Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Atherosclerotic cardiovascular disease represents the most common cause of death worldwide. Altered cholesterol metabolism and inflammation are major cardiovascular risk factors that underpin atherosclerotic plaque growth and destabilization. While initial evidence considered dyslipidemia and inflammation as independent atherogenic actors, growing evidence has revealed that several molecular mechanisms implicated in cholesterol metabolism participate in multiple inflammatory signalling pathways. In particular, proprotein convertase subtilisin/kexin type 9, adenosine monophosphate-activated protein kinase pathway, oxidized low-density lipoproteins, and lipoprotein (a) have been demonstrated to share concurrent atherogenic and inflammatory properties. Novel lipid-lowering therapies targeting these molecular pathways have been implemented. Mechanistic and clinical studies have addressed their hypolipidemic potential and explored their role in atherosclerosis-related vascular inflammation, and ongoing randomized clinical trials are investigating their prognostic role. The purpose of this review was to dive into the signalling pathways linking cholesterol metabolism and inflammation and outline the current evidence on the anti-inflammatory activities of the novel lipid-lowering drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673311105240902053715
2024-09-16
2025-09-04
Loading full text...

Full text loading...

References

  1. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. Cahuana-HurtadoL. CámeraL.A. Campos-NonatoI.R. Cantu-BritoC. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. De NeveJ-W. Denova-GutiérrezE. Derbew MollaM. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. Fernandez PrendesC. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. Moreno VelásquezI. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. Neupane KandelS. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. Panda-JonasS. ParekhU. ParkE-C. ParviziM. Pashazadeh KanF. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. Rahimi-MovagharV. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. Roberts-ThomsonR.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. Saeedi MoghaddamS. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. Suliankatchi AbdulkaderR. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. Tovani-PaloneM.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  2. SkålénK. GustafssonM. RydbergE.K. HulténL.M. WiklundO. InnerarityT.L. BorénJ. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.Nature2002417689075075410.1038/nature0080412066187
    [Google Scholar]
  3. PoznyakA.V. NikiforovN.G. MarkinA.M. KashirskikhD.A. MyasoedovaV.A. GerasimovaE.V. OrekhovA.N. Overview of OxLDL and its impact on cardiovascular health: Focus on Atherosclerosis.Front. Pharmacol.20211161378010.3389/fphar.2020.61378033510639
    [Google Scholar]
  4. DemirY. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.Drug Dev. Res.202081562863610.1002/ddr.2166732232985
    [Google Scholar]
  5. DemirY. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis.J. Pharm. Pharmacol.201971101576158310.1111/jphp.1314431347707
    [Google Scholar]
  6. LeitingerN. Oxidized phospholipids as modulators of inflammation in atherosclerosis.Curr. Opin. Lipidol.200314542143010.1097/00041433‑200310000‑0000214501580
    [Google Scholar]
  7. FrostegårdJ. HaegerstrandA. GidlundM. NilssonJ. Biologically modified LDL increases the adhesive properties of endothelial cells.Atherosclerosis1991902-311912610.1016/0021‑9150(91)90106‑D1684706
    [Google Scholar]
  8. RajavashisthT.B. LiaoJ.K. GalisZ.S. TripathiS. LaufsU. TripathiJ. ChaiN.N. XuX.P. JovingeS. ShahP.K. LibbyP. Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase.J. Biol. Chem.199927417119241192910.1074/jbc.274.17.1192410207013
    [Google Scholar]
  9. YuiS. SasakiT. MiyazakiA. HoriuchiS. YamazakiM. Induction of murine macrophage growth by modified LDLs.Arteriosclerosis and Thrombosis199313333133710.1161/01.ATV.13.3.331
    [Google Scholar]
  10. XuX.P. MeiselS.R. OngJ.M. KaulS. CercekB. RajavashisthT.B. SharifiB. ShahP.K. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages.Circulation199999899399810.1161/01.CIR.99.8.99310051290
    [Google Scholar]
  11. CreaF. LiuzzoG. Pathogenesis of acute coronary syndromes.J. Am. Coll. Cardiol.201361111110.1016/j.jacc.2012.07.06423158526
    [Google Scholar]
  12. WuN.Q. ShiH.W. LiJ.J. Proprotein convertase subtilisin/kexin type 9 and inflammation: An updated review.Front. Cardiovasc. Med.2022976351610.3389/fcvm.2022.76351635252378
    [Google Scholar]
  13. HardieD.G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function.Genes Dev.201125181895190810.1101/gad.1742011121937710
    [Google Scholar]
  14. FilippovS. PinkoskyS.L. ListerR.J. PawloskiC. HanselmanJ.C. CramerC.T. SrivastavaR.A.K. HurleyT.R. BradshawC.D. SpahrM.A. NewtonR.S. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK.J. Lipid Res.20135482095210810.1194/jlr.M03521223709692
    [Google Scholar]
  15. DzoboK.E. KraaijenhofJ.M. StroesE.S.G. NurmohamedN.S. KroonJ. Lipoprotein(a): An underestimated inflammatory mastermind.Atherosclerosis202234910110910.1016/j.atherosclerosis.2022.04.00435606070
    [Google Scholar]
  16. AkhmedovA. SawamuraT. ChenC.H. KralerS. VdovenkoD. LüscherT.F. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): A crucial driver of atherosclerotic cardiovascular disease.Eur. Heart J.202142181797180710.1093/eurheartj/ehaa770
    [Google Scholar]
  17. Duarte LauF. GiuglianoR.P. Lipoprotein(a) and its significance in cardiovascular disease.JAMA Cardiol.20227776076910.1001/jamacardio.2022.098735583875
    [Google Scholar]
  18. BorénJ. OlinK. LeeI. ChaitA. WightT.N. InnerarityT.L. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding.J. Clin. Invest.1998101122658266410.1172/JCI22659637699
    [Google Scholar]
  19. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of Atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.30932628209797
    [Google Scholar]
  20. JanewayC.A.Jr MedzhitovR. Innate immune recognition.Annu. Rev. Immunol.200220119721610.1146/annurev.immunol.20.083001.08435911861602
    [Google Scholar]
  21. KunjathoorV.V. FebbraioM. PodrezE.A. MooreK.J. AnderssonL. KoehnS. RheeJ.S. SilversteinR. HoffH.F. FreemanM.W. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages.J. Biol. Chem.200227751499824998810.1074/jbc.M20964920012376530
    [Google Scholar]
  22. OtsukaF. YasudaS. NoguchiT. Ishibashi-UedaH. Pathology of coronary atherosclerosis and thrombosis.Cardiovasc. Diagn. Ther.20166439640810.21037/cdt.2016.06.0127500096
    [Google Scholar]
  23. GabaP. GershB.J. MullerJ. NarulaJ. StoneG.W. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: Implications for patient care and future research.Nat. Rev. Cardiol.202320318119610.1038/s41569‑022‑00769‑836151312
    [Google Scholar]
  24. TallA.R. Yvan-CharvetL. Cholesterol, inflammation and innate immunity.Nat. Rev. Immunol.201515210411610.1038/nri379325614320
    [Google Scholar]
  25. SutterwalaF.S. HaaskenS. CasselS.L. Mechanism of NLRP3 inflammasome activation.Ann. N. Y. Acad. Sci.201413191829510.1111/nyas.1245824840700
    [Google Scholar]
  26. KiriiH. NiwaT. YamadaY. WadaH. SaitoK. IwakuraY. AsanoM. MoriwakiH. SeishimaM. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice.Arterioscler. Thromb. Vasc. Biol.200323465666010.1161/01.ATV.0000064374.15232.C312615675
    [Google Scholar]
  27. ZhangK. HuangX. LiX. FengM. LiL. CaiX. ZhangC. LiuX. ZhangM. ZhangY. WangX. ZhangM. Interleukin 6 destabilizes atherosclerotic plaques by downregulating prolyl-4-hydroxylase α1 via a mitogen-activated protein kinase and c-Jun pathway.Arch. Biochem. Biophys.2012528212713310.1016/j.abb.2012.09.00723022409
    [Google Scholar]
  28. BlankenbergS. TiretL. BickelC. PeetzD. CambienF. MeyerJ. RupprechtH.J. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina.Circulation20021061243010.1161/01.CIR.0000020546.30940.9212093765
    [Google Scholar]
  29. TangZ.H. PengJ. RenZ. YangJ. LiT.T. LiT.H. WangZ. WeiD.H. LiuL.S. ZhengX.L. JiangZ.S. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway.Atherosclerosis201726211312210.1016/j.atherosclerosis.2017.04.02328535426
    [Google Scholar]
  30. PiperD. E. JacksonS. LiuQ. RomanowW. G. ShetterlyS. ThibaultS. T. ShanB. WalkerNP. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol.Structure20071555455210.1016/j.str.2007.04.004
    [Google Scholar]
  31. TomlinsonB. PatilN.G. FokM. LamC.W.K. Role of PCSK9 inhibitors in patients with familial hypercholesterolemia.Endocrinol. Metab. (Seoul)202136227929510.3803/EnM.2021.96433866776
    [Google Scholar]
  32. DingZ. PothineniN.V.K. GoelA. LüscherT.F. MehtaJ.L. PCSK9 and inflammation: Role of shear stress, pro-inflammatory cytokines, and LOX-1.Cardiovasc. Res.2020116590891510.1093/cvr/cvz31331746997
    [Google Scholar]
  33. LiS. GuoY.L. XuR.X. ZhangY. ZhuC.G. SunJ. QingP. WuN.Q. JiangL.X. LiJ.J. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease.Atherosclerosis2014234244144510.1016/j.atherosclerosis.2014.04.00124769476
    [Google Scholar]
  34. ZhangY. ZhuC.G. XuR.X. LiS. GuoY.L. SunJ. LiJ.J. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease.J. Clin. Lipidol.20148549450010.1016/j.jacl.2014.07.00125234562
    [Google Scholar]
  35. GencerB. MontecuccoF. NanchenD. CarboneF. KlingenbergR. VuilleumierN. AghlmandiS. HegD. RäberL. AuerR. JüniP. WindeckerS. LüscherT.F. MatterC.M. RodondiN. MachF. Prognostic value of PCSK9 levels in patients with acute coronary syndromes.Eur. Heart J.201637654655310.1093/eurheartj/ehv63726655339
    [Google Scholar]
  36. KushnerI. BroderM.L. KarpD. Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction.J. Clin. Invest.197861223524210.1172/JCI108932621273
    [Google Scholar]
  37. NavareseE.P. KolodziejczakM. WinterM.P. AlimohammadiA. LangI.M. BuffonA. LipG.Y.H. Siller- MatulaJ.M. Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9-REACT study.Int. J. Cardiol.201722764464910.1016/j.ijcard.2016.10.08427810295
    [Google Scholar]
  38. AlmontashiriN.A.M. VilmundarsonR.O. GhasemzadehN. DandonaS. RobertsR. QuyyumiA.A. ChenH.H. StewartA.F.R. Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies.PLoS One201499e10629410.1371/journal.pone.010629425180781
    [Google Scholar]
  39. de BoerS. BaranY. Garcia-GarciaH.M. EskinI. LenzenM.J. KleberM.E. RegarE. de JaegereP.J. LigthartJ.M. van GeunsR.J. LehtimäkiT. LaaksonenR. BoersmaE. MarzW. HalperinE. SerruysP.W. KoenigW. The European Collaborative project on inflammation and vascular wall remodeling in atherosclerosis - Intravascular ultrasound (ATHEROREMO-IVUS) study.EuroIntervention201814219420310.4244/EIJ‑D‑17‑0018028943493
    [Google Scholar]
  40. de WintherM.P.J. KantersE. KraalG. HofkerM.H. Nuclear factor kappaB signaling in atherogenesis.Arterioscler. Thromb. Vasc. Biol.200525590491410.1161/01.ATV.0000160340.72641.8715731497
    [Google Scholar]
  41. DingZ. LiuS. WangX. DengX. FanY. SunC. WangY. MehtaJ.L. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta.Antioxid. Redox Signal.201522976077110.1089/ars.2014.605425490141
    [Google Scholar]
  42. DingZ. LiuS. WangX. DengX. FanY. ShahanawazJ. Shmookler ReisR.J. VarugheseK.I. SawamuraT. MehtaJ.L. Cross-talk between LOX-1 and PCSK9 in vascular tissues.Cardiovasc. Res.2015107455656710.1093/cvr/cvv17826092101
    [Google Scholar]
  43. PunchE. KleinJ. Diaba-NuhohoP. MorawietzH. GarelnabiM. Effects of PCSK9 targeting: Alleviating oxidation, inflammation, and atherosclerosis.J. Am. Heart Assoc.2022113e02332810.1161/JAHA.121.02332835048716
    [Google Scholar]
  44. MacchiC. GrecoM.F. BottaM. SperandeoP. DongiovanniP. ValentiL. CiceroA.F.G. BorghiC. LupoM.G. RomeoS. CorsiniA. MagniP. FerriN. RuscicaM. Leptin, resistin, and proprotein convertase subtilisin/kexin type 9.Am. J. Pathol.2020190112226223610.1016/j.ajpath.2020.07.01632798443
    [Google Scholar]
  45. GruneJ. MeyborgH. BezhaevaT. KappertK. HillmeisterP. KintscherU. PieskeB. StawowyP. PCSK9 regulates the chemokine receptor CCR2 on monocytes.Biochem. Biophys. Res. Commun.2017485231231810.1016/j.bbrc.2017.02.08528232185
    [Google Scholar]
  46. GiunzioniI. TavoriH. CovarrubiasR. MajorA.S. DingL. ZhangY. DeVayR.M. HongL. FanD. PredazziI.M. RashidS. LintonM.F. FazioS. Local effects of human PCSK9 on the atherosclerotic lesion.J. Pathol.20162381526210.1002/path.463026333678
    [Google Scholar]
  47. WangF. LiM. ZhangA. LiH. JiangC. GuoJ. PCSK9 modulates macrophage polarization-mediated ventricular remodeling after myocardial infarction.J. Immunol. Res.2022202211810.1155/2022/768579635832650
    [Google Scholar]
  48. LiuA. FrostegårdJ. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque.J. Intern. Med.2018284219321010.1111/joim.1275829617044
    [Google Scholar]
  49. KrychtiukK.A. AhrensI. DrexelH. HalvorsenS. HassagerC. HuberK. KurpasD. NiessnerA. SchieleF. SembA.G. SionisA. ClaeysM.J. BarrabesJ. MonteroS. SinnaeveP. PedrettiR. CatapanoA. Acute LDL-C reduction post ACS: strike early and strike strong: from evidence to clinical practice. A clinical consensus statement of the association for acute cardiovascular care (ACVC), in collaboration with the European association of preventive cardiology (EAPC) and the European society of cardiology working group on cardiovascular pharmacotherapy.Eur. Heart J. Acute Cardiovasc. Care2022111293994910.1093/ehjacc/zuac12336574353
    [Google Scholar]
  50. SahebkarA. Di GiosiaP. StamerraC.A. GrassiD. PedoneC. FerrettiG. BacchettiT. FerriC. GiorginiP. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: A meta-analysis of 16 randomized controlled treatment arms.Br. J. Clin. Pharmacol.20168161175119010.1111/bcp.1290526861255
    [Google Scholar]
  51. KoskinasK.C. WindeckerS. PedrazziniG. MuellerC. CookS. MatterC.M. MullerO. HänerJ. GencerB. CrljenicaC. AminiP. DeckarmO. IglesiasJ.F. RäberL. HegD. MachF. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS).J. Am. Coll. Cardiol.201974202452246210.1016/j.jacc.2019.08.01031479722
    [Google Scholar]
  52. BohulaE.A. GiuglianoR.P. LeiterL.A. VermaS. ParkJ.G. SeverP.S. Lira PinedaA. HonarpourN. WangH. MurphyS.A. KeechA. PedersenT.R. SabatineM.S. Inflammatory and cholesterol risk in the FOURIER trial.Circulation2018138213114010.1161/CIRCULATIONAHA.118.03403229530884
    [Google Scholar]
  53. NelsonA.J. PuriR. BrennanD.M. AndersonT.J. ChoL. BallantyneC.M. KasteleinJ.J.P. KoenigW. KassahunH. SomaratneR.M. WassermanS.M. NissenS.E. NichollsS.J. C-reactive protein levels and plaque regression with evolocumab: Insights from GLAGOV.Am. J. Prev. Cardiol.2020310009110.1016/j.ajpc.2020.10009134327467
    [Google Scholar]
  54. PradhanA.D. AdayA.W. RoseL.M. RidkerP.M. Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy.Circulation2018138214114910.1161/CIRCULATIONAHA.118.03464529716940
    [Google Scholar]
  55. TrankleC.R. WohlfordG. BuckleyL.F. KadariyaD. RavindraK. MarkleyR. ParkT.S. PotereN. Van TassellB.W. AbbateA. Alirocumab in acute myocardial infarction: Results from the virginia commonwealth university alirocumab response trial (VCU-AlirocRT).J. Cardiovasc. Pharmacol.201974326626910.1097/FJC.000000000000070631356537
    [Google Scholar]
  56. SchwartzG.G. StegP.G. SzarekM. BhattD.L. BittnerV.A. DiazR. EdelbergJ.M. GoodmanS.G. HanotinC. HarringtonR.A. JukemaJ.W. LecorpsG. MahaffeyK.W. MoryusefA. PordyR. QuinteroK. RoeM.T. SasielaW.J. TambyJ.F. TricociP. WhiteH.D. ZeiherA.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome.N. Engl. J. Med.2018379222097210710.1056/NEJMoa180117430403574
    [Google Scholar]
  57. MehtaS.R. PareG. LonnE.M. JollyS.S. NatarajanM.K. Pinilla-EcheverriN. SchwalmJ.D. ShethT.N. SibbaldM. TsangM. ValettasN. VelianouJ.L. LeeS.F. FerdousT. NaumanS. NguyenH. McCreadyT. McQueenM.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial.EuroIntervention20221811e888e89610.4244/EIJ‑D‑22‑0073536349701
    [Google Scholar]
  58. RäberL. UekiY. OtsukaT. LosdatS. HänerJ.D. LonborgJ. FahrniG. IglesiasJ.F. van GeunsR.J. OndracekA.S. Radu Juul JensenM.D. ZanchinC. StorteckyS. SpirkD. SiontisG.C.M. SalehL. MatterC.M. DaemenJ. MachF. HegD. WindeckerS. EngstrømT. LangI.M. KoskinasK.C. AmbühlM. BärS. FrenkA. MorfL.U. InderkumA. LeuthardS. KavaliauskaiteR. RexhajE. ShibutaniH. MitterV.R. KaiserC. MayrM. EberliF.R. O’SullivanC.J. TemplinC. von EckardsteinA. GhandilyanA. PawarR. JonkerH. HofbauerT. GoliaschG. BangL. SørensenR. Tovar ForeroM.N. DegrauweS. Ten CateT. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction.JAMA2022327181771178110.1001/jama.2022.521835368058
    [Google Scholar]
  59. KühnastS. van der HoornJ.W.A. PietermanE.J. van den HoekA.M. SasielaW.J. GusarovaV. PeymanA. SchäferH.L. SchwahnU. JukemaJ.W. PrincenH.M.G. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin.J. Lipid Res.201455102103211210.1194/jlr.M05132625139399
    [Google Scholar]
  60. MarfellaR. PrattichizzoF. SarduC. PaolissoP. D’OnofrioN. ScisciolaL. La GrottaR. FrigéC. FerraraccioF. PanareseI. FanelliM. ModugnoP. CalafioreA.M. MelchionnaM. SassoF.C. FurbattoF. D’AndreaD. SiniscalchiM. MauroC. CesaroA. CalabròP. SantulliG. BalestrieriM.L. BarbatoE. CerielloA. PaolissoG. Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque.Atherosclerosis202337811718010.1016/j.atherosclerosis.2023.06.97137422356
    [Google Scholar]
  61. VlachopoulosC. KoutagiarI. SkoumasI. Terentes-PrintziosD. ZacharisE. KolovouG. StamatelopoulosK. RallidisL. KatsikiN. BilianouH. LiberopoulosE. MiliouA. KafourisP. GeorgakopoulosA. GardikiotiV. TousoulisD. AnagnostopoulosC.D. Long-term administration of proprotein convertase subtilisin/kexin type 9 inhibitors reduces arterial FDG uptake.JACC Cardiovasc. Imaging201912122573257410.1016/j.jcmg.2019.09.02431806185
    [Google Scholar]
  62. HoogeveenR.M. OpstalT.S.J. KaiserY. StiekemaL.C.A. KroonJ. KnolR.J.J. BaxW.A. VerberneH.J. CornelJ.H. StroesE.S.G. PCSK9 antibody alirocumab attenuates arterial wall inflammation without changes in circulating inflammatory markers.JACC Cardiovasc. Imaging201912122571257310.1016/j.jcmg.2019.06.02231422119
    [Google Scholar]
  63. TangZ. JiangL. PengJ. RenZ. WeiD. WuC. PanL. JiangZ. LiuL. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-κB activation in THP-1-derived macrophages.Int. J. Mol. Med.201230493193810.3892/ijmm.2012.107222825241
    [Google Scholar]
  64. RayK.K. LandmesserU. LeiterL.A. KallendD. DufourR. KarakasM. HallT. TroquayR.P.T. TurnerT. VisserenF.L.J. WijngaardP. WrightR.S. KasteleinJ.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol.N. Engl. J. Med.2017376151430144010.1056/NEJMoa161575828306389
    [Google Scholar]
  65. LandlingerC. PouwerM.G. JunoC. van der HoornJ.W.A. PietermanE.J. JukemaJ.W. StafflerG. PrincenH.M.G. GalabovaG. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice.Eur. Heart J.201738322499250710.1093/eurheartj/ehx26028637178
    [Google Scholar]
  66. HawleyS.A. DavisonM. WoodsA. DaviesS.P. BeriR.K. CarlingD. HardieD.G. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase.J. Biol. Chem.199627144278792788710.1074/jbc.271.44.278798910387
    [Google Scholar]
  67. WoodsA. DickersonK. HeathR. HongS.P. MomcilovicM. JohnstoneS.R. CarlsonM. CarlingD. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells.Cell Metab.200521213310.1016/j.cmet.2005.06.00516054096
    [Google Scholar]
  68. WoodsA. JohnstoneS.R. DickersonK. LeiperF.C. FryerL.G.D. NeumannD. SchlattnerU. WallimannT. CarlsonM. CarlingD. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade.Curr. Biol.200313222004200810.1016/j.cub.2003.10.03114614828
    [Google Scholar]
  69. SandersM.J. GrondinP.O. HegartyB.D. SnowdenM.A. CarlingD. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade.Biochem. J.2007403113914810.1042/BJ2006152017147517
    [Google Scholar]
  70. CarlingD. MayerF.V. SandersM.J. GamblinS.J. AMP-activated protein kinase: Nature’s energy sensor.Nat. Chem. Biol.20117851251810.1038/nchembio.61021769098
    [Google Scholar]
  71. PlutaL. YousefiB. DamaniaB. KhanA.A. Endosomal TLR-8 Senses microRNA-1294 resulting in the production of NFḱB dependent cytokines.Front. Immunol.201910286010.3389/fimmu.2019.0286031867014
    [Google Scholar]
  72. LiuT. ZhangL. JooD. SunSC. NF-κB signaling in inflammation.Signal Transduct. Target Ther.20171702310.1038/sigtrans.2017.23
    [Google Scholar]
  73. AronicaM.A. MoraA.L. MitchellD.B. FinnP.W. JohnsonJ.E. ShellerJ.R. BoothbyM.R. Preferential role for NF-kappa B/Rel signaling in the type 1 but not type 2 T cell-dependent immune response in vivo.J. Immunol.199916395116512410.4049/jimmunol.163.9.511610528218
    [Google Scholar]
  74. YeungF. HobergJ.E. RamseyC.S. KellerM.D. JonesD.R. FryeR.A. MayoM.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO J.200423122369238010.1038/sj.emboj.760024415152190
    [Google Scholar]
  75. Álvarez-GuardiaD. PalomerX. CollT. DavidsonM.M. ChanT.O. FeldmanA.M. LagunaJ.C. Vázquez-CarreraM. The p65 subunit of NF-κB binds to PGC-1α, linking inflammation and metabolic disturbances in cardiac cells.Cardiovasc. Res.201087344945810.1093/cvr/cvq08020211864
    [Google Scholar]
  76. SalminenA. HyttinenJ.M.T. KaarnirantaK. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: Impact on healthspan and lifespan.J. Mol. Med. (Berl.)201189766767610.1007/s00109‑011‑0748‑021431325
    [Google Scholar]
  77. KoR. LeeS.Y. Glycogen synthase kinase 3β in Toll-like receptor signaling.BMB Rep.201649630531010.5483/BMBRep.2016.49.6.05926996345
    [Google Scholar]
  78. HillE.V. NgT.H.S. BurtonB.R. OakleyC.M. MalikK. WraithD.C. Glycogen synthase kinase-3 controls IL-10 expression in CD4+ effector T-cell subsets through epigenetic modification of the IL-10 promoter.Eur. J. Immunol.20154541103111510.1002/eji.20144466125627813
    [Google Scholar]
  79. GuhaS. CullenJ.P. MorrowD. ColomboA. LallyC. WallsD. RedmondE.M. CahillP.A. Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival.Basic Res. Cardiol.2011106577378510.1007/s00395‑011‑0189‑521557011
    [Google Scholar]
  80. TsugeK. InazumiT. ShimamotoA. SugimotoY. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases.Int. Immunol.201931959760610.1093/intimm/dxz02130926983
    [Google Scholar]
  81. JeongG.S. LeeD.S. LiB. KimJ.J. KimE.C. KimY.C. Anti-inflammatory effects of lindenenyl acetate via heme oxygenase-1 and AMPK in human periodontal ligament cells.Eur. J. Pharmacol.2011670129530310.1016/j.ejphar.2011.08.00821910986
    [Google Scholar]
  82. BodenG. Obesity, insulin resistance and free fatty acids.Curr. Opin. Endocrinol. Diabetes Obes.201118213914310.1097/MED.0b013e3283444b0921297467
    [Google Scholar]
  83. ItaniS.I. RudermanN.B. SchmiederF. BodenG. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha.Diabetes20025172005201110.2337/diabetes.51.7.200512086926
    [Google Scholar]
  84. CantóC. Gerhart-HinesZ. FeigeJ.N. LagougeM. NoriegaL. MilneJ.C. ElliottP.J. PuigserverP. AuwerxJ. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature200945872411056106010.1038/nature0781319262508
    [Google Scholar]
  85. ChuX. LiL. YanW. MaH. 4-Octyl itaconate prevents free fatty acid-induced lipid metabolism disorder through activating Nrf2-AMPK signaling pathway in hepatocytes.Oxid. Med. Cell. Longev.2022202211510.1155/2022/5180242
    [Google Scholar]
  86. BallantyneC.M. BaysH. CatapanoA.L. GoldbergA. RayK.K. SaseenJ.J. Role of bempedoic acid in clinical practice.Cardiovasc. Drugs Ther.202135485386410.1007/s10557‑021‑07147‑533818688
    [Google Scholar]
  87. PinkoskyS.L. NewtonR.S. DayE.A. FordR.J. LhotakS. AustinR.C. BirchC.M. SmithB.K. FilippovS. GrootP.H.E. SteinbergG.R. LalwaniN.D. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis.Nat. Commun.2016711345710.1038/ncomms1345727892461
    [Google Scholar]
  88. SamsoondarJ.P. BurkeA.C. SutherlandB.G. TelfordD.E. SawyezC.G. EdwardsJ.Y. PinkoskyS.L. NewtonR.S. HuffM.W. Prevention of diet-induced metabolic dysregulation, inflammation, and Atherosclerosis in Ldlr −/− mice by treatment with the atp-citrate lyase inhibitor bempedoic acid.Arterioscler. Thromb. Vasc. Biol.201737464765610.1161/ATVBAHA.116.30896328153881
    [Google Scholar]
  89. PinkoskyS.L. FilippovS. SrivastavaR.A.K. HanselmanJ.C. BradshawC.D. HurleyT.R. CramerC.T. SpahrM.A. BrantA.F. HoughtonJ.L. BakerC. NaplesM. AdeliK. NewtonR.S. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism.J. Lipid Res.201354113415110.1194/jlr.M03052823118444
    [Google Scholar]
  90. VerberkS.G.S. KuiperK.L. LauterbachM.A. LatzE. Van den BosscheJ. The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis.Trends Mol. Med.202127121095110510.1016/j.molmed.2021.09.00434635427
    [Google Scholar]
  91. LinnenbergerR. HoppstädterJ. WrublewskyS. AmpofoE. KiemerA.K. Statins and bempedoic acid: Different actions of cholesterol inhibitors on macrophage activation.Int. J. Mol. Sci.202122221248010.3390/ijms22221248034830364
    [Google Scholar]
  92. ChenA. ChenZ. ZhouY. WuY. XiaY. LuD. FanM. LiS. ChenJ. SunA. ZouY. QianJ. GeJ. Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation.Cell Death Dis.20211217810.1038/s41419‑021‑03389‑133436548
    [Google Scholar]
  93. RayK.K. BaysH.E. CatapanoA.L. LalwaniN.D. BloedonL.T. SterlingL.R. RobinsonP.L. BallantyneC.M. Safety and efficacy of bempedoic acid to reduce LDL cholesterol.N. Engl. J. Med.2019380111022103210.1056/NEJMoa180391730865796
    [Google Scholar]
  94. GoldbergA.C. LeiterL.A. StroesE.S.G. BaumS.J. HanselmanJ.C. BloedonL.T. LalwaniN.D. PatelP.M. ZhaoX. DuellP.B. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease.JAMA2019322181780178810.1001/jama.2019.1658531714986
    [Google Scholar]
  95. LaufsU. BanachM. ManciniG.B.J. GaudetD. BloedonL.T. SterlingL.R. KellyS. StroesE.S.G. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance.J. Am. Heart Assoc.201987e01166210.1161/JAHA.118.01166230922146
    [Google Scholar]
  96. BallantyneC.M. BanachM. ManciniG.B.J. LeporN.E. HanselmanJ.C. ZhaoX. LeiterL.A. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study.Atherosclerosis201827719520310.1016/j.atherosclerosis.2018.06.00229910030
    [Google Scholar]
  97. BaysH.E. BanachM. CatapanoA.L. DuellP.B. GottoA.M.Jr LaufsU. LeiterL.A. ManciniG.B.J. RayK.K. BloedonL.T. SasielaW.J. YeZ. BallantyneC.M. Bempedoic acid safety analysis: Pooled data from four phase 3 clinical trials.J. Clin. Lipidol.2020145649659.e610.1016/j.jacl.2020.08.00932980290
    [Google Scholar]
  98. XuS. OguraS. ChenJ. LittleP.J. MossJ. LiuP. LOX-1 in atherosclerosis: Biological functions and pharmacological modifiers.Cell. Mol. Life Sci.201370162859287210.1007/s00018‑012‑1194‑z23124189
    [Google Scholar]
  99. BarretoJ. KarathanasisS.K. RemaleyA. SpositoA.C. Role of LOX-1 (Lectin-like oxidized low-density lipoprotein receptor 1) as a cardiovascular risk predictor.Arterioscler. Thromb. Vasc. Biol.202141115316610.1161/ATVBAHA.120.31542133176449
    [Google Scholar]
  100. TianK. OguraS. LittleP.J. XuS. SawamuraT. Targeting LOX-1 in atherosclerosis and vasculopathy: Current knowledge and future perspectives.Ann. N. Y. Acad. Sci.201914431345310.1111/nyas.1398430381837
    [Google Scholar]
  101. HeinT.W. XuX. RenY. XuW. TsaiS.H. ThengchaisriN. KuoL. Requisite roles of LOX-1, JNK, and arginase in diabetes-induced endothelial vasodilator dysfunction of porcine coronary arterioles.J. Mol. Cell. Cardiol.2019131829010.1016/j.yjmcc.2019.04.01531015037
    [Google Scholar]
  102. Kumano-KuramochiM. XieQ. KajiwaraS. KombaS. MinowaT. MachidaS. Lectin-like oxidized LDL receptor-1 is palmitoylated and internalizes ligands via caveolae/raft-dependent endocytosis.Biochem. Biophys. Res. Commun.2013434359459910.1016/j.bbrc.2013.03.12023583401
    [Google Scholar]
  103. LiD. MehtaJ.L. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells.Circulation2000101252889289510.1161/01.CIR.101.25.288910869259
    [Google Scholar]
  104. MillerY.I. ChoiS.H. FangL. TsimikasS. Lipoprotein modification and macrophage uptake: Role of pathologic cholesterol transport in atherogenesis.Subcell. Biochem.20105122925110.1007/978‑90‑481‑8622‑8_820213546
    [Google Scholar]
  105. ZhaoZ. XuY. LiS. GuoJ. SunJ. HongJ. ChenL. Baseline serum sLOX-1 concentrations are associated with 2-year major adverse cardiovascular and cerebrovascular events in patients after percutaneous coronary intervention.Dis. Markers201920191492576710.1155/2019/492576731772687
    [Google Scholar]
  106. VillaM. Cerda-OpazoP. Jimenez-GallegosD. Garrido-MorenoV. ChiongM. QuestA.F.G. ToledoJ. GarciaL. Pro-fibrotic effect of oxidized LDL in cardiac myofibroblasts.Biochem. Biophys. Res. Commun.2020524369670110.1016/j.bbrc.2020.01.15632033750
    [Google Scholar]
  107. VavereA.L. SinsakulM. OngstadE.L. YangY. VarmaV. JonesC. GoodmanJ. DuboisV.F.S. QuartinoA.L. KarathanasisS.K. AbuhatziraL. CollénA. AntoniadesC. KorenM.J. GuptaR. GeorgeR.T. Lectin- like oxidized low-density lipoprotein receptor 1 inhibition in type 2 diabetes: Phase 1 results.J. Am. Heart Assoc.2023123e02754010.1161/JAHA.122.02754036688371
    [Google Scholar]
  108. KoutsogianniA.D. LiberopoulosE. TselepisA.D. Lipoprotein(a): An update on its role in human health and disease.J. Atherosclerosis Preven. Treatm.20211239210210.53590/japt.02.1028
    [Google Scholar]
  109. OberC. NordA.S. ThompsonE.E. PanL. TanZ. CusanovichD. SunY. NicolaeR. EdelsteinC. SchneiderD.H. BillstrandC. PfaffingerD. PhillipsN. AndersonR.L. PhilipsB. RajagopalanR. HatsukamiT.S. RiederM.J. HeagertyP.J. NickersonD.A. AbneyM. MarcovinaS. JarvikG.P. ScanuA.M. NicolaeD.L. Genome-wide association study of plasma lipoprotein(a) levels identifies multiple genes on chromosome 6q.J. Lipid Res.200950579880610.1194/jlr.M800515‑JLR20019124843
    [Google Scholar]
  110. ClarkeR. PedenJ.F. HopewellJ.C. KyriakouT. GoelA. HeathS.C. ParishS. BarleraS. FranzosiM.G. RustS. BennettD. SilveiraA. MalarstigA. GreenF.R. LathropM. GiganteB. LeanderK. de FaireU. SeedorfU. HamstenA. CollinsR. WatkinsH. FarrallM. Genetic variants associated with Lp(a) lipoprotein level and coronary disease.N. Engl. J. Med.2009361262518252810.1056/NEJMoa090260420032323
    [Google Scholar]
  111. ArgravesK.M. KozarskyK.F. FallonJ.T. HarpelP.C. StricklandD.K. The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor.J. Clin. Invest.199710092170218110.1172/JCI1197539410893
    [Google Scholar]
  112. RikhiR. HammoudA. AshburnN. SnavelyA.C. MichosE.D. ChevliP. TsaiM.Y. HerringtonD. ShapiroM.D. Relationship of low-density lipoprotein-cholesterol and lipoprotein(a) to cardiovascular risk: The Multi-Ethnic Study of Atherosclerosis (MESA).Atherosclerosis202236310210810.1016/j.atherosclerosis.2022.10.00436253168
    [Google Scholar]
  113. AfsharM. PiloteL. DufresneL. EngertJ.C. ThanassoulisG. Lipoprotein(a) Interactions with low-density lipoprotein cholesterol and other cardiovascular risk factors in premature acute coronary syndrome (ACS).J. Am. Heart Assoc.201654e00301210.1161/JAHA.115.00301227108248
    [Google Scholar]
  114. QinS. LiuJ. JiangH. HuB. ZhouY. OlkkonenV.M. Association between baseline lipoprotein (a) levels and restenosis after coronary stenting: Meta-analysis of 9 cohort studies.Atherosclerosis2013227236036610.1016/j.atherosclerosis.2013.01.01423411039
    [Google Scholar]
  115. Di FuscoS.A. MaggioniA.P. ScicchitanoP. ZuinM. D’EliaE. ColivicchiF. Lipoprotein (a), Inflammation, and Atherosclerosis.J. Clin. Med.2023127252910.3390/jcm1207252937048611
    [Google Scholar]
  116. RidkerP.M. DevalarajaM. BaeresF.M.M. EngelmannM.D.M. HovinghG.K. IvkovicM. LoL. KlingD. PergolaP. RajD. LibbyP. DavidsonM. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): A double-blind, randomised, placebo-controlled, phase 2 trial.Lancet2021397102892060206910.1016/S0140‑6736(21)00520‑134015342
    [Google Scholar]
  117. MilosavljevicM.N. StefanovicS.M. PejcicA.V. Potential novel RNA-targeting agents for effective lipoprotein(a) lowering: A systematic assessment of the evidence from completed and ongoing developmental clinical trials.J. Cardiovasc. Pharmacol.202382111210.1097/FJC.000000000000142937070852
    [Google Scholar]
  118. TsimikasS. Karwatowska-ProkopczukE. Gouni-BertholdI. TardifJ.C. BaumS.J. Steinhagen-ThiessenE. ShapiroM.D. StroesE.S. MoriartyP.M. NordestgaardB.G. XiaS. GuerrieroJ. VineyN.J. O’DeaL. WitztumJ.L. Lipoprotein(a) Reduction in persons with cardiovascular disease.N. Engl. J. Med.2020382324425510.1056/NEJMoa190523931893580
    [Google Scholar]
  119. O’DonoghueM.L. RosensonR.S. GencerB. LópezJ.A.G. LeporN.E. BaumS.J. StoutE. GaudetD. KnuselB. KuderJ.F. RanX. MurphyS.A. WangH. WuY. KassahunH. SabatineM.S. Small interfering RNA to reduce lipoprotein(a) In cardiovascular disease.N. Engl. J. Med.2022387201855186410.1056/NEJMoa221102336342163
    [Google Scholar]
  120. NissenS.E. WolskiK. BalogC. SwerdlowD.I. ScrimgeourA.C. RambaranC. WilsonR.J. BoyceM. RayK.K. ChoL. WattsG.F. KorenM. TurnerT. StroesE.S. MelgaardC. CampionG.V. Single ascending dose study of a short interfering RNA targeting lipoprotein(a) Production in individuals with elevated plasma lipoprotein(a) levels.JAMA2022327171679168710.1001/jama.2022.505035368052
    [Google Scholar]
  121. StiekemaL.C.A. PrangeK.H.M. HoogeveenR.M. VerweijS.L. KroonJ. SchnitzlerJ.G. DzoboK.E. CupidoA.J. TsimikasS. StroesE.S.G. de WintherM.P.J. BahjatM. Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a).Eur. Heart J.202041242262227110.1093/eurheartj/ehaa17132268367
    [Google Scholar]
  122. HardyJ. NimanS. GoldfadenR.F. AshchiM. BisharatM. HustonJ. HartmannH. ChoksiR. A review of the clinical pharmacology of pelacarsen: A lipoprotein(a) Lowering agent.Am. J. Cardiovasc. Drugs2022221475410.1007/s40256‑021‑00499‑134490591
    [Google Scholar]
  123. GurgoglioneF.L. DenegriA. RussoM. CalvieriC. BenattiG. NiccoliG. Intracoronary imaging of coronary atherosclerotic plaque: From assessment of pathophysiological mechanisms to therapeutic implication.Int. J. Mol. Sci.2023246515510.3390/ijms2406515536982230
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673311105240902053715
Loading
/content/journals/cmc/10.2174/0109298673311105240902053715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test