑00597‑133078374
    [Google Scholar]
  21. WangY. XiaoG. HeS. LiuX. ZhuL. YangX. ZhangY. OrgahJ. FengY. WangX. ZhangB. ZhuY. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization.Biomed. Pharmacother.202012510994510.1016/j.biopha.2020.10994532028240
    [Google Scholar]
  22. PalachaiN. WattanathornJ. MuchimapuraS. Thukham-MeeW. Phytosome loading the combined extract of mulberry fruit and ginger protects against cerebral ischemia in metabolic syndrome rats.Oxid. Med. Cell. Longev.2020202010.1155/2020/5305437
    [Google Scholar]
  23. JiangJ. YuY. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate?Med. Res. Rev.202141282885710.1002/med.2174433094540
    [Google Scholar]
  24. NirmalaM.J. KizhuveetilU. JohnsonA. GB. NagarajanR. MuthuvijayanV. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead.RSC Advances202313138606862910.1039/D2RA07863E36926304
    [Google Scholar]
  25. ItooA.M. PaulM. PadagaS.G. GhoshB. BiswasS. Nanotherapeutic intervention in photodynamic therapy for cancer.ACS Omega2022750458824590910.1021/acsomega.2c0585236570217
    [Google Scholar]
  26. BodundeO.P. IkumapayiO.M. AkinlabiE.T. OladapoB.I. AdeoyeA.O.M. FatobaS.O. A futuristic insight into a “nano-doctor”: A clinical review on medical diagnosis and devices using nanotechnology.Materials Today.Proceedings20211144115310.1016/j.matpr.2020.11.232
    [Google Scholar]
  27. KumarV. RahmanM. GahtoriP. Al-AbbasiF. AnwarF. KimH.S. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine.Expert Opin. Drug Deliv.202118667369410.1080/17425247.2021.186093933295218
    [Google Scholar]
  28. RahmanM. AlmalkiW.H. AlrobaianM. IqbalJ. AlghamdiS. AlharbiK.S. AlruwailiN.K. HafeezA. ShaharyarA. SinghT. WarisM. KumarV. BegS. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma.Expert Opin. Drug Deliv.202118448951310.1080/17425247.2021.185422333225771
    [Google Scholar]
  29. TzengS.Y. GreenJ.J. Therapeutic nanomedicine for brain cancer.Ther. Deliv.20134668770410.4155/tde.13.3823738667
    [Google Scholar]
  30. GarbayoE. Pascual-GilS. Rodríguez-NogalesC. SaludasL. Estella-Hermoso de MendozaA. Blanco-PrietoM.J. Nanomedicine and drug delivery systems in cancer and regenerative medicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020125e163710.1002/wnan.163732351045
    [Google Scholar]
  31. HarrupR. WhiteV.M. CooryM. WalkerR. AnazodoA. SkaczkowskiG. BibbyH. OsbornM. PhillipsM.B. ConyersR. ThompsonK. OrmeL.M. PinkertonR. NichollsW. Treatment and outcomes for central nervous system tumors in Australian adolescents and young adults: A population-based national study.J. Adolesc. Young Adult Oncol.202110220220810.1089/jayao.2020.007432856982
    [Google Scholar]
  32. WellerM. van den BentM. PreusserM. Le RhunE. TonnJ.C. MinnitiG. BendszusM. BalanaC. ChinotO. DirvenL. FrenchP. HegiM.E. JakolaA.S. PlattenM. RothP. RudàR. ShortS. SmitsM. TaphoornM.J.B. von DeimlingA. WestphalM. SoffiettiR. ReifenbergerG. WickW. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood.Nat. Rev. Clin. Oncol.202118317018610.1038/s41571‑020‑00447‑z33293629
    [Google Scholar]
  33. CollinsK.L. PollackI.F. Pediatric low-grade gliomas.Cancers2020125115210.3390/cancers1205115232375301
    [Google Scholar]
  34. BirzuC. FrenchP. CacceseM. CerrettiG. IdbaihA. ZagonelV. LombardiG. Recurrent glioblastoma: From molecular landscape to new treatment perspectives.Cancers20201314710.3390/cancers1301004733375286
    [Google Scholar]
  35. CerneaD.M. HalasagS. StahiescuR. TodorN. FlorianS. CerneaV.I. P17.16 * Primary central nervous system tumors in young adults: Pathology and treatment results.Neuro-oncol.201416Suppl. 2ii90ii9010.1093/neuonc/nou174.346
    [Google Scholar]
  36. SandlerC.X. MatsuyamaM. JonesT.L. BashfordJ. LangbeckerD. HayesS.C. Physical activity and exercise in adults diagnosed with primary brain cancer: A systematic review.J. Neurooncol.2021153111410.1007/s11060‑021‑03745‑333907968
    [Google Scholar]
  37. ShesheS.M. BelloH.J. LabboA.M. MaigoroA.Y. Heat shock proteins in brain cancer : A mini review.Holist Approaches Oncotherapy.201711622
    [Google Scholar]
  38. MorganA.J. GiannoudisA. PalmieriC. The genomic landscape of breast cancer brain metastases: A systematic review.Lancet Oncol.2021221e7e1710.1016/S1470‑2045(20)30556‑833387511
    [Google Scholar]
  39. HaqueS. NorbertC.C. PatraC.R. Nanomedicine: Future therapy for brain cancers.Nano Drug Delivery Strategies for the Treatment of CancersScience direct2021347410.1016/B978‑0‑12‑819793‑6.00003‑5
    [Google Scholar]
  40. SabraS. AgwaM.M. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications.Int. J. Biol. Macromol.20201641046106010.1016/j.ijbiomac.2020.07.16732707283
    [Google Scholar]
  41. KandellR.M. WaggonerL.E. KwonE.J. Nanomedicine for acute brain injuries: Insight from decades of cancer nanomedicine.Mol. Pharm.202118252253810.1021/acs.molpharmaceut.0c0028732584042
    [Google Scholar]
  42. BhargavA.G. MondalS.K. GarciaC.A. GreenJ.J. Quiñones-HinojosaA. Nanomedicine revisited: Next generation therapies for brain cancer.Adv. Ther.20203
    [Google Scholar]
  43. JainK.K. A critical overview of targeted therapies for glioblastoma.Front. Oncol.2018841910.3389/fonc.2018.0041930374421
    [Google Scholar]
  44. LatourM. HerN.G. KesariS. NurmemmedovE. WNT signaling as a therapeutic target for glioblastoma.Int. J. Mol. Sci.20212216842810.3390/ijms2216842834445128
    [Google Scholar]
  45. HorskáA. BarkerP.B. Imaging of brain tumors: MR spectroscopy and metabolic imaging.Neuroimaging Clin. N. Am.201020329331010.1016/j.nic.2010.04.00320708548
    [Google Scholar]
  46. OvercastW.B. DavisK.M. HoC.Y. HutchinsG.D. GreenM.A. GranerB.D. VeronesiM.C. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors.Curr. Oncol. Rep.20212333410.1007/s11912‑021‑01020‑233599882
    [Google Scholar]
  47. StraathofM. MeerwaldtA.E. De FeyterH.M. de GraafR.A. DijkhuizenR.M. Deuterium metabolic imaging of the healthy and diseased brain.Neuroscience2021474949910.1016/j.neuroscience.2021.01.02333493618
    [Google Scholar]
  48. FrancoP. WürtembergerU. DaccaK. HübschleI. BeckJ. SchnellO. MaderI. BinderH. UrbachH. HeilandD.H. Spectroscopic prediction of brain Tumours (SPORT): Study protocol of a prospective imaging trial.BMC Med. Imaging202020112310.1186/s12880‑020‑00522‑y33228567
    [Google Scholar]
  49. MazurJ. RoyK. KanwarJ.R. Recent advances in nanomedicine and survivin targeting in brain cancers.Nanomedicine201813110513710.2217/nnm‑2017‑028629161215
    [Google Scholar]
  50. JavedI. CuiX. WangX. MortimerM. AndrikopoulosN. LiY. DavisT.P. ZhaoY. KeP.C. ChenC. Implications of the human gut-brain and gut-cancer axes for future nanomedicine.ACS Nano20201411143911441610.1021/acsnano.0c0725833138351
    [Google Scholar]
  51. BozzatoE. BastiancichC. PréatV. Nanomedicine: A useful tool against glioma stem cells.Cancers2020131910.3390/cancers1301000933375034
    [Google Scholar]
  52. LunguI.I. GrumezescuA.M. VolceanovA. AndronescuE. Nanobiomaterials used in cancer therapy: An up-to- date overview.Molecules20192419354710.3390/molecules2419354731574993
    [Google Scholar]
  53. ZottelA. Videtič PaskaA. JovčevskaI. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy.Materials20191210158810.3390/ma1210158831096609
    [Google Scholar]
  54. MukhtarM. BilalM. RahdarA. BaraniM. ArshadR. BehlT. BriscC. BanicaF. BungauS. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates.Chemosensors20208411710.3390/chemosensors8040117
    [Google Scholar]
  55. MengH. JinW. YuL. XuS. WanH. HeY. Protective effects of polysaccharides on cerebral ischemia: A mini-review of the mechanisms.Int. J. Biol. Macromol.202116946347210.1016/j.ijbiomac.2020.12.12433347928
    [Google Scholar]
  56. BernierT.D. SchontzM.J. IzzyS. ChungD.Y. NelsonS.E. Leslie-MazwiT.M. HendersonG.V. DasenbrockH. PatelN. Aziz-SultanM.A. FeskeS. DuR. AbulhasanY.B. AngleM.R. Treatment of subarachnoid hemorrhage-associated delayed cerebral ischemia with milrinone: A review and proposal.J. Neurosurg. Anesthesiol.202133319520210.1097/ANA.000000000000075533480639
    [Google Scholar]
  57. XieQ. LiH. LuD. YuanJ. MaR. LiJ. RenM. LiY. ChenH. WangJ. GongD. Neuroprotective effect for cerebral ischemia by natural products: A review.Front. Pharmacol.20211260741210.3389/fphar.2021.60741233967750
    [Google Scholar]
  58. LiC. SunT. JiangC. Recent advances in nanomedicines for the treatment of ischemic stroke.Acta Pharm. Sin. B20211171767178810.1016/j.apsb.2020.11.01934386320
    [Google Scholar]
  59. LudewigP. GraeserM. ForkertN.D. ThiebenF. Rández-GarbayoJ. RieckhoffJ. LessmannK. FörgerF. SzwargulskiP. MagnusT. KnoppT. Magnetic particle imaging for assessment of cerebral perfusion and ischemia.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022141e175710.1002/wnan.175734617413
    [Google Scholar]
  60. BonferoniM.C. RassuG. GaviniE. SorrentiM. CatenacciL. GiunchediP. Nose-to-brain delivery of antioxidants as a potential tool for the therapy of neurological diseases.Pharmaceutics20201212124610.3390/pharmaceutics1212124633371285
    [Google Scholar]
  61. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  62. KumarA ShahSR JayeoyeTJ KumarA PariharA PrajapatiB. Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products.Front. Nanotechnol.20235.10.3389/fnano.2023.1175149
    [Google Scholar]
  63. KhursheedR. DuaK. VishwasS. GulatiM. JhaN.K. AldhafeeriG.M. AlanaziF.G. GohB.H. GuptaG. PaudelK.R. HansbroP.M. ChellappanD.K. SinghS.K. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives.Biomed. Pharmacother.202215011295110.1016/j.biopha.2022.11295135447546
    [Google Scholar]
  64. BaranwalJ. BarseB. Di PetrilloA. GattoG. PiliaL. KumarA. Nanoparticles in cancer diagnosis and treatment.Materials20231615535410.3390/ma1615535437570057
    [Google Scholar]
  65. ChenY. ZhouF. WangC. HuL. GuoP. Nanostructures as photothermal agents in tumor treatment.Molecules202228127710.3390/molecules2801027736615470
    [Google Scholar]
  66. RajaG. CaoS. KimD.H. KimT.J. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy.Mater. Sci. Eng. C202010711030310.1016/j.msec.2019.11030331761191
    [Google Scholar]
  67. SinghT.A. DasJ. SilP.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks.Adv. Colloid Interface Sci.202028610231710.1016/j.cis.2020.10231733212389
    [Google Scholar]
  68. AnjumS. HashimM. MalikS.A. KhanM. LorenzoJ.M. AbbasiB.H. HanoC. Recent advances in zinc oxide nanoparticles (ZnO nps) for cancer diagnosis, target drug delivery, and treatment.Cancers20211318457010.3390/cancers1318457034572797
    [Google Scholar]
  69. HamidianK. SaraniM. SheikhiE. KhatamiM. Cytotoxicity evaluation of green synthesized ZnO and Ag- doped ZnO nanoparticles on brain glioblastoma cells.J. Mol. Struct.2022125113196210.1016/j.molstruc.2021.131962
    [Google Scholar]
  70. KaviarasiS. YubaE. HaradaA. KrishnanU.M. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia.J. Control. Release2019300224510.1016/j.jconrel.2019.02.03130802476
    [Google Scholar]
  71. AlavianF. ShamsN. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and disadvantages.Curr. Clin. Pharmacol.2020151202910.2174/22123938OTkzpOTU1TcVY31272358
    [Google Scholar]
  72. MaH. JiangZ. XuJ. LiuJ. GuoZ.N. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke.Drug Deliv.202128135737110.1080/10717544.2021.187931533517820
    [Google Scholar]
  73. Peter-DerexL. DerexL. Wake-up stroke: From pathophysiology to management.Sleep Med. Rev.20194810121210.1016/j.smrv.2019.10121231600679
    [Google Scholar]
  74. ElfilM. EldokmakM. BaratlooA. AhmedN. AminH.P. KooB.B. Pathophysiologic mechanisms, neuroimaging and treatment in wake-up stroke.CNS Spectr.201931511119
    [Google Scholar]
  75. DeitmerJ.W. TheparambilS.M. RuminotI. NoorS.I. BeckerH.M. Energy dynamics in the brain: Contributions of astrocytes to metabolism and pH homeostasis.Front. Neurosci.201913130110.3389/fnins.2019.0130131866811
    [Google Scholar]
  76. JokivarsiK.T. GröhnH.I. GröhnO.H. KauppinenR.A. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia.Magn. Reson. Med.200757464765310.1002/mrm.2118117390356
    [Google Scholar]
  77. HuguetG. JoglekarA. MessiL.M. BuckalewR. WongS. TermanD. Neuroprotective role of gap junctions in a neuron astrocyte network model.Biophys. J.2016111245246210.1016/j.bpj.2016.05.05127463146
    [Google Scholar]
  78. TrachoothamD. LuW. OgasawaraM.A. ValleN.R-D. HuangP. Redox regulation of cell survival.Antioxid. Redox Signal.20081081343137410.1089/ars.2007.195718522489
    [Google Scholar]
  79. Le RoyL. LetondorA. Le RouxC. AmaraA. TimsitS. Cellular and molecular mechanisms of r/s-roscovitine and cdks related inhibition under both focal and global cerebral ischemia: A focus on neurovascular unit and immune cells.Cells202110110410.3390/cells1001010433429982
    [Google Scholar]
  80. ShiK. TianD.C. LiZ.G. DucruetA.F. LawtonM.T. ShiF.D. Global brain inflammation in stroke.Lancet Neurol.201918111058106610.1016/S1474‑4422(19)30078‑X31296369
    [Google Scholar]
  81. BeuclerN. SellierA. BernardC. JoubertC. DesseN. DagainA. Brain metastases in endometrial cancer: A systematic review of the surgical prognostic factors.Eur. J. Obstet. Gynecol. Reprod. Biol.202125824025210.1016/j.ejogrb.2021.01.00733482458
    [Google Scholar]
  82. MustafaY.F. AbdulazizN.T. Hymecromone and its products as cytotoxic candidates for brain cancer: A brief review.Neuroquantology202119717518610.14704/nq.2021.19.7.NQ21101
    [Google Scholar]
  83. KiskovaT. KubatkaP. BüsselbergD. KassayovaM. The plant-derived compound resveratrol in brain cancer: A review.Biomolecules202010116110.3390/biom1001016131963897
    [Google Scholar]
  84. BrennemanR.J. GayH.A. ChristodouleasJ.P. SargosP. AroraV. Fischer-ValuckB. HuangJ. KnocheE. PachynskiR. PicusJ. ReimersM. RothB. MichalskiJ.M. BaumannB.C. Review: Brain metastases in bladder cancer.Bladder Cancer20206323724810.3233/BLC‑200304
    [Google Scholar]
  85. BolcaenJ. KleynhansJ. NairS. VerhoevenJ. GoethalsI. SathekgeM. VandevoordeC. EbenhanT. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma.Theranostics202111167911794710.7150/thno.5663934335972
    [Google Scholar]
  86. ParrellaE. GussagoC. PorriniV. BenareseM. PizziM. From preclinical stroke models to humans: Polyphenols in the prevention and treatment of stroke.Nutrients20201318510.3390/nu1301008533383852
    [Google Scholar]
  87. ZhangW. MehtaA. TongZ. EsserL. VoelckerN.H. Development of polymeric nanoparticles for blood–brain barrier transfer-strategies and challenges.Adv. Sci.2021810200393710.1002/advs.20200393734026447
    [Google Scholar]
  88. KimK. LeeJ.H. Risk factors and biomarkers of ischemic stroke in cancer patients.J. Stroke2014162919610.5853/jos.2014.16.2.9124949315
    [Google Scholar]
  89. CestariD.M. WeineD.M. PanageasK.S. SegalA.Z. DeAngelisL.M. Stroke in patients with cancer.Neurology200462112025203010.1212/01.WNL.0000129912.56486.2B15184609
    [Google Scholar]
  90. ChenC.W. ChengT.J. HoC.H. WangJ.J. WengS.F. HouY.C. ChengH.C. ChioC.C. ShanY.S. ChangW.T. Increased risk of brain cancer incidence in stroke patients: A clinical case series, population-based and longitudinal follow-up study.Oncotarget201786510898910899910.18632/oncotarget.2248029312585
    [Google Scholar]
  91. GhoshM.K. ChakrabortyD. SarkarS. BhowmikA. BasuM. The interrelationship between cerebral ischemic stroke and glioma: A comprehensive study of recent reports.Signal Transduct. Target. Ther.2019414210.1038/s41392‑019‑0075‑431637020
    [Google Scholar]
  92. GerhartlA. PracserN. VladeticA. HendrikxS. FriedlH.P. NeuhausW. The pivotal role of micro-environmental cells in a human blood–brain barrier in vitro model of cerebral ischemia: Functional and transcriptomic analysis.Fluids Barriers CNS20201711910.1186/s12987‑020‑00179‑332138745
    [Google Scholar]
  93. BurnstockG. Introduction to purinergic signalling in the brain.Adv. Exp. Med. Biol.201398611210.1007/978‑3‑030‑30651‑9_1
    [Google Scholar]
  94. CortésH. Alcalá-AlcaláS. Caballero-FloránI.H. Bernal-ChávezS.A. Ávalos-FuentesA. González-TorresM. González-Del CarmenM. Figueroa-GonzálezG. Reyes-HernándezO.D. FloranB. Del Prado-AudeloM.L. Leyva-GómezG. A reevaluation of chitosan-decorated nanoparticles to cross the blood-brain barrier.Membranes202010921210.3390/membranes1009021232872576
    [Google Scholar]
  95. LiangW. HuangX. ChenW. The effects of Baicalin and Baicalein on cerebral ischemia: A review.Aging Dis.20178685086710.14336/AD.2017.082929344420
    [Google Scholar]
  96. MaR. XieQ. LiY. ChenZ. RenM. ChenH. LiH. LiJ. WangJ. Animal models of cerebral ischemia: A review.Biomed. Pharmacother.202013111068610.1016/j.biopha.2020.11068632937247
    [Google Scholar]
  97. PanahiY. SahebkarA. NaderiY. BarretoG.E. Neuroprotective effects of minocycline on focal cerebral ischemia injury: A systematic review.Neural Regen. Res.202015577378210.4103/1673‑5374.26889831719236
    [Google Scholar]
  98. FukutaT. AsaiT. OkuN. Development of a liposomal drug delivery system for the treatment of ischemic stroke.Drug Deliv. Syst.201530430931610.2745/dds.30.309
    [Google Scholar]
  99. FukutaT. IshiiT. AsaiT. SatoA. KikuchiT. ShimizuK. MinaminoT. OkuN. Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions.Eur. J. Pharm. Biopharm.201597Pt A1710.1016/j.ejpb.2015.09.02026455340
    [Google Scholar]
  100. CarmonaP. MendezN. IliC.G. BrebiP. The role of clock genes in fibrinolysis regulation: Circadian disturbance and its effect on fibrinolytic activity.Front. Physiol.20201112910.3389/fphys.2020.0012932231582
    [Google Scholar]
  101. LayneK. FerroA. Antiplatelet therapy in acute coronary syndrome.Eur. Cardiol.2017121333710.15420/ecr.2016:34:230416549
    [Google Scholar]
  102. KamranH. JneidH. KayaniW.T. ViraniS.S. LevineG.N. NambiV. KhalidU. Oral antiplatelet therapy after acute coronary syndrome.JAMA2021325151545155510.1001/jama.2021.071633877270
    [Google Scholar]
  103. VerdoiaM CamaroC KedhiE MarcolongoM SuryapranataH De LucaG. Dual antiplatelet therapy duration in acute coronary syndrome patients: The state of the art and open issues.Cardiovasc. Ther.202016495036
    [Google Scholar]
  104. KimB.G. ParkM.K. LeeP.H. LeeS.H. HongJ. AungM.M.M. MoeK.T. HanN.Y. JangA.S. Effects of nanoparticles on neuroinflammation in a mouse model of asthma.Respir. Physiol. Neurobiol.202027110329210.1016/j.resp.2019.10329231542455
    [Google Scholar]
  105. ZhuF.D. HuY.J. YuL. ZhouX.G. WuJ.M. TangY. QinD.L. FanQ.Z. WuA.G. Nanoparticles: A hope for the treatment of inflammation in CNS.Front. Pharmacol.20211268393510.3389/fphar.2021.68393534122112
    [Google Scholar]
  106. GriauzdeJ. RavindraV.M. ChaudharyN. GemmeteJ.J. PandeyA.S. Neuroprotection for ischemic stroke in the endovascular era: A brief report on the future of intra-arterial therapy.J. Clin. Neurosci.20196928929110.1016/j.jocn.2019.08.00131431407
    [Google Scholar]
  107. DongH. ZhaoH-Y. WangJ-W. HanJ-X. Observation on therapeutic effect and mechanism research of acupuncture on headache in the recovery phase of ischemic stroke.Zhongguo Zhenjiu20193911491153
    [Google Scholar]
  108. ZhuB. PanY. JingJ. MengX. ZhaoX. LiuL. WangY. WangY. WangZ. Stress hyperglycemia and outcome of non-diabetic patients after acute ischemic stroke.Front. Neurol.201910100310.3389/fneur.2019.0100331620074
    [Google Scholar]
  109. PaciaroniM. BogousslavskyJ. Trafermin for stroke recovery: is it time for another randomized clinical trial?Expert Opin. Biol. Ther.201111111533154110.1517/14712598.2011.61688821883031
    [Google Scholar]
  110. WallnerS. PetersS. PitzerC. ReschH. BogdahnU. SchneiderA. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity.Front. Cell Dev. Biol.201534810.3389/fcell.2015.0004826301221
    [Google Scholar]
  111. LiuJ ZhangJ WangLN Gamma aminobutyric acid (GABA) receptor agonists for acute stroke.Cochrane Database Syst. Rev.20182018
    [Google Scholar]
  112. Di RenzoG. PignataroG. AnnunziatoL. Why have Ionotropic and Metabotropic Glutamate Antagonists Failed in Stroke Therapy?New Strategies in Stroke InterventionSpringer2009132510.1007/978‑1‑60761‑280‑3_2
    [Google Scholar]
  113. PellegriniL BonfioC ChadwickJ BegumF SkehelM LancasterMA Human CNS barrier-forming organoids with cerebrospinal fluid production.Science2020369.6500: eaaz5626.10.1126/science.aaz5626
    [Google Scholar]
  114. PulicherlaK.K. VermaM.K. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements.AAPS PharmSciTech201516222323310.1208/s12249‑015‑0287‑z25613561
    [Google Scholar]
  115. ZharkinbekovN. Chronic cerebral ischemia: Review of published works, pathogenetic approaches to therapy. J.Medicine20203–46473
    [Google Scholar]
  116. DoddW.S. LaurentD. DumontA.S. HasanD.M. JabbourP.M. StarkeR.M. HosakaK. PolifkaA.J. HohB.L. ChalouhiN. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: A review.J. Am. Heart Assoc.20211015e02184510.1161/JAHA.121.02184534325514
    [Google Scholar]
  117. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. PatelR.J. Ajazuddin RavichandiranV. MurtyU.S. AlexanderA. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032137241510.1016/j.jconrel.2020.02.02032061621
    [Google Scholar]
  118. LuJ. MaY. WuJ. HuangH. WangX. ChenZ. ChenJ. HeH. HuangC. A review for the neuroprotective effects of andrographolide in the central nervous system.Biomed. Pharmacother.201911710907810.1016/j.biopha.2019.10907831181444
    [Google Scholar]
  119. JiaoF GongZ. The beneficial roles of SIRT1 in neuroinflammation-related diseases.Oxid. Med. Cell. Longev.2020202010.1155/2020/6782872
    [Google Scholar]
  120. GelosaP ColazzoF TremoliE SironiL CastiglioniL. Cysteinyl leukotrienes as potential pharmacological targets for cerebral diseases.Mediators Inflamm.20172017345424310.1155/2017/3454212
    [Google Scholar]
  121. MoghaddamA.H. Mokhtari SangdehiS.R. RanjbarM. HasantabarV. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats.Eur. J. Pharmacol.202087717306610.1016/j.ejphar.2020.17306632171791
    [Google Scholar]
  122. WangL. XuL. DuJ. ZhaoX. LiuM. FengJ. HuK. Nose-to-brain delivery of borneol modified tanshinone IIA nanoparticles in prevention of cerebral ischemia/reperfusion injury.Drug Deliv.20212811363137510.1080/10717544.2021.194305834180761
    [Google Scholar]
  123. BasuthakurP. PatraC.R. Zinc oxide nanoparticles: Future therapy for cerebral ischemia.Nanomedicine202015282729273210.2217/nnm‑2020‑032233079006
    [Google Scholar]
  124. HuS.H. ChenS.Y. GaoX. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release.ACS Nano2012632558256510.1021/nn205023w22339040
    [Google Scholar]
  125. MenzfeldC. JohnM. van RossumD. RegenT. ScheffelJ. JanovaH. GötzA. RibesS. NauR. BorischA. BoutinP. NeumannK. BremesV. WienandsJ. ReichardtH.M. LühderF. TischnerD. WaetzigV. HerdegenT. TeismannP. GreigI. MüllerM. PukropT. MildnerA. KettenmannH. BrückW. PrinzM. RotshenkerS. WeberM.S. HanischU.K. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism.Glia20156361083109910.1002/glia.2280325731696
    [Google Scholar]
  126. ReddyM.K. LabhasetwarV. Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury.FASEB J.20092351384139510.1096/fj.08‑11694719124559
    [Google Scholar]
  127. ZhaoY. JiangY. LvW. WangZ. LvL. WangB. LiuX. LiuY. HuQ. SunW. XuQ. XinH. GuZ. Dual targeted nanocarrier for brain ischemic stroke treatment.J. Control. Release2016233647110.1016/j.jconrel.2016.04.03827142584
    [Google Scholar]
  128. DongX. GaoJ. SuY. WangZ. Nanomedicine for ischemic stroke.Int. J. Mol. Sci.20202120760010.3390/ijms2120760033066616
    [Google Scholar]
  129. Correa-PazC. da Silva-CandalA. PoloE. ParcqJ. VivienD. MaysingerD. PelazB. CamposF. New approaches in nanomedicine for ischemic stroke.Pharmaceutics202113575710.3390/pharmaceutics1305075734065179
    [Google Scholar]
  130. FabianR.H. DerryP.J. ReaH.C. DalmeidaW.V. NilewskiL.G. SikkemaW.K.A. MandavaP. TsaiA.L. MendozaK. BerkaV. TourJ.M. KentT.A. Efficacy of novel carbon nanoparticle antioxidant therapy in a severe model of Reversible middle cerebral artery stroke in acutely hyperglycemic rats.Front. Neurol.2018919910.3389/fneur.2018.0019929686642
    [Google Scholar]
  131. DogguiS. SahniJ.K. ArseneaultM. DaoL. RamassamyC. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line.J. Alzheimers Dis.201230237739210.3233/JAD‑2012‑11214122426019
    [Google Scholar]
  132. Djiokeng PakaG. DogguiS. ZaghmiA. SafarR. DaoL. ReischA. KlymchenkoA. RoullinV.G. JoubertO. RamassamyC. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly(lactide-co-glycolide) polymeric matrix composition.Mol. Pharm.201613239140310.1021/acs.molpharmaceut.5b0061126618861
    [Google Scholar]
  133. JohnsonG.V.W. StoothoffW.H. Tau phosphorylation in neuronal cell function and dysfunction.J. Cell Sci.2004117245721572910.1242/jcs.0155815537830
    [Google Scholar]
  134. GuoT. DakkakD. Rodriguez-MartinT. NobleW. HangerD.P. A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response.Acta Neuropathol. Commun.201971210.1186/s40478‑018‑0651‑930606258
    [Google Scholar]
  135. CanepaE. FossatiS. Impact of tau on neurovascular pathology in Alzheimer’s disease.Front. Neurol.20211157332410.3389/fneur.2020.57332433488493
    [Google Scholar]
  136. ZhangW.L. CaoY.A. XiaJ. TianL. YangL. PengC.S. Neuroprotective effect of tanshinone IIA weakens spastic cerebral palsy through inflammation, p38MAPK and VEGF in neonatal rats.Mol. Med. Rep.20181712012201829257210
    [Google Scholar]
  137. LiuX. YeM. AnC. PanL. JiL. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia.Biomaterials201334286893690510.1016/j.biomaterials.2013.05.02123768781
    [Google Scholar]
  138. ZhaoL. LiuA. YuS. WangZ. LinX. ZhaiG. ZhangQ. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury.Biol. Pharm. Bull.20133681263127010.1248/bpb.b12‑0076923902970
    [Google Scholar]
  139. LiuY. AiK. JiX. AskhatovaD. DuR. LuL. ShiJ. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke.J. Am. Chem. Soc.2017139285686210.1021/jacs.6b1101327997170
    [Google Scholar]
  140. HosooH. MarushimaA. NagasakiY. HirayamaA. ItoH. PuentesS. MujagicA. TsurushimaH. TsurutaW. SuzukiK. MatsuiH. MatsumaruY. YamamotoT. MatsumuraA. Neurovascular unit protection from cerebral ischemia–reperfusion injury by radical-containing nanoparticles in mice.Stroke20174882238224710.1161/STROKEAHA.116.01635628655813
    [Google Scholar]
  141. WangY. LiS.Y. ShenS. WangJ. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle- mediated delivery of an siRNA to inhibit microglial neurotoxicity.Biomaterials20181619510510.1016/j.biomaterials.2018.01.03929421566
    [Google Scholar]
  142. JuenetM. Aid-LaunaisR. LiB. BergerA. AertsJ. OllivierV. NicolettiA. LetourneurD. ChauvierreC. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin.Biomaterials201815620421610.1016/j.biomaterials.2017.11.04729216534
    [Google Scholar]
  143. LavikE. UstinJ. Medicine. Leveraging shear stress to bust clots with nanoparticles.Science2012337609565865910.1126/science.122709722879494
    [Google Scholar]
  144. MarosfoiM.G. KorinN. GounisM.J. UzunO. VedanthamS. LanganE.T. PapaA.L. BrooksO.W. JohnsonC. PuriA.S. BhattaD. KanapathipillaiM. BronsteinB.R. ChuehJ.Y. IngberD.E. WakhlooA.K. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion.Stroke201546123507351310.1161/STROKEAHA.115.01106326493676
    [Google Scholar]
  145. MarshJ.N. HuG. ScottM.J. ZhangH. GoetteM.J. GaffneyP.J. CaruthersS.D. WicklineS.A. AbendscheinD. LanzaG.M. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke.Nanomedicine20116460561510.2217/nnm.11.2121506686
    [Google Scholar]
  146. MarshJ.N. SenpanA. HuG. ScottM.J. GaffneyP.J. WicklineS.A. LanzaG.M. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis.Nanomedicine20072453354310.2217/17435889.2.4.53317716136
    [Google Scholar]
  147. MohanA. NarayananS. BalasubramanianG. SethuramanS. KrishnanU.M. Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma.Eur. J. Pharm. Biopharm.201699738310.1016/j.ejpb.2015.11.01726690333
    [Google Scholar]
  148. XuG. GuH. HuB. TongF. LiuD. YuX. ZhengY. GuJ. PEG-b-(PELG-g-PLL) nanoparticles as TNF-α nanocarriers: Potential cerebral ischemia/reperfusion injury therapeutic applications.Int. J. Nanomedicine2017122243225410.2147/IJN.S13084228356740
    [Google Scholar]
  149. YuS. BiX. YangL. WuS. YuY. JiangB. ZhangA. LanK. DuanS. Co-delivery of paclitaxel and PLK1- targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo.J. Biomed. Nanotechnol.20191561135114810.1166/jbn.2019.275131072423
    [Google Scholar]
  150. YadavK. SinghD. SinghM.R. PradhanM. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis.Med. Hypotheses202014511032210.1016/j.mehy.2020.11032233086162
    [Google Scholar]
  151. GladkikhD.V. Sen KovaA.V. ChernikovI.V. KabilovaT.O. PopovaN.A. NikolinV.P. ShmendelE.V. MaslovM.A. VlassovV.V. ZenkovaM.A. ChernolovskayaE.L. Folate-equipped cationic liposomes deliver anti-mdr1-sirna to the tumor and increase the efficiency of chemotherapy.Pharmaceutics20211381310.3390/pharmaceutics1308125234452213
    [Google Scholar]
  152. LiN. FengL. TanY. XiangY. ZhangR. YangM. Administration in Rats Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats.Molecules2018237174710.3390/molecules2307174730018228
    [Google Scholar]
  153. Muralikrishna AdibhatlaR. HatcherJ.F. TureyenK. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke.Brain Res.200510581-219319710.1016/j.brainres.2005.07.06716153613
    [Google Scholar]
  154. RansohoffR.M. How neuroinflammation contributes to neurodegeneration.Science2016353630177778310.1126/science.aag259027540165
    [Google Scholar]
  155. YadavS. GandhamS.K. PanicucciR. AmijiM.M. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation.Nanomedicine2016124987100210.1016/j.nano.2015.12.37426767514
    [Google Scholar]
  156. MontanerJ. Cano-SarabiaM. SimatsA. Hernández-GuillamonM. RosellA. MaspochD. Campos-MartorellM. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats.Int. J. Nanomedicine2016113035304810.2147/IJN.S10729227418824
    [Google Scholar]
  157. YanX. ScherphofG.L. KampsJ.A.A.M. Liposome opsonization.J. Liposome Res.2005151-210913910.1081/LPR‑6497116194930
    [Google Scholar]
  158. KangX. ChenH. LiS. JieL. HuJ. WangX. QiJ. YingX. DuY. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability.Colloids Surf. B Biointerfaces201816159760510.1016/j.colsurfb.2017.11.00829156336
    [Google Scholar]
  159. WangZ. ZhaoY. JiangY. LvW. WuL. WangB. LvL. XuQ. XinH. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system.Sci. Rep.2015511265110.1038/srep1265126219474
    [Google Scholar]
  160. LuY. Mei HuangJ. Yun WangH. LouX. Fang LiaoM. Hua HongL. Juan Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticlesBiomaterials201435530537
    [Google Scholar]
  161. HsuH.L. ChenJ.P. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis.J. Magn. Magn. Mater.201742718819410.1016/j.jmmm.2016.10.122
    [Google Scholar]
  162. FukutaT. AsaiT. YanagidaY. NambaM. KoideH. ShimizuK. OkuN. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke.FASEB J.20173151879189010.1096/fj.201601209R28082354
    [Google Scholar]
  163. FukutaT. Development of biomembrane-mimetic nanoparticles for the treatment of ischemic stroke.Yakugaku Zasshi202114191071107810.1248/yakushi.21‑0011434471008
    [Google Scholar]
  164. LiR. The optimal time window for the use and dosage of nimodipine for acute massive cerebral infarction: Study protocol for a randomized controlled trial.Asia Pac. Clin. Transl. Nerv. Syst. Dis.201611110.4103/2455‑7765.172998
    [Google Scholar]
  165. LundyD.J. NguyễnH. HsiehP.C.H. Emerging nano- carrier strategies for brain tumor drug delivery and considerations for clinical translation.Pharmaceutics2021138119310.3390/pharmaceutics1308119334452156
    [Google Scholar]
  166. BhardwajV. KaushikA. KhatibZ.M. NairM. McGoronA.J. Recalcitrant issues and new frontiers in nano-pharmacology.Front. Pharmacol.201910136910.3389/fphar.2019.0136931849645
    [Google Scholar]
  167. MoriE. MinematsuK. NakagawaraJ. YamaguchiT. SasakiM. HiranoT. Japan Alteplase Clinical Trial II Group Effects of 0.6 mg/kg intravenous alteplase on vascular and clinical outcomes in middle cerebral artery occlusion: Japan Alteplase Clinical Trial II (J-ACT II).Stroke201041346146510.1161/STROKEAHA.109.57347720075341
    [Google Scholar]
  168. ToyodaK. UchiyamaS. HoshinoH. KimuraK. OrigasaH. NaritomiH. MinematsuK. YamaguchiT. CSPS.com Study Investigators Protocol for cilostazol stroke prevention study for antiplatelet combination (CSPS.com): A randomized, open-label, parallel-group trial.Int. J. Stroke201510225325810.1111/ijs.1242025487817
    [Google Scholar]
  169. BarretoA.D. FordG.A. ShenL. PedrozaC. TysonJ. CaiC. RahbarM.H. GrottaJ.C. AjaniZ. AlexandrovA.V. CherchesI. CoullB. DawsonJ. del JuncoD. DemchukA. DevineJ. DickersonA.S. DixitA. FreyJ.L. JamesM. KhanU. LevineS. MacDonaldC. MalkoffM. McCollE. MisraV. MullenM. PerryR. Piechowski-JozwiakB. RoffeC. SanghaN. SissonA. TsivgoulisG. VolpiJ.J. ARTSS-2 Investigators Randomized, multicenter trial of ARTSS-2 (Argatroban with recombinant tissue plasminogen activator for acute stroke).Stroke20174861608161610.1161/STROKEAHA.117.01672028507269
    [Google Scholar]
  170. DeedsS.I. BarretoA. ElmJ. DerdeynC.P. BerryS. KhatriP. MoyC. JanisS. BroderickJ. GrottaJ. AdeoyeO. The multiarm optimization of stroke thrombolysis phase 3 acute stroke randomized clinical trial: Rationale and methods.Int. J. Stroke202116787388010.1177/174749302097834533297893
    [Google Scholar]
  171. MolinaC.A. RiboM. RubieraM. MontanerJ. SantamarinaE. Delgado-MederosR. ArenillasJ.F. HuertasR. PurroyF. DelgadoP. Alvarez-SabínJ. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator.Stroke200637242542910.1161/01.STR.0000199064.94588.3916373632
    [Google Scholar]
  172. AlexandrovA.V. MikulikR. RiboM. SharmaV.K. LaoA.Y. TsivgoulisG. SuggR.M. BarretoA. SierzenskiP. MalkoffM.D. GrottaJ.C. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke.Stroke20083951464146910.1161/STROKEAHA.107.50572718356546
    [Google Scholar]
  173. LiuW. HuangZ. WangX. ZhouJ. Effects of microbubbles on transcranial Doppler ultrasound-assisted intracranial urokinase thrombolysis.Thromb. Res.2012130354755110.1016/j.thromres.2012.06.02022823944
    [Google Scholar]
  174. RubieraM. RiboM. Delgado-MederosR. SantamarinaE. MaisterraO. DelgadoP. MontanerJ. Alvarez-SabínJ. MolinaC.A. Do bubble characteristics affect recanalization in stroke patients treated with microbubble-enhanced sonothrombolysis?Ultrasound Med. Biol.200834101573157710.1016/j.ultrasmedbio.2008.02.01118450360
    [Google Scholar]
  175. AlmalkiW.H. AlghamdiS. AlzahraniA. ZhangW. Emerging paradigms in treating cerebral infarction with nanotheranostics: opportunities and clinical challenges.Drug Discov. Today202126826835
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306668240829144324
Loading
/content/journals/cmc/10.2174/0109298673306668240829144324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test