Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Atherosclerosis is the pathophysiological basis for major diseases, such as coronary heart disease, cerebral stroke, and peripheral arterial disease, which have become epidemic in modern Western society. Atherosclerosis has a complex nature that involves mutually related immune and metabolic mechanisms. Many cells of the vascular wall and peripheral bloodstream, including endothelial cells, monocytes and macrophages, platelets, and others, are involved in the development and progression of atherosclerosis. These cells perform a number of innate immune functions, disorders of which are associated with atherosclerosis. Furthermore, lipids are not only a morphological substrate but also important participants in the development of atherosclerosis. They are involved in the development and resolution of inflammation and mediate vascular cell function.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673303369240312092913
2025-03-19
2025-10-30
Loading full text...

Full text loading...

References

  1. HoshinoT. SissaniL. LabreucheJ. DucrocqG. LavalléeP.C. MeseguerE. GuidouxC. CabrejoL. HobeanuC. Gongora-RiveraF. TouboulP.J. StegP.G. AmarencoP. AMISTAD Investigators Prevalence of systemic atherosclerosis burdens and overlapping stroke etiologies and their associations with long-term vascular prognosis in stroke with intracranial atherosclerotic disease.JAMA Neurol.201875220321110.1001/jamaneurol.2017.396029279888
    [Google Scholar]
  2. LinJ. ChenY. JiangN. LiZ. XuS. Burden of peripheral artery disease and its attributable risk factors in 204 countries and territories from 1990 to 2019.Front. Cardiovasc. Med.2022986837010.3389/fcvm.2022.86837035498034
    [Google Scholar]
  3. GuanC. WuS. XuW. ZhangJ. Global, regional, and national burden of ischaemic heart disease and its trends, 1990-2019.Public Health2023223576610.1016/j.puhe.2023.07.01037604031
    [Google Scholar]
  4. KalininR.E. SuchkovI.A. NikiforovA.A. PhennikovA.S. Dynamics of some biochemical parameters in patients with peripheral occlusive arterial disease at different periods following reconstructive surgery.I.P. Pavlov Russian Medical Biological Herald2012201424510.17816/PAVLOVJ2012142‑45
    [Google Scholar]
  5. Aursulesei OnofreiV. CeasovschihA. MarcuD.T.M. AdamC.A. MituO. MituF. Mortality risk assessment in peripheral arterial disease-the burden of cardiovascular risk factors over the years: A single center’s experience.Diagnostics20221210249910.3390/diagnostics1210249936292188
    [Google Scholar]
  6. ChenW. LiZ. ZhaoY. ChenY. HuangR. Global and national burden of atherosclerosis from 1990 to 2019: trend analysis based on the global burden of disease study 2019.Chin. Med. J.2023136202442245010.1097/CM9.000000000000283937677929
    [Google Scholar]
  7. KhanM.A.B. HashimM.J. MustafaH. BaniyasM.Y. Al SuwaidiS.K.B.M. AlKatheeriR. AlblooshiF.M.K. AlmatrooshiM.E.A.H. AlzaabiM.E.H. Al DarmakiR.S. LootahS.N.A.H. Global epidemiology of ischemic heart disease: Results from the global burden of disease study.Cureus2020127e934910.7759/cureus.934932742886
    [Google Scholar]
  8. DemirY. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis.J. Pharm. Pharmacol.201971101576158310.1111/jphp.1314431347707
    [Google Scholar]
  9. DemirY. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.Drug Dev. Res.202081562863610.1002/ddr.2166732232985
    [Google Scholar]
  10. WentzelJ.J. RowlandE.M. WeinbergP.D. KramsR. Biomechanical theories of atherosclerosis.The ESC Textbook of Vascular Biology KramsR. BäckM. Oxford University Press201710.1093/med/9780198755777.003.0012
    [Google Scholar]
  11. SalvayreR. Negre-SalvayreA. CamaréC. Oxidative theory of atherosclerosis and antioxidants.Biochimie201612528129610.1016/j.biochi.2015.12.01426717905
    [Google Scholar]
  12. SteinbergD. In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis.J. Lipid Res.201354112946294910.1194/jlr.R04341423975896
    [Google Scholar]
  13. MinelliS. MinelliP. MontinariM.R. Reflections on atherosclerosis: Lesson from the past and future research directions.J. Multidiscip. Healthc.20201362163310.2147/JMDH.S25401632801729
    [Google Scholar]
  14. AnitschkowN. ChalatowS. MontinariM.R. Classics in arteriosclerosis research: On experimental cholesterin steatosis and its significance in the origin of some pathological processes translated by Mary Z. Pelias, 1913.Arteriosclerosis19833217818210.1161/01.ATV.3.2.1786340651
    [Google Scholar]
  15. KonstantinovI.E. MejevoiN. AnichkovN.M. NikolaiN. Anichkov and his theory of atherosclerosis.Tex. Heart Inst. J.200633441742317215962
    [Google Scholar]
  16. CapronL. Pathogenesis of atherosclerosis: An update on the three main theories.Ann. Cardiol. Angeiol.198938106316342698116
    [Google Scholar]
  17. BujaL.M. NikolaiN. Anitschkow and the lipid hypothesis of atherosclerosis.Cardiovasc. Pathol.201423318318410.1016/j.carpath.2013.12.00424484612
    [Google Scholar]
  18. KannelW.B. CastelliW.P. GordonT. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study.Ann. Intern. Med.1979901859110.7326/0003‑4819‑90‑1‑85217290
    [Google Scholar]
  19. MachF. BaigentC. CatapanoA.L. KoskinasK.C. CasulaM. BadimonL. ChapmanM.J. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM.R. TokgozogluL. WiklundO. MuellerC. DrexelH. AboyansV. CorsiniA. DoehnerW. FarnierM. GiganteB. KayikciogluM. KrstacicG. LambrinouE. LewisB.S. MasipJ. MoulinP. PetersenS. PetronioA.S. PiepoliM.F. PintóX. RäberL. RayK.K. ReinerŽ. RiesenW.F. RoffiM. SchmidJ-P. ShlyakhtoE. SimpsonI.A. StroesE. SudanoI. TselepisA.D. ViigimaaM. VindisC. VonbankA. VrablikM. VrsalovicM. ZamoranoJ.L. ColletJ-P. KoskinasK.C. CasulaM. BadimonL. John ChapmanM. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM-R. TokgozogluL. WiklundO. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. NiboucheD. ZelveianP.H. SiostrzonekP. NajafovR. van de BorneP. PojskicB. PostadzhiyanA. KyprisL. ŠpinarJ. LarsenM.L. EldinH.S. ViigimaaM. StrandbergT.E. FerrièresJ. AgladzeR. LaufsU. RallidisL. BajnokL. GudjónssonT. MaherV. HenkinY. GuliziaM.M. MussagaliyevaA. BajraktariG. KerimkulovaA. LatkovskisG. HamouiO. SlapikasR. VisserL. DingliP. IvanovV. BoskovicA. NazziM. VisserenF. MitevskaI. RetterstølK. JankowskiP. Fontes-CarvalhoR. GaitaD. EzhovM. FoscoliM. GigaV. PellaD. FrasZ. de IslaL.P. HagströmE. LehmannR. AbidL. OzdoganO. MitchenkoO. PatelR.S. ESC Scientific Document Group 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz45531504418
    [Google Scholar]
  20. MeierR. RachaminY. RosemannT. MarkunS. The impact of the 2019 European guideline for cardiovascular risk management: A cross-sectional study in general practice.J. Clin. Med.202097214010.3390/jcm907214032645925
    [Google Scholar]
  21. GalimbertiF. CasulaM. OlmastroniE. Apolipoprotein B compared with low-density lipoprotein cholesterol in the atherosclerotic cardiovascular diseases risk assessment.Pharmacol. Res.202319510687310.1016/j.phrs.2023.10687337517561
    [Google Scholar]
  22. SnidermanA.D. ThanassoulisG. GlavinovicT. NavarA.M. PencinaM. CatapanoA. FerenceB.A. Apolipoprotein B particles and cardiovascular disease.JAMA Cardiol.20194121287129510.1001/jamacardio.2019.378031642874
    [Google Scholar]
  23. BezsonovE. KhotinaV. GlanzV. SobeninI. OrekhovA. Lipids and lipoproteins in atherosclerosis.Biomedicines2023115142410.3390/biomedicines1105142437239095
    [Google Scholar]
  24. KotlyarovS. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease.Biomol. Concepts2022131345410.1515/bmc‑2022‑000135189051
    [Google Scholar]
  25. DouglasG. ChannonK.M. The pathogenesis of atherosclerosis.Medicine201442948048410.1016/j.mpmed.2014.06.011
    [Google Scholar]
  26. JiangP. ChenZ. HippeD.S. WataseH. SunB. LinR. YangZ. XueY. ZhaoX. YuanC. Association between carotid bifurcation geometry and atherosclerotic plaque vulnerability.Arterioscler. Thromb. Vasc. Biol.20204051383139110.1161/ATVBAHA.119.31383032160772
    [Google Scholar]
  27. GlagovS. ZarinsC. GiddensD.P. KuD.N. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.Arch. Pathol. Lab. Med.198811210101810313052352
    [Google Scholar]
  28. FrangosSG GahtanV SumpioB Localization of atherosclerosis: role of hemodynamics.Arch. Surg. Chic.19601341011421149
    [Google Scholar]
  29. DaviesP.F. Flow-mediated endothelial mechanotransduction.Physiol. Rev.199575351956010.1152/physrev.1995.75.3.5197624393
    [Google Scholar]
  30. ChiuJ.J. ChienS. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives.Physiol. Rev.201191132738710.1152/physrev.00047.200921248169
    [Google Scholar]
  31. KasikaraC. DoranA.C. CaiB. TabasI. The role of non-resolving inflammation in atherosclerosis.J. Clin. Invest.201812872713272310.1172/JCI9795030108191
    [Google Scholar]
  32. AramouniK. AssafR.K. AzarM. JabbourK. ShaitoA. SahebkarA. EidA.A. RizzoM. EidA.H. Infection with Helicobacter pylori may predispose to atherosclerosis: role of inflammation and thickening of intima-media of carotid arteries.Front. Pharmacol.202314128575410.3389/fphar.2023.128575437900161
    [Google Scholar]
  33. SharmaH. MossmanK. AustinR.C. Fatal attractions that trigger inflammation and drive atherosclerotic disease.Eur. J. Clin. Invest.2024e1416910.1111/eci.1416938287209
    [Google Scholar]
  34. WangY.X. ZhengH.Y. ZhouK. XieH.L. RenZ. LiuH.T. LiuH. ZhouZ.X. JiangZ.S. Multifaceted nature of HuR in atherosclerosis development.Curr. Med. Chem.202410.2174/010929867327903223121411031338310400
    [Google Scholar]
  35. SoehnleinO. LibbyP. Targeting inflammation in atherosclerosis: From experimental insights to the clinic.Nat. Rev. Drug Discov.202120858961010.1038/s41573‑021‑00198‑133976384
    [Google Scholar]
  36. RossR. Atherosclerosis: An inflammatory disease.N. Engl. J. Med.1999340211512610.1056/NEJM1999011434002079887164
    [Google Scholar]
  37. MalekmohammadK. BezsonovE.E. Rafieian-KopaeiM. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms.Front. Cardiovasc. Med.2021870752910.3389/fcvm.2021.70752934552965
    [Google Scholar]
  38. ThorpE.B. Proresolving lipid mediators restore balance to the vulnerable plaque.Circ. Res.2016119997297410.1161/CIRCRESAHA.116.30979427737938
    [Google Scholar]
  39. FairmanG. RobichaudS. OuimetM. Metabolic regulators of vascular inflammation.Arterioscler. Thromb. Vasc. Biol.2020402e22e3010.1161/ATVBAHA.119.31258231967905
    [Google Scholar]
  40. FredmanG. TabasI. Boosting inflammation resolution in atherosclerosis.Am. J. Pathol.201718761211122110.1016/j.ajpath.2017.01.01828527709
    [Google Scholar]
  41. BobryshevY.V. IvanovaE.A. ChistiakovD.A. NikiforovN.G. OrekhovA.N. Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis.BioMed Res. Int.2016201611310.1155/2016/958243027493969
    [Google Scholar]
  42. TomasL. PricaF. SchulzC. Trafficking of mononuclear phagocytes in healthy arteries and atherosclerosis.Front. Immunol.20211271843210.3389/fimmu.2021.71843234759917
    [Google Scholar]
  43. RobbinsC.S. HilgendorfI. WeberG.F. TheurlI. IwamotoY. FigueiredoJ.L. GorbatovR. SukhovaG.K. GerhardtL.M.S. SmythD. ZavitzC.C.J. ShikataniE.A. ParsonsM. van RooijenN. LinH.Y. HusainM. LibbyP. NahrendorfM. WeisslederR. SwirskiF.K. Local proliferation dominates lesional macrophage accumulation in atherosclerosis.Nat. Med.20131991166117210.1038/nm.325823933982
    [Google Scholar]
  44. BobryshevYV. Monocyte recruitment and foam cell formation in atherosclerosis.Micron. Oxf. Engl.200637320822210.1016/j.micron.2005.10.007
    [Google Scholar]
  45. MooreK.J. TabasI. The cellular biology of macrophages in atherosclerosis.Cell2011145334135510.1016/j.cell.2011.04.00521529710
    [Google Scholar]
  46. BlagovA.V. MarkinA.M. BogatyrevaA.I. TolstikT.V. SukhorukovV.N. OrekhovA.N. The role of macrophages in the pathogenesis of atherosclerosis.Cells202312452210.3390/cells1204052236831189
    [Google Scholar]
  47. de GaetanoM. CreanD. BarryM. BeltonO. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis.Front. Immunol.2016727510.3389/fimmu.2016.0027527486460
    [Google Scholar]
  48. StögerJ.L. GijbelsM.J.J. van der VeldenS. MancaM. van der LoosC.M. BiessenE.A.L. DaemenM.J.A.P. LutgensE. de WintherM.P.J. Distribution of macrophage polarization markers in human atherosclerosis.Atherosclerosis2012225246146810.1016/j.atherosclerosis.2012.09.01323078881
    [Google Scholar]
  49. LinP. JiH.H. LiY.J. GuoS.D. Macrophage plasticity and atherosclerosis therapy.Front. Mol. Biosci.2021867979710.3389/fmolb.2021.67979734026849
    [Google Scholar]
  50. LeeS.G. OhJ. BongS.K. KimJ.S. ParkS. KimS. ParkS. LeeS.H. JangY. Macrophage polarization and acceleration of atherosclerotic plaques in a swine model.PLoS One2018133e019300510.1371/journal.pone.019300529561847
    [Google Scholar]
  51. DaviesM.J. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995.Circulation19969482013202010.1161/01.CIR.94.8.20138873680
    [Google Scholar]
  52. Galván-PeñaS. O’NeillL.A.J. Metabolic reprograming in macrophage polarization.Front. Immunol.2014542025228902
    [Google Scholar]
  53. SunX. LiY. DengQ. HuY. DongJ. WangW. WangY. LiC. Macrophage polarization, metabolic reprogramming, and inflammatory effects in ischemic heart disease.Front. Immunol.20221393404010.3389/fimmu.2022.93404035924253
    [Google Scholar]
  54. KellyB. O’NeillL.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity.Cell Res.201525777178410.1038/cr.2015.6826045163
    [Google Scholar]
  55. ViolaA. MunariF. Sánchez-RodríguezR. ScolaroT. CastegnaA. The metabolic signature of macrophage responses.Front. Immunol.201910146210.3389/fimmu.2019.0146231333642
    [Google Scholar]
  56. Van den BosscheJ. O’NeillL.A. MenonD. Macrophage immunometabolism: Where are we (Going)?Trends Immunol.201738639540610.1016/j.it.2017.03.00128396078
    [Google Scholar]
  57. GrohL. KeatingS.T. JoostenL.A.B. NeteaM.G. RiksenN.P. Monocyte and macrophage immunometabolism in atherosclerosis.Semin. Immunopathol.201840220321410.1007/s00281‑017‑0656‑728971272
    [Google Scholar]
  58. FeingoldK.R. ShigenagaJ.K. KazemiM.R. McDonaldC.M. PatzekS.M. CrossA.S. MoserA. GrunfeldC. Mechanisms of triglyceride accumulation in activated macrophages.J. Leukoc. Biol.201292482983910.1189/jlb.111153722753953
    [Google Scholar]
  59. DiskinC. Pålsson-McDermottE.M. Metabolic modulation in macrophage effector function.Front. Immunol.2018927010.3389/fimmu.2018.0027029520272
    [Google Scholar]
  60. JhaA.K. HuangS.C.C. SergushichevA. LampropoulouV. IvanovaY. LoginichevaE. ChmielewskiK. StewartK.M. AshallJ. EvertsB. PearceE.J. DriggersE.M. ArtyomovM.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.Immunity201542341943010.1016/j.immuni.2015.02.00525786174
    [Google Scholar]
  61. TannahillG.M. CurtisA.M. AdamikJ. Palsson-McDermottE.M. McGettrickA.F. GoelG. FrezzaC. BernardN.J. KellyB. FoleyN.H. ZhengL. GardetA. TongZ. JanyS.S. CorrS.C. HaneklausM. CaffreyB.E. PierceK. WalmsleyS. BeasleyF.C. CumminsE. NizetV. WhyteM. TaylorC.T. LinH. MastersS.L. GottliebE. KellyV.P. ClishC. AuronP.E. XavierR.J. O’NeillL.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α.Nature2013496744423824210.1038/nature1198623535595
    [Google Scholar]
  62. BoströmP. MagnussonB. SvenssonP.A. WiklundO. BorénJ. CarlssonL.M.S. StåhlmanM. OlofssonS.O. HulténL.M. Hypoxia converts human macrophages into triglyceride-loaded foam cells.Arterioscler. Thromb. Vasc. Biol.20062681871187610.1161/01.ATV.0000229665.78997.0b16741148
    [Google Scholar]
  63. Yvan-CharvetL. WelchC. PaglerT.A. RanallettaM. LamkanfiM. HanS. IshibashiM. LiR. WangN. TallA.R. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions.Circulation2008118181837184710.1161/CIRCULATIONAHA.108.79386918852364
    [Google Scholar]
  64. ZhuX. OwenJ.S. WilsonM.D. LiH. GriffithsG.L. ThomasM.J. HiltboldE.M. FesslerM.B. ParksJ.S. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol.J. Lipid Res.201051113196320610.1194/jlr.M00648620650929
    [Google Scholar]
  65. BurnettJ.R. HooperA.J. McCormickS.P. HegeleR.A. AdamM.P. FeldmanJ. MirzaaG.M. PagonR.A. WallaceS.E. BeanL.J. Tangier disease.GeneReviews®.Seattle, WAUniversity of Washington, Seattle1993
    [Google Scholar]
  66. LiuH.F. CuiK.F. WangJ.P. ZhangM. GuoY.P. LiX.Y. JiangC. Significance of ABCA1 in human carotid atherosclerotic plaques.Exp. Ther. Med.20124229730210.3892/etm.2012.57622970033
    [Google Scholar]
  67. AlbrechtC. SoumianS. AmeyJ.S. SardiniA. HigginsC.F. DaviesA.H. GibbsR.G.J. ABCA1 expression in carotid atherosclerotic plaques.Stroke200435122801280610.1161/01.STR.0000147036.07307.9315528463
    [Google Scholar]
  68. Van EckM. BosI.S.T. KaminskiW.E. OrsóE. RotheG. TwiskJ. BöttcherA. Van AmersfoortE.S. Christiansen-WeberT.A. Fung-LeungW.P. Van BerkelT.J.C. SchmitzG. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues.Proc. Natl. Acad. Sci.20029996298630310.1073/pnas.09232739911972062
    [Google Scholar]
  69. JoyceC.W. AmarM.J.A. LambertG. VaismanB.L. PaigenB. Najib-FruchartJ. HoytR.F.Jr NeufeldE.D. RemaleyA.T. FredricksonD.S. BrewerH.B.Jr Santamarina-FojoS. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice.Proc. Natl. Acad. Sci.200299140741210.1073/pnas.01258769911752403
    [Google Scholar]
  70. ThomasC. GautierT. MassonD. Non-lipogenic ABCA1 inducers: The holy grail in cardio-metabolic diseases?EBioMedicine20216610332410.1016/j.ebiom.2021.10332433857903
    [Google Scholar]
  71. WojcikAJ SkaflenMD SrinivasanS HedrickCC. A critical role for ABCG1 in macrophage inflammation and lung homeostasis.J. Immunol. Baltim. Md1950180642734282
    [Google Scholar]
  72. SagD PurcuDU AltunayM. The cholesterol transporter ABCG1 modulates macrophage polarization in human monocyte-derived macrophages.J. Immunol.201920211187
    [Google Scholar]
  73. SagD. CekicC. WuR. LindenJ. HedrickC.C. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity.Nat. Commun.201561635410.1038/ncomms735425724068
    [Google Scholar]
  74. ZhangX. McDonaldJ.G. AryalB. Canfrán-DuqueA. GoldbergE.L. AraldiE. DingW. FanY. ThompsonB.M. SinghA.K. LiQ. TellidesG. Ordovás-MontanesJ. García MilianR. DixitV.D. IkonenE. SuárezY. Fernández-HernandoC. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis.Proc. Natl. Acad. Sci.202111847e210768211810.1073/pnas.210768211834782454
    [Google Scholar]
  75. SmoakK.A. AloorJ.J. MadenspacherJ. MerrickB.A. CollinsJ.B. ZhuX. CavigiolioG. OdaM.N. ParksJ.S. FesslerM.B. Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation.Cell Metab.201011649350210.1016/j.cmet.2010.04.00620519121
    [Google Scholar]
  76. McGillicuddyF.C. de la Llera MoyaM. HinkleC.C. JoshiM.R. ChiquoineE.H. BillheimerJ.T. RothblatG.H. ReillyM.P. Inflammation impairs reverse cholesterol transport in vivo.Circulation200911981135114510.1161/CIRCULATIONAHA.108.81072119221221
    [Google Scholar]
  77. BarterP.J. BrewerH.B.Jr ChapmanM.J. HennekensC.H. RaderD.J. TallA.R. Cholesteryl ester transfer protein: A novel target for raising HDL and inhibiting atherosclerosis.Arterioscler. Thromb. Vasc. Biol.200323216016710.1161/01.ATV.0000054658.91146.6412588754
    [Google Scholar]
  78. BarterP. Lessons learned from the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial.Am. J. Cardiol.20091041010E15E10.1016/j.amjcard.2009.09.01419895939
    [Google Scholar]
  79. SezginE. LeventalI. MayorS. EggelingC. The mystery of membrane organization: Composition, regulation and roles of lipid rafts.Nat. Rev. Mol. Cell Biol.201718636137410.1038/nrm.2017.1628356571
    [Google Scholar]
  80. SimonsK. IkonenE. Functional rafts in cell membranes.Nature1997387663356957210.1038/424089177342
    [Google Scholar]
  81. LombardJ. Once upon a time the cell membranes: 175 years of cell boundary research.Biol. Direct2014913210.1186/s13062‑014‑0032‑725522740
    [Google Scholar]
  82. SubczynskiW.K. Pasenkiewicz-GierulaM. WidomskaJ. MainaliL. RaguzM. High cholesterol/low cholesterol: Effects in biological membranes: A review.Cell Biochem. Biophys.2017753-436938510.1007/s12013‑017‑0792‑728417231
    [Google Scholar]
  83. FantiniJ. BarrantesF.J. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains.Front. Physiol.201343110.3389/fphys.2013.0003123450735
    [Google Scholar]
  84. FantiniJ. BarrantesF.J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function.Bio. Biophys. Acta Biomembr.20091788112345236110.1016/j.bbamem.2009.08.01619733149
    [Google Scholar]
  85. AyeeM.A. LevitanI. Paradoxical impact of cholesterol on lipid packing and cell stiffness.FBL20162161245125927100504
    [Google Scholar]
  86. MarquardtD. KučerkaN. WassallS.R. HarrounT.A. KatsarasJ. Cholesterol’s location in lipid bilayers.Chem. Phys. Lipids2016199172510.1016/j.chemphyslip.2016.04.00127056099
    [Google Scholar]
  87. RuysschaertJ.M. LonezC. Role of lipid microdomains in TLR-mediated signalling.Biochim. Biophys. Acta Biomembr.2015184891860186710.1016/j.bbamem.2015.03.01425797518
    [Google Scholar]
  88. SanchoD. EnamoradoM. GaraudeJ. Innate immune function of mitochondrial metabolism.Front. Immunol.2017852710.3389/fimmu.2017.0052728533780
    [Google Scholar]
  89. NicolaouG. GoodallA.H. ErridgeC. Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis.J. Atheroscler. Thromb.201219213714810.5551/jat.1024922123216
    [Google Scholar]
  90. MichelsenK.S. WongM.H. ShahP.K. ZhangW. YanoJ. DohertyT.M. AkiraS. RajavashisthT.B. ArditiM. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E.Proc. Natl. Acad. Sci.200410129106791068410.1073/pnas.040324910115249654
    [Google Scholar]
  91. EbertR CumbanaR LehmannC KutznerL ToeweA FerreirósN Long-term stimulation of toll-like receptor-2 and -4 upregulates 5-LO and 15-LO-2 expression thereby inducing a lipid mediator shift in human monocyte-derived macrophages.Biochim. Biophys. Acta. BBA - Mol. Cell Biol. Lipids202018659158702
    [Google Scholar]
  92. ShaoY. SaredyJ. YangW.Y. SunY. LuY. SaaoudF. DrummerC.IV JohnsonC. XuK. JiangX. WangH. YangX. Vascular endothelial cells and innate immunity.Arterioscler. Thromb. Vasc. Biol.2020406e138e15210.1161/ATVBAHA.120.31433032459541
    [Google Scholar]
  93. MaiJ. VirtueA. ShenJ. WangH. YangX.F. An evolving new paradigm: Endothelial cells: Conditional innate immune cells.J. Hematol. Oncol.2013616110.1186/1756‑8722‑6‑6123965413
    [Google Scholar]
  94. QuD. WangL. HuoM. SongW. LauC.W. XuJ. XuA. YaoX. ChiuJ.J. TianX.Y. HuangY. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation.Cardiovasc. Res.2020116122623610.1093/cvr/cvz04630785200
    [Google Scholar]
  95. TangC.Y. MauroC. Similarities in the metabolic reprogramming of immune system and endothelium.Front. Immunol.2017883710.3389/fimmu.2017.0083728785263
    [Google Scholar]
  96. SachsF. Mechanical transduction in biological systems.Crit. Rev. Biomed. Eng.19881621411692460290
    [Google Scholar]
  97. WhiteC.R. FrangosJ.A. The shear stress of it all: The cell membrane and mechanochemical transduction.Philos. Trans. R. Soc. Lond. B. Biol. Sci.200736214841459146710.1098/rstb.2007.212817569643
    [Google Scholar]
  98. YamamotoK. AndoJ. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.J. Cell Sci.201312651227123410.1242/jcs.11962823378020
    [Google Scholar]
  99. YamamotoK. NogimoriY. ImamuraH. AndoJ. Shear stress activates mitochondrial oxidative phosphorylation by reducing plasma membrane cholesterol in vascular endothelial cells.Proc. Natl. Acad. Sci.202011752336603366710.1073/pnas.201402911733318210
    [Google Scholar]
  100. ButlerP.J. NorwichG. WeinbaumS. ChienS. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity.Am. J. Physiol. Cell Physiol.20012804C962C96910.1152/ajpcell.2001.280.4.C96211245613
    [Google Scholar]
  101. TabouillotT. MuddanaH.S. ButlerP.J. Endothelial cell membrane sensitivity to shear stress is lipid domain dependent.Cell. Mol. Bioeng.20114216918110.1007/s12195‑010‑0136‑922247740
    [Google Scholar]
  102. YamamotoK. AndoJ. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.Am. J. Physiol. Heart Circ. Physiol.20153097H1178H118510.1152/ajpheart.00241.201526297225
    [Google Scholar]
  103. YamamotoK. AndoJ. Emerging role of plasma membranes in vascular endothelial mechanosensing.Circ. J.201882112691269810.1253/circj.CJ‑18‑005230282847
    [Google Scholar]
  104. ByfieldF.J. Aranda-EspinozaH. RomanenkoV.G. RothblatG.H. LevitanI. Cholesterol depletion increases membrane stiffness of aortic endothelial cells.Biophys. J.20048753336334310.1529/biophysj.104.04063415347591
    [Google Scholar]
  105. SuQ. SunY. YeZ. YangH. LiL. Oxidized low density lipoprotein induces endothelial-to-mesenchymal transition by stabilizing Snail in human aortic endothelial cells.Biomed. Pharmacother.20181061720172610.1016/j.biopha.2018.07.12230119247
    [Google Scholar]
  106. HigashiY. Endothelial function in dyslipidemia: roles of ldl-cholesterol, hdl-cholesterol and triglycerides.Cells2023129129310.3390/cells1209129337174693
    [Google Scholar]
  107. HiraoA. KondoK. TakeuchiK. InuiN. UmemuraK. OhashiK. WatanabeH. Cyclooxygenase-dependent vasoconstricting factor(s) in remodelled rat femoral arteries.Cardiovasc. Res.200879116116810.1093/cvr/cvn11118456673
    [Google Scholar]
  108. QianH. LuoN. ChiY. Aging-shifted prostaglandin profile in endothelium as a factor in cardiovascular disorders.J. Aging Res.20122012112139010.1155/2012/12139022500225
    [Google Scholar]
  109. KobayashiT. TaharaY. MatsumotoM. IguchiM. SanoH. MurayamaT. AraiH. OidaH. Yurugi-KobayashiT. YamashitaJ.K. KatagiriH. MajimaM. YokodeM. KitaT. NarumiyaS. Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice.J. Clin. Invest.2004114678479410.1172/JCI20042144615372102
    [Google Scholar]
  110. DorrisS.L. PeeblesR.S.Jr PGI2 as a regulator of inflammatory diseases.Mediators Inflamm.201220121910.1155/2012/92696822851816
    [Google Scholar]
  111. FitzgeraldG. Soro-ArnaizI. De BockK. The warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer.Front. Cell Dev. Biol.2018610010.3389/fcell.2018.0010030255018
    [Google Scholar]
  112. FuJ.Y. MasferrerJ.L. SeibertK. RazA. NeedlemanP. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes.J. Biol. Chem.199026528167371674010.1016/S0021‑9258(17)44821‑62120205
    [Google Scholar]
  113. ClarkeR.J. MayoG. PriceP. FitzGeraldG.A. Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin.N. Engl. J. Med.1991325161137114110.1056/NEJM1991101732516051891022
    [Google Scholar]
  114. BeltonO. ByrneD. KearneyD. LeahyA. FitzgeraldD.J. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis.Circulation2000102884084510.1161/01.CIR.102.8.84010952950
    [Google Scholar]
  115. NakahataN. Thromboxane A2: Physiology/pathophysiology, cellular signal transduction and pharmacology.Pharmacol. Ther.20081181183510.1016/j.pharmthera.2008.01.00118374420
    [Google Scholar]
  116. MinerJ. HoffhinesA. The discovery of aspirin’s antithrombotic effects.Tex. Heart Inst. J.200734217918617622365
    [Google Scholar]
  117. FisslthalerB PoppR MichaelisUR KissL FlemingI BusseR. Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase.Hypertens Dallas Tex197938614271432
    [Google Scholar]
  118. PrattP.F. LiP. HillardC.J. KurianJ. CampbellW.B. Endothelium-independent, ouabain-sensitive relaxation of bovine coronary arteries by EETs.Am. J. Physiol. Heart Circ. Physiol.20012803H1113H112110.1152/ajpheart.2001.280.3.H111311179054
    [Google Scholar]
  119. CapozziM.E. PennJ.S. Epoxydocosapentaenoic acid (EDP) and epoxyeicosatrienoic acid (EET) affect TNFα production and leukocyte adhesion in diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.20165712
    [Google Scholar]
  120. FlemingI. To move or not to move? Cytochrome P450 products and cell migration.Circ. Res.200290993693810.1161/01.RES.0000019742.48706.F012016258
    [Google Scholar]
  121. JiangJ.X ZhangS.J LiuY.N EETs alleviate ox-LDL-induced inflammation by inhibiting LOX-1 receptor expression in rat pulmonary arterial endothelial cells.Eur J Pharmacol.20147274351
    [Google Scholar]
  122. ShaitoA. AramouniK. AssafR. ParentiA. OrekhovA. YazbiA.E. PintusG. EidA.H. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases.Frontiers in Bioscience-Landmark2022273010510.31083/j.fbl270310535345337
    [Google Scholar]
  123. HannunY.A. ObeidL.M. Principles of bioactive lipid signalling: Lessons from sphingolipids.Nat. Rev. Mol. Cell Biol.20089213915010.1038/nrm232918216770
    [Google Scholar]
  124. HaitN.C. MaitiA. The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer.Mediators Inflamm.201720171480654110.1155/2017/480654129269995
    [Google Scholar]
  125. Gomez-MuñozA. PresaN. Gomez-LarrauriA. RiveraI.G. TruebaM. OrdoñezM. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate.Prog. Lipid Res.201661516210.1016/j.plipres.2015.09.00226703189
    [Google Scholar]
  126. Gomez-MuñozA GangoitiP AranaL OuroA RiveraIG OrdoñezM New insights on the role of ceramide 1-phosphate in inflammation.Biochim Biophys Acta BBA - Mol. Cell. Biol. Lipids20131831610601066
    [Google Scholar]
  127. CogolludoA. VillamorE. Perez-VizcainoF. MorenoL. Ceramide and regulation of vascular tone.Int. J. Mol. Sci.201920241110.3390/ijms2002041130669371
    [Google Scholar]
  128. AkhiyatN. VasileV. AhmadA. SaraJ.D. NardiV. LermanL.O. JaffeA. LermanA. Plasma ceramide levels are elevated in patients with early coronary atherosclerosis and endothelial dysfunction.J. Am. Heart Assoc.2022117e02285210.1161/JAHA.121.02285235301857
    [Google Scholar]
  129. MeeusenJ.W. DonatoL.J. BryantS.C. BaudhuinL.M. BergerP.B. JaffeA.S. Plasma ceramides.Arterioscler. Thromb. Vasc. Biol.20183881933193910.1161/ATVBAHA.118.31119929903731
    [Google Scholar]
  130. MankeM.C. AhrendsR. BorstO. Platelet lipid metabolism in vascular thrombo-inflammation.Pharmacol. Ther.202223710825810.1016/j.pharmthera.2022.10825835908612
    [Google Scholar]
  131. PatelS.R. HartwigJ.H. ItalianoJ.E.Jr. The biogenesis of platelets from megakaryocyte proplatelets.J. Clin. Invest.2005115123348335410.1172/JCI2689116322779
    [Google Scholar]
  132. JacksonS.P. Arterial thrombosis-insidious, unpredictable and deadly.Nat. Med.201117111423143610.1038/nm.251522064432
    [Google Scholar]
  133. KoupenovaM. ClancyL. CorkreyH.A. FreedmanJ.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis.Circ. Res.2018122233735110.1161/CIRCRESAHA.117.31079529348254
    [Google Scholar]
  134. GawazM. VogelS. Platelets in tissue repair: Control of apoptosis and interactions with regenerative cells.Blood2013122152550255410.1182/blood‑2013‑05‑46869423963043
    [Google Scholar]
  135. GawazM. LangerH. MayA.E. Platelets in inflammation and atherogenesis.J. Clin. Invest.2005115123378338410.1172/JCI2719616322783
    [Google Scholar]
  136. TourdotB.E. HolinstatM. Targeting 12-lipoxygenase as a potential novel antiplatelet therapy.Trends Pharmacol. Sci.201738111006101510.1016/j.tips.2017.08.00128863985
    [Google Scholar]
  137. DutilhC.E. HaddemanE. JouvenazG.H. Ten HoorF. NugterenD.H. Study of the two pathways for arachidonate oxygenation in blood platelets.Lipids197914224124610.1007/BF0253387634075
    [Google Scholar]
  138. PorroB. SongiaP. SquellerioI. TremoliE. CavalcaV. Analysis, physiological and clinical significance of 12-HETE: A neglected platelet-derived 12-lipoxygenase product.J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.2014964264010.1016/j.jchromb.2014.03.01524685839
    [Google Scholar]
  139. BasatemurG.L. JørgensenH.F. ClarkeM.C.H. BennettM.R. MallatZ. Vascular smooth muscle cells in atherosclerosis.Nat. Rev. Cardiol.2019161272774410.1038/s41569‑019‑0227‑931243391
    [Google Scholar]
  140. BuonoM.F. SlendersL. WesselingM. HartmanR.J.G. MonacoC. den RuijterH.M. PasterkampG. MokryM. The changing landscape of the vulnerable plaque: A call for fine-tuning of preclinical models.Vascul. Pharmacol.202114110692410.1016/j.vph.2021.10692434607015
    [Google Scholar]
  141. WangY. DublandJ.A. AllahverdianS. AsonyeE. SahinB. JawJ.E. SinD.D. SeidmanM.A. LeeperN.J. FrancisG.A. Smooth muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis.Arterioscler. Thromb. Vasc. Biol.201939587688710.1161/ATVBAHA.119.31243430786740
    [Google Scholar]
  142. SawmaT. ShaitoA. NajmN. SidaniM. OrekhovA. El-YazbiA.F. IratniR. EidA.H. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function.Atherosclerosis2022358122810.1016/j.atherosclerosis.2022.08.01236049290
    [Google Scholar]
  143. ElmarasiM. ElmakatyI. ElsayedB. ElsayedA. ZeinJ.A. BoudakaA. EidA.H. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection.J. Cell. Physiol.2024jcp.3120010.1002/jcp.3120038291732
    [Google Scholar]
  144. FasoloF. PaloschiV. MaegdefesselL. Long non-coding RNAs at the crossroad of vascular smooth muscle cell phenotypic modulation in atherosclerosis and neointimal formation.Atherosclerosis2023374344310.1016/j.atherosclerosis.2022.11.02136513554
    [Google Scholar]
  145. ShiJ. YangY. ChengA. XuG. HeF. Metabolism of vascular smooth muscle cells in vascular diseases.Am. J. Physiol. Heart Circ. Physiol.20203193H613H63110.1152/ajpheart.00220.202032762559
    [Google Scholar]
  146. XueY. LuoM. HuX. LiX. ShenJ. ZhuW. HuangL. HuY. GuoY. LiuL. WangL. LuoS. Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling.Commun. Biol.202251131610.1038/s42003‑022‑04255‑236456628
    [Google Scholar]
  147. BurgerF. BaptistaD. RothA. da SilvaR.F. MontecuccoF. MachF. BrandtK.J. MitevaK. NLRP3 inflammasome activation controls vascular smooth muscle cells phenotypic switch in atherosclerosis.Int. J. Mol. Sci.202123134010.3390/ijms2301034035008765
    [Google Scholar]
  148. LiL. LiY. DaiZ. LiuM. WangB. LiuS. WangL. ChenL. TanY. WuG. Lipid metabolism in vascular smooth muscle cells infuenced by HCMV infection.Cell. Physiol. Biochem.20163951804181210.1159/00044788027744449
    [Google Scholar]
  149. BadranA. NasserS.A. MesmarJ. El-YazbiA.F. BittoA. FardounM.M. BaydounE. EidA.H. Reactive oxygen species: Modulators of phenotypic switch of vascular smooth muscle cells.Int. J. Mol. Sci.20202122876410.3390/ijms2122876433233489
    [Google Scholar]
  150. AnagnostopoulouA. CamargoL.L. RodriguesD. MontezanoA.C. TouyzR.M. Importance of cholesterol-rich microdomains in the regulation of Nox isoforms and redox signaling in human vascular smooth muscle cells.Sci. Rep.20201011781810.1038/s41598‑020‑73751‑433082354
    [Google Scholar]
  151. WangH. RobichauxW.G. WangZ. MeiF.C. CaiM. DuG. ChenJ. ChengX. Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury.Sci. Rep.2016613655210.1038/srep3655227830723
    [Google Scholar]
  152. WehbeN. NasserS.A. Al-DhaheriY. IratniR. BittoA. El-YazbiA.F. BadranA. KobeissyF. BaydounE. EidA.H. EPAC in vascular smooth muscle cells.Int. J. Mol. Sci.20202114516010.3390/ijms2114516032708284
    [Google Scholar]
  153. KatoY. YokoyamaU. YanaiC. IshigeR. KurotakiD. UmemuraM. FujitaT. KubotaT. OkumuraS. SataM. TamuraT. IshikawaY. Epac1 deficiency attenuated vascular smooth muscle cell migration and neointimal formation.Arterioscler. Thromb. Vasc. Biol.201535122617262510.1161/ATVBAHA.115.30653426427796
    [Google Scholar]
  154. RobichauxW.G.III MeiF.C. YangW. WangH. SunH. ZhouZ. MilewiczD.M. TengB.B. ChengX. Epac1 (Exchange Protein Directly Activated by cAMP 1) Upregulates LOX-1 (Oxidized Low-Density Lipoprotein Receptor 1) to promote foam cell formation and atherosclerosis development.Arterioscler. Thromb. Vasc. Biol.20204012e322e33510.1161/ATVBAHA.119.31423833054390
    [Google Scholar]
  155. RobichauxW.G. MeiF.C. YangW. WangH. SunH. ZhouZ. Epac1 upregulates LOX-1 to promote foam cell formation and atherosclerosis development.Arterioscler. Thromb. Vasc. Biol.20204012e322e33510.1161/ATVBAHA.119.31423833054390
    [Google Scholar]
  156. BarkerG. ParnellE. van BastenB. BuistH. AdamsD. YarwoodS. The potential of a novel class of EPAC-selective agonists to combat cardiovascular inflammation.J. Cardiovasc. Dev. Dis.2017442210.3390/jcdd404002229367551
    [Google Scholar]
  157. KotlyarovS. KotlyarovaA. Molecular pharmacology of inflammation resolution in atherosclerosis.Int. J. Mol. Sci.2022239480810.3390/ijms2309480835563200
    [Google Scholar]
  158. RiccioniG. BäckM. CapraV. Leukotrienes and atherosclerosis.Curr. Drug Targets201011788288710.2174/13894501079132088120388065
    [Google Scholar]
  159. RiccioniG. ZanasiA. VitulanoN. ManciniB. D’OrazioN. Leukotrienes in atherosclerosis: New target insights and future therapy perspectives.Mediators Inflamm.200920091610.1155/2009/73728220150962
    [Google Scholar]
  160. BasilM.C. LevyB.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation.Nat. Rev. Immunol.2016161516710.1038/nri.2015.426688348
    [Google Scholar]
  161. FredmanG. Can inflammation-resolution provide clues to treat patients according to their plaque phenotype?Front. Pharmacol.20191020510.3389/fphar.2019.0020530899222
    [Google Scholar]
  162. DoranA.C. Inflammation resolution: Implications for atherosclerosis.Circ. Res.2022130113014810.1161/CIRCRESAHA.121.31982234995137
    [Google Scholar]
  163. SubbaraoK. JalaV.R. MathisS. SuttlesJ. ZachariasW. AhamedJ. AliH. TsengM.T. HaribabuB. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms.Arterioscler. Thromb. Vasc. Biol.200424236937510.1161/01.ATV.0000110503.16605.1514656734
    [Google Scholar]
  164. van den BorneP. van der LaanS.W. BovensS.M. KooleD. KowalaM.C. MichaelL.F. SchoneveldA.H. van de WegS.M. VelemaE. de VriesJ.P. de BorstG.J. MollF.L. de KleijnD.P.V. QuaxP.H.A. HoeferI.E. PasterkampG. Leukotriene B4 levels in human atherosclerotic plaques and abdominal aortic aneurysms.PLoS One201491e8652210.1371/journal.pone.008652224475136
    [Google Scholar]
  165. RecchiutiA. SerhanC.N. Pro-resolving lipid mediators (SPMs) and their actions in regulating mirna in novel resolution circuits in inflammation.Front. Immunol.2012329810.3389/fimmu.2012.0029823093949
    [Google Scholar]
  166. SerhanC.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways.Annu. Rev. Immunol.200725110113710.1146/annurev.immunol.25.022106.14164717090225
    [Google Scholar]
  167. JoffreC. ReyC. LayéS. N-3 polyunsaturated fatty acids and the resolution of neuroinflammation.Front. Pharmacol.201910102210.3389/fphar.2019.0102231607902
    [Google Scholar]
  168. SunG.Y. GengX. TengT. YangB. AppentengM.K. GreenliefC.M. LeeJ.C. Dynamic role of phospholipases a2 in health and diseases in the central nervous system.Cells20211011296310.3390/cells1011296334831185
    [Google Scholar]
  169. BadimonL. VilahurG. RoccaB. PatronoC. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis.Cardiovasc. Res.202111792001201510.1093/cvr/cvab00333484117
    [Google Scholar]
  170. WongJ.T. TranK. PierceG.N. ChanA.C. OK. ChoyP.C. Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells.J. Biol. Chem.1998273126830683610.1074/jbc.273.12.68309506985
    [Google Scholar]
  171. BogatchevaN.V. SergeevaM.G. DudekS.M. VerinA.D. Arachidonic acid cascade in endothelial pathobiology.Microvasc. Res.200569310712710.1016/j.mvr.2005.01.00715896353
    [Google Scholar]
  172. SerhanC.N. SheppardK.A. Lipoxin formation during human neutrophil-platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro.J. Clin. Invest.199085377278010.1172/JCI1145032155925
    [Google Scholar]
  173. Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes.Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC391698/
  174. RådmarkO. WerzO. SteinhilberD. SamuelssonB. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851433133910.1016/j.bbalip.2014.08.01225152163
    [Google Scholar]
  175. HaeggströmJ.Z. FunkC.D. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease.Chem. Rev.2011111105866589810.1021/cr200246d21936577
    [Google Scholar]
  176. QiuH. GabrielsenA. AgardhH.E. WanM. WetterholmA. WongC.H. HedinU. SwedenborgJ. HanssonG.K. SamuelssonB. Paulsson-BerneG. HaeggströmJ.Z. Expression of 5-lipoxygenase and leukotriene A 4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability.Proc. Natl. Acad. Sci.2006103218161816610.1073/pnas.060241410316698924
    [Google Scholar]
  177. YuanJ. LinF. ChenL. ChenW. PanX. BaiY. CaiY. LuH. Lipoxin A4 regulates M1/M2 macrophage polarization via FPR2–IRF pathway.Inflammopharmacology202230248749810.1007/s10787‑022‑00942‑y35235107
    [Google Scholar]
  178. MaiJ. LiuW. FangY. ZhangS. QiuQ. YangY. WangX. HuangT. ZhangH. XieY. LinM. ChenY. WangJ. The atheroprotective role of lipoxin A4 prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway.Atherosclerosis201827825926810.1016/j.atherosclerosis.2018.09.02530340110
    [Google Scholar]
  179. Nascimento-SilvaV. ArrudaM.A. Barja-FidalgoC. FierroI.M. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: A novel antioxidative mechanism.Thromb. Haemost.2007971889810.1160/TH06‑06‑031517200775
    [Google Scholar]
  180. PetriM.H. Laguna-FernandezA. ArnardottirH. WheelockC.E. PerrettiM. HanssonG.K. BäckM. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E−/− mice.Br. J. Pharmacol.2017174224043405410.1111/bph.1370728071789
    [Google Scholar]
  181. BrennanE.P. MohanM. McClellandA. de GaetanoM. TikellisC. MaraiM. CreanD. DaiA. BeuscartO. DerouicheS. GrayS.P. PickeringR. TanS.M. Godson-TreacyM. SheehanS. DowdallJ.F. BarryM. BeltonO. Ali-ShahS.T. GuiryP.J. Jandeleit-DahmK. CooperM.E. GodsonC. KantharidisP. Lipoxins protect against inflammation in diabetes-associated atherosclerosis.Diabetes201867122657266710.2337/db17‑131730213823
    [Google Scholar]
  182. ChenR. LiJ. ZhouJ. WangY. ZhaoX. LiN. LiuW. LiuC. ZhouP. ChenY. YanS. SongL. YanH. ZhaoH. Prognostic impacts of Lipoxin A4 in patients with acute myocardial infarction: A prospective cohort study.Pharmacol. Res.202318710661810.1016/j.phrs.2022.10661836549409
    [Google Scholar]
  183. MillarB. de GaetanoM. Posing the rationale for synthetic lipoxin mimetics as an adjuvant treatment to gold standard atherosclerosis therapies.Front. Pharmacol.202314112585810.3389/fphar.2023.112585836865918
    [Google Scholar]
  184. SerhanC.N. HongS. GronertK. ColganS.P. DevchandP.R. MirickG. MoussignacR.L. Resolvins.J. Exp. Med.200219681025103710.1084/jem.2002076012391014
    [Google Scholar]
  185. SerhanC.N. ChiangN. DalliJ. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration.Mol. Aspects Med.20186411710.1016/j.mam.2017.08.00228802833
    [Google Scholar]
  186. SerhanC.N. Resolvins and protectins: Novel lipid mediators in anti-inflammation and resolution.Food Nutr. Res.20066878
    [Google Scholar]
  187. TułowieckaN. KotlęgaD. ProwansP. SzczukoM. The role of resolvins: EPA and DHA derivatives can be useful in the prevention and treatment of ischemic stroke.Int. J. Mol. Sci.20202120762810.3390/ijms2120762833076354
    [Google Scholar]
  188. MoroK. NagahashiM. RamanathanR. TakabeK. WakaiT. Resolvins and omega three polyunsaturated fatty acids: Clinical implications in inflammatory diseases and cancer.World J. Clin. Cases20164715516410.12998/wjcc.v4.i7.15527458590
    [Google Scholar]
  189. DeyamaS. MinamiM. KanedaK. Resolvins as potential candidates for the treatment of major depressive disorder.J. Pharmacol. Sci.20211471333910.1016/j.jphs.2021.05.00234294370
    [Google Scholar]
  190. MattoscioD. IsopiE. LamolinaraA. PatrunoS. MeddaA. De CeccoF. ChioccaS. IezziM. RomanoM. RecchiutiA. Resolvin D1 reduces cancer growth stimulating a protective neutrophil-dependent recruitment of anti-tumor monocytes.J. Exp. Clin. Cancer Res.202140112910.1186/s13046‑021‑01937‑333845864
    [Google Scholar]
  191. SulcinerM.L. SerhanC.N. GilliganM.M. MudgeD.K. ChangJ. GartungA. LehnerK.A. BielenbergD.R. SchmidtB. DalliJ. GreeneE.R. Gus-BrautbarY. PiwowarskiJ. MammotoT. ZurakowskiD. PerrettiM. SukhatmeV.P. KaipainenA. KieranM.W. HuangS. PanigrahyD. Resolvins suppress tumor growth and enhance cancer therapy.J. Exp. Med.2018215111514010.1084/jem.2017068129191914
    [Google Scholar]
  192. HisadaT. IshizukaT. AokiH. MoriM. Resolvin E1 as a novel agent for the treatment of asthma.Expert Opin. Ther. Targets200913551352210.1517/1472822090286562219368495
    [Google Scholar]
  193. SerhanC.N. ChiangN. Van DykeT.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators.Nat. Rev. Immunol.20088534936110.1038/nri229418437155
    [Google Scholar]
  194. MolaeiE. MolaeiA. HayesA.W. KarimiG. Resolvin D1, therapeutic target in acute respiratory distress syndrome.Eur. J. Pharmacol.202191117452710.1016/j.ejphar.2021.17452734582846
    [Google Scholar]
  195. HasturkH. AbdallahR. KantarciA. NguyenD. GiordanoN. HamiltonJ. Van DykeT.E. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis.Arterioscler. Thromb. Vasc. Biol.20153551123113310.1161/ATVBAHA.115.30532425792445
    [Google Scholar]
  196. BardinM. PawelzikS.C. LagrangeJ. MahdiA. ArnardottirH. RegnaultV. FèveB. LacolleyP. MichelJ.B. MercierN. BäckM. The resolvin D2 – GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice.Biochem. Pharmacol.202220111507510.1016/j.bcp.2022.11507535525326
    [Google Scholar]
  197. FredmanG. HellmannJ. ProtoJ.D. KuriakoseG. ColasR.A. DorweilerB. ConnollyE.S. SolomonR. JonesD.M. HeyerE.J. SpiteM. TabasI. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques.Nat. Commun.2016711285910.1038/ncomms1285927659679
    [Google Scholar]
  198. LiuM. HeH. ChenL. Protective potential of maresins in cardiovascular diseases.Front. Cardiovasc. Med.2022992341310.3389/fcvm.2022.92341335859590
    [Google Scholar]
  199. Saito-SasakiN. SawadaY. NakamuraM. Maresin-1 and inflammatory disease.Int. J. Mol. Sci.2022233136710.3390/ijms2303136735163291
    [Google Scholar]
  200. ViolaJ.R. LemnitzerP. JansenY. CsabaG. WinterC. NeideckC. Silvestre-RoigC. DittmarG. DöringY. DrechslerM. WeberC. ZimmerR. CenacN. SoehnleinO. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice.Circ. Res.201611991030103810.1161/CIRCRESAHA.116.30949227531933
    [Google Scholar]
  201. ChatterjeeA. KomshianS. SansburyB.E. WuB. MottolaG. ChenM. SpiteM. ConteM.S. Biosynthesis of proresolving lipid mediators by vascular cells and tissues.FASEB J.20173183393340210.1096/fj.201700082R28442547
    [Google Scholar]
  202. Al ZeinM. ZeinO. DiabR. DimachkieL. SahebkarA. Al-AsmakhM. KobeissyF. EidA.H. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis.Biochem. Pharmacol.202321811587610.1016/j.bcp.2023.11587637871879
    [Google Scholar]
  203. LuoJ. HeZ. LiQ. LvM. CaiY. KeW. NiuX. ZhangZ. Adipokines in atherosclerosis: Unraveling complex roles.Front. Cardiovasc. Med.202310123595310.3389/fcvm.2023.123595337645520
    [Google Scholar]
  204. LiuL. ShiZ. JiX. ZhangW. LuanJ. ZahrT. QiangL. Adipokines, adiposity, and atherosclerosis.Cell. Mol. Life Sci.202279527210.1007/s00018‑022‑04286‑235503385
    [Google Scholar]
  205. WangZ.V. SchererP.E. Adiponectin, the past two decades.J. Mol. Cell Biol.2016829310010.1093/jmcb/mjw01126993047
    [Google Scholar]
  206. SchererP.E. WilliamsS. FoglianoM. BaldiniG. LodishH.F. A novel serum protein similar to C1q, produced exclusively in adipocytes.J. Biol. Chem.199527045267462674910.1074/jbc.270.45.267467592907
    [Google Scholar]
  207. YanaiH. YoshidaH. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Msechanisms and perspectives.Int. J. Mol. Sci.2019205119010.3390/ijms2005119030857216
    [Google Scholar]
  208. WangC. ChangL. WangJ. XiaL. CaoL. WangW. XuJ. GaoH. Leptin and risk factors for atherosclerosis: A review.Medicine202310246e3607610.1097/MD.000000000003607637986371
    [Google Scholar]
  209. RamanP. KhanalS. Leptin in atherosclerosis: Focus on macrophages, endothelial and smooth muscle cells.Int. J. Mol. Sci.20212211544610.3390/ijms2211544634064112
    [Google Scholar]
  210. HongoS. WatanabeT. AritaS. KanomeT. KageyamaH. ShiodaS. MiyazakiA. Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages.Am. J. Physiol. Endocrinol. Metab.20092972E474E48210.1152/ajpendo.90369.200819625677
    [Google Scholar]
  211. AliS. AlamR. AhsanH. KhanS. Role of adipokines (omentin and visfatin) in coronary artery disease.Nutr. Metab. Cardiovasc. Dis.202333348349310.1016/j.numecd.2022.11.02336653284
    [Google Scholar]
  212. Clemente-SuárezV.J. Redondo-FlórezL. Beltrán-VelascoA.I. Martín-RodríguezA. Martínez-GuardadoI. Navarro-JiménezE. Laborde-CárdenasC.C. Tornero-AguileraJ.F. The role of adipokines in health and disease.Biomedicines2023115129010.3390/biomedicines1105129037238961
    [Google Scholar]
  213. DakroubA. A NasserS. YounisN. BhaganiH. Al-DhaheriY. PintusG. EidA.A. El-YazbiA.F. EidA.H. Visfatin: A possible role in cardiovasculo-metabolic disorders.Cells2020911244410.3390/cells911244433182523
    [Google Scholar]
  214. DakroubA. NasserS.A. KobeissyF. YassineH.M. OrekhovA. Sharifi-RadJ. IratniR. El-YazbiA.F. EidA.H. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases.J. Cell. Physiol.202123696282629610.1002/jcp.3034533634486
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673303369240312092913
Loading
/content/journals/cmc/10.2174/0109298673303369240312092913
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Atherosclerosis; inflammation; innate immune system; lipids; macrophages; platelets
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test