Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Angiopoietin-like 4 (ANGPTL4) belongs to the family of angiopoietin-like proteins. The involvement of ANGPTL4 in various aspects of lipid metabolism and inflammation has become an important area of research.

Methods

A thorough search on PubMed related to ANGPTL4, lipid metabolism, and inflammation was performed.

Results

Over the past two decades, the recognition of ANGPTL4 as a potent regulator of lipid metabolism has substantially increased. As part of the senescence-associated secretory phenotype, ANGPTL4 also serves as an inflammatory mediator. Considering the advancements in ANGPTL4 research, we have highlighted that ANGPTL4 acts as a key node linking lipid metabolism and inflammation. ANGPTL4 impacts inflammation by regulating lipid metabolism. It affects critical enzymes (lipoprotein lipase, hepatic lipase, endothelial lipase, and acetyl-CoA carboxylase), regulatory factors (AMPK, cAMP, SLC7A11, GPX4, and mTOR), and receptors (LepR, CD36, and PPARγ) of lipid oxidation, synthesis, and peroxidation, thereby affecting immune cells and inflammatory pathways.

Conclusion

Understanding the potential association and the therapeutic value of ANGPTL4 for regulating lipid metabolism and inflammation could contribute to drug discovery and therapeutic development.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673320024240829070906
2024-09-09
2025-10-10
Loading full text...

Full text loading...

References

  1. KerstenS. MandardS. TanN.S. EscherP. MetzgerD. ChambonP. GonzalezF.J. DesvergneB. WahliW. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene.J. Biol. Chem.200027537284882849310.1074/jbc.M00402920010862772
    [Google Scholar]
  2. KimI. KimH.G. KimH. KimH.H. ParkS.K. UhmC.S. LeeZ.H. KohG.Y. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis.Biochem. J.2000346360361010.1042/bj346060310698685
    [Google Scholar]
  3. YoonJ.C. ChickeringT.W. RosenE.D. DussaultB. QinY. SoukasA. FriedmanJ.M. HolmesW.E. SpiegelmanB.M. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation.Mol. Cell. Biol.200020145343534910.1128/MCB.20.14.5343‑5349.200010866690
    [Google Scholar]
  4. AlexS. LichtensteinL. DijkW. MensinkR.P. TanN.S. KerstenS. ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract.Histochem. Cell Biol.2014141438339110.1007/s00418‑013‑1157‑y24141811
    [Google Scholar]
  5. KerstenS. LichtensteinL. SteenbergenE. MuddeK. HendriksH.F.J. HesselinkM.K. SchrauwenP. MüllerM. Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids.Arterioscler. Thromb. Vasc. Biol.200929696997410.1161/ATVBAHA.108.18214719342599
    [Google Scholar]
  6. LinS. MiaoY. ZhengX. DongY. YangQ. YangQ. DuS. XuJ. ZhouS. YuanT. ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism.Cell Death Discov.20228122510.1038/s41420‑022‑01029‑x35461343
    [Google Scholar]
  7. ZuoY. HeZ. ChenY. DaiL. Dual role of ANGPTL4 in inflammation.Inflamm. Res.20237261303131310.1007/s00011‑023‑01753‑937300585
    [Google Scholar]
  8. GusarovaV. O’DushlaineC. TeslovichT.M. BenottiP.N. MirshahiT. GottesmanO. Van HoutC.V. MurrayM.F. MahajanA. NielsenJ.B. FritscheL. WulffA.B. GudbjartssonD.F. SjögrenM. EmdinC.A. ScottR.A. LeeW.J. SmallA. KweeL.C. DwivediO.P. PrasadR.B. BruseS. LopezA.E. PennJ. MarckettaA. LeaderJ.B. StillC.D. KirchnerH.L. MirshahiU.L. WardehA.H. HartleC.M. HabeggerL. FetterolfS.N. Tusie-LunaT. MorrisA.P. HolmH. SteinthorsdottirV. SulemP. ThorsteinsdottirU. RotterJ.I. ChuangL.M. DamrauerS. BirtwellD. BrummettC.M. KheraA.V. NatarajanP. Orho-MelanderM. FlannickJ. LottaL.A. WillerC.J. HolmenO.L. RitchieM.D. LedbetterD.H. MurphyA.J. BoreckiI.B. ReidJ.G. OvertonJ.D. HanssonO. GroopL. ShahS.H. KrausW.E. RaderD.J. ChenY.D.I. HveemK. WarehamN.J. KathiresanS. MelanderO. StefanssonK. NordestgaardB.G. Tybjærg-HansenA. AbecasisG.R. AltshulerD. FlorezJ.C. BoehnkeM. McCarthyM.I. YancopoulosG.D. CareyD.J. ShuldinerA.R. BarasA. DeweyF.E. GromadaJ. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes.Nat. Commun.201891225210.1038/s41467‑018‑04611‑z29899519
    [Google Scholar]
  9. AryalB. PriceN.L. SuarezY. Fernández-HernandoC. ANGPTL4 in Metabolic and Cardiovascular Disease.Trends Mol. Med.201925872373410.1016/j.molmed.2019.05.01031235370
    [Google Scholar]
  10. Fernández-HernandoC. SuárezY. ANGPTL4: a multifunctional protein involved in metabolism and vascular homeostasis.Curr. Opin. Hematol.202027320621310.1097/MOH.000000000000058032205586
    [Google Scholar]
  11. RohK. NohJ. KimY. JangY. KimJ. ChoiH. LeeY. JiM. KangD. KimM.S. PaikM.J. ChungJ. KimJ.H. KangC. Lysosomal control of senescence and inflammation through cholesterol partitioning.Nat. Metab.20235339841310.1038/s42255‑023‑00747‑536864206
    [Google Scholar]
  12. WangW. ZhengY. SunS. LiW. SongM. JiQ. WuZ. LiuZ. FanY. LiuF. LiJ. EstebanC.R. WangS. ZhouQ. BelmonteJ.C.I. ZhangW. QuJ. TangF. LiuG.H. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence.Sci. Transl. Med.202113575eabd265510.1126/scitranslmed.abd265533408182
    [Google Scholar]
  13. GleasonC.E. DicksonM.A. Klein DooleyM.E. AntonescuC.R. Gularte-MéridaR. BenitezM. DelgadoJ.I. KataruR.P. TanM.W.Y. BradicM. Therapy-induced senescence contributes to the efficacy of abemaciclib in patients with dedifferentiated liposarcoma.Clin. Cancer Res.202430470371810.1158/1078‑0432.Ccr‑23‑237837695642
    [Google Scholar]
  14. KerstenS. Regulation of lipid metabolism via angiopoietin-like proteins.Biochem. Soc. Trans.20053351059106210.1042/BST033105916246045
    [Google Scholar]
  15. LiuC. RuanY.Q. QuL.H. LiZ.H. XieC. PanY.Q. LiH.F. LiD.B. Prognostic modeling of lung adenocarcinoma based on hypoxia and ferroptosis-related genes.J. Oncol.2022202212510.1155/2022/102258036245988
    [Google Scholar]
  16. WangF. ChenC. ChenW.P. LiZ.L. ChengH. Development and validation of a novel ferroptosis-related gene signature for predicting prognosis and the immune microenvironment in gastric cancer.BioMed Res. Int.202120211601420210.1155/2021/601420234708125
    [Google Scholar]
  17. ZhangY. LiuX. ZengL. ZhaoX. ChenQ. PanY. BaiY. ShaoC. ZhangJ. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment.Br. J. Cancer2022127101760177210.1038/s41416‑022‑01956‑736050447
    [Google Scholar]
  18. WuS.K. AriffinJ. TayS.C. PiconeR. The variant senescence-associated secretory phenotype induced by centrosome amplification constitutes a pathway that activates hypoxia-inducible factor-1α.Aging Cell2023223e1376610.1111/acel.1376636660875
    [Google Scholar]
  19. KuilmanT. PeeperD.S. Senescence-messaging secretome: SMS-ing cellular stress.Nat. Rev. Cancer200992819410.1038/nrc256019132009
    [Google Scholar]
  20. PribludaA. ElyadaE. WienerZ. HamzaH. GoldsteinR.E. BitonM. BurstainI. MorgensternY. BrachyaG. BillauerH. BitonS. Snir-AlkalayI. VucicD. SchlerethK. MernbergerM. StieweT. OrenM. AlitaloK. PikarskyE. Ben-NeriahY. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism.Cancer Cell201324224225610.1016/j.ccr.2013.06.00523890787
    [Google Scholar]
  21. AcostaJ.C. BanitoA. WuestefeldT. GeorgilisA. JanichP. MortonJ.P. AthineosD. KangT.W. LasitschkaF. AndrulisM. PascualG. MorrisK.J. KhanS. JinH. DharmalingamG. SnijdersA.P. CarrollT. CapperD. PritchardC. InmanG.J. LongerichT. SansomO.J. BenitahS.A. ZenderL. GilJ. A complex secretory program orchestrated by the inflammasome controls paracrine senescence.Nat. Cell Biol.201315897899010.1038/ncb278423770676
    [Google Scholar]
  22. Okochi-TakadaE. HattoriN. TsukamotoT. MiyamotoK. AndoT. ItoS. YamamuraY. WakabayashiM. NobeyamaY. UshijimaT. ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis.Oncogene201433172273227810.1038/onc.2013.17423686315
    [Google Scholar]
  23. HübersC. Abdul PariA.A. GrieshoberD. PetkovM. SchmidtA. MessmerT. HeyerC.M. SchölchS. KapelS.S. GengenbacherN. SinghalM. SchiebB. FrickeC. WillR. RemansK. UtikalJ.S. ReissfelderC. SchlesnerM. Hodivala-DilkeK.M. KerstenS. GoerdtS. AugustinH.G. FelchtM. Primary tumor–derived systemic nANGPTL4 inhibits metastasis.J. Exp. Med.20232201e2020259510.1084/jem.2020259536269299
    [Google Scholar]
  24. KirschN. ChangL.S. KochS. GlinkaA. DoldeC. ColozzaG. BenitezM.D.J. De RobertisE.M. NiehrsC. Angiopoietin-like 4 Is a wnt signaling antagonist that promotes LRP6 turnover.Dev. Cell20174317182.e610.1016/j.devcel.2017.09.01129017031
    [Google Scholar]
  25. SonY. LorenzW.W. PatonC.M. Linoleic acid-induced ANGPTL4 inhibits C2C12 skeletal muscle differentiation by suppressing Wnt/β-catenin.J. Nutr. Biochem.202311610932410.1016/j.jnutbio.2023.10932436963729
    [Google Scholar]
  26. AroraR. CaoC. KumarM. SinhaS. ChandaA. McNeilR. SamuelD. AroraR.K. MatthewsT.W. ChandaranaS. HartR. DortJ.C. BiernaskieJ. NeriP. HyrczaM.D. BoseP. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response.Nat. Commun.2023141502910.1038/s41467‑023‑40271‑437596273
    [Google Scholar]
  27. HuH. LuoS. LaiP. LaiM. MaoL. ZhangS. JiangY. WenJ. ZhouW. LiuX. WangL. HuangM. HuY. ZhaoX. XiaL. ZhouW. JiangY. ZouZ. LiuA. GuoB. BaiX. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation.Proc. Natl. Acad. Sci. USA20241211e231068512010.1073/pnas.231068512038147550
    [Google Scholar]
  28. LiuK. GengY. WangL. XuH. ZouM. LiY. ZhaoZ. ChenT. XuF. SunL. WuS. GuY. Systematic exploration of the underlying mechanism of gemcitabine resistance in pancreatic adenocarcinoma.Mol. Oncol.202216163034305110.1002/1878‑0261.1327935810469
    [Google Scholar]
  29. SodhiA. MaT. MenonD. DeshpandeM. JeeK. DinabandhuA. VancelJ. LuD. MontanerS. Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema.J. Clin. Invest.2019129114593460810.1172/JCI12087931545295
    [Google Scholar]
  30. GohY.Y. PalM. ChongH.C. ZhuP. TanM.J. PunuguL. TanC.K. HuangR.L. SzeS.K. TangM.B.Y. DingJ.L. KerstenS. TanN.S. Angiopoietin- like 4 interacts with matrix proteins to modulate wound healing.J. Biol. Chem.201028543329993300910.1074/jbc.M110.10817520729546
    [Google Scholar]
  31. HatoT. TabataM. OikeY. The role of angiopoietin-like proteins in angiogenesis and metabolism.Trends Cardiovasc. Med.200818161410.1016/j.tcm.2007.10.00318206803
    [Google Scholar]
  32. HuangR.L. TeoZ. ChongH.C. ZhuP. TanM.J. TanC.K. LamC.R.I. SngM.K. LeongD.T.W. TanS.M. KerstenS. DingJ.L. LiH.Y. TanN.S. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters.Blood2011118143990400210.1182/blood‑2011‑01‑32871621841165
    [Google Scholar]
  33. StitzielN.O. StirrupsK.E. MascaN.G. ErdmannJ. FerrarioP.G. KönigI.R. WeekeP.E. WebbT.R. AuerP.L. SchickU.M. LuY. ZhangH. DubeM.P. GoelA. FarrallM. PelosoG.M. WonH.H. DoR. van IperenE. KanoniS. KruppaJ. MahajanA. ScottR.A. WillenbergC. BraundP.S. van CapelleveenJ.C. DoneyA.S. DonnellyL.A. AsseltaR. MerliniP.A. DugaS. MarzilianoN. DennyJ.C. ShafferC.M. El-MokhtariN.E. FrankeA. GottesmanO. HeilmannS. HengstenbergC. HoffmanP. HolmenO.L. HveemK. JanssonJ.H. JöckelK.H. KesslerT. KriebelJ. LaugwitzK.L. MarouliE. MartinelliN. McCarthyM.I. Van ZuydamN.R. MeisingerC. EskoT. MihailovE. EscherS.A. AlverM. MoebusS. MorrisA.D. Müller-NurasyidM. NikpayM. OlivieriO. Lemieux PerreaultL.P. AlQarawiA. RobertsonN.R. AkinsanyaK.O. ReillyD.F. VogtT.F. YinW. AsselbergsF.W. KooperbergC. JacksonR.D. StahlE. StrauchK. VargaT.V. WaldenbergerM. ZengL. KrajaA.T. LiuC. EhretG.B. Newton-ChehC. ChasmanD.I. ChowdhuryR. FerrarioM. FordI. JukemaJ.W. KeeF. KuulasmaaK. NordestgaardB.G. PerolaM. SaleheenD. SattarN. SurendranP. TregouetD. YoungR. HowsonJ.M. ButterworthA.S. DaneshJ. ArdissinoD. BottingerE.P. ErbelR. FranksP.W. GirelliD. HallA.S. HovinghG.K. KastratiA. LiebW. MeitingerT. KrausW.E. ShahS.H. McPhersonR. Orho-MelanderM. MelanderO. MetspaluA. PalmerC.N. PetersA. RaderD. ReillyM.P. LoosR.J. ReinerA.P. RodenD.M. TardifJ.C. ThompsonJ.R. WarehamN.J. WatkinsH. WillerC.J. KathiresanS. DeloukasP. SamaniN.J. SchunkertH. Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.N. Engl. J. Med.2016374121134114410.1056/NEJMoa150765226934567
    [Google Scholar]
  34. DeweyF.E. GusarovaV. O’DushlaineC. GottesmanO. TrejosJ. HuntC. Van HoutC.V. HabeggerL. BucklerD. LaiK.M.V. LeaderJ.B. MurrayM.F. RitchieM.D. KirchnerH.L. LedbetterD.H. PennJ. LopezA. BoreckiI.B. OvertonJ.D. ReidJ.G. CareyD.J. MurphyA.J. YancopoulosG.D. BarasA. GromadaJ. ShuldinerA.R. Inactivating variants in ANGPTL4 and risk of coronary artery disease.N. Engl. J. Med.2016374121123113310.1056/NEJMoa151092626933753
    [Google Scholar]
  35. LottaL.A. StewartI.D. SharpS.J. DayF.R. BurgessS. LuanJ. BowkerN. CaiL. LiC. WittemansL.B.L. KerrisonN.D. KhawK.T. McCarthyM.I. O’RahillyS. ScottR.A. SavageD.B. PerryJ.R.B. LangenbergC. WarehamN.J. Association of genetically enhanced lipoprotein lipase–mediated lipolysis and low-density lipoprotein cholesterol–lowering alleles with risk of coronary disease and type 2 diabetes.JAMA Cardiol.201831095796610.1001/jamacardio.2018.286630326043
    [Google Scholar]
  36. WangQ. Oliver-WilliamsC. RaitakariO.T. ViikariJ. LehtimäkiT. KähönenM. JärvelinM.R. SalomaaV. PerolaM. DaneshJ. KettunenJ. ButterworthA.S. HolmesM.V. Ala-KorpelaM. Metabolic profiling of angiopoietin-like protein 3 and 4 inhibition: a drug-target Mendelian randomization analysis.Eur. Heart J.202142121160116910.1093/eurheartj/ehaa97233351885
    [Google Scholar]
  37. Smart-HalajkoM.C. RobciucM.R. CooperJ.A. JauhiainenM. KumariM. KivimakiM. KhawK.T. BoekholdtS.M. WarehamN.J. GauntT.R. DayI.N. BraundP.S. NelsonC.P. HallA.S. SamaniN.J. HumphriesS.E. EhnholmC. TalmudP.J. The relationship between plasma angiopoietin-like protein 4 levels, angiopoietin-like protein 4 genotype, and coronary heart disease risk.Arterioscler. Thromb. Vasc. Biol.201030112277228210.1161/ATVBAHA.110.21220920829508
    [Google Scholar]
  38. HeX.W. ShenY.G. ZhuM. HuX.F. ZhengZ. LiuP. LiC. ZhuF. JinX.P. Angiopoietin-like protein 4 serum levels and gene polymorphisms are associated with large artery atherosclerotic stroke.J. Neurol. Sci.201636233333810.1016/j.jns.2016.02.00926944173
    [Google Scholar]
  39. AdachiH. FujiwaraY. KondoT. NishikawaT. OgawaR. MatsumuraT. IshiiN. NagaiR. MiyataK. TabataM. MotoshimaH. FurukawaN. TsuruzoeK. KawashimaJ. TakeyaM. YamashitaS. KohG.Y. NagyA. SudaT. OikeY. ArakiE. Angptl 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis.Biochem. Biophys. Res. Commun.2009379480681110.1016/j.bbrc.2008.12.01819094966
    [Google Scholar]
  40. ShenC. FanD. FuH. ZhengC. ChenY. HuZ. Single nucleotide polymorphisms in the ANGPTL4 gene and the SNP-SNP interactions on the risk of atherosclerotic Ischaemic stroke.BMC Neurol.202121110810.1186/s12883‑021‑02138‑333750331
    [Google Scholar]
  41. RahmaniF. HasanzadehM. HassanianS.M. KhazaeiM. EsmailyH. Asef-AgahA. NaghipourA. A FernsG. AvanA. Association of a genetic variant in the angiopoietin-like protein 4 gene with cervical cancer.Pathol. Res. Pract.2020216715301110.1016/j.prp.2020.15301132534714
    [Google Scholar]
  42. Kharazmi-KhorassaniS. Kharazmi-KhorassaniJ. Rastegar-MoghadamA. SamadiS. GhazizadehH. TayefiM. FernsG.A. Ghayour-MobarhanM. AvanA. EsmailyH. Association of a genetic variant in the angiopoietin-like protein 4 gene with metabolic syndrome.BMC Med. Genet.20192019710.1186/s12881‑019‑0825‑831164103
    [Google Scholar]
  43. TongZ. PengJ. LanH. SaiW. LiY. XieJ. TanY. ZhangW. ZhongM. WangZ. Cross-talk between ANGPTL4 gene SNP Rs1044250 and weight management is a risk factor of metabolic syndrome.J. Transl. Med.20211917210.1186/s12967‑021‑02739‑z33593372
    [Google Scholar]
  44. HannonB.A. EdwardsC.G. ThompsonS.V. ReeserG.E. BurdN.A. HolscherH.D. Teran-GarciaM. KhanN.A. Single nucleotide polymorphisms related toLipoprotein metabolism are associated with blood lipid changes following regular avocado intake in a randomized control trialamong adults with overweight and obesity.J. Nutr.202015061379138710.1093/jn/nxaa05432195538
    [Google Scholar]
  45. AbidK. TrimecheT. MiliD. MsolliM.A. TrabelsiI. NouiraS. KenaniA. ANGPTL4 variants E40K and T266M are associated with lower fasting triglyceride levels and predicts cardiovascular disease risk in Type 2 diabetic Tunisian population.Lipids Health Dis.20161516310.1186/s12944‑016‑0231‑627004807
    [Google Scholar]
  46. MikhakB. WeinsheimerS. PawlikowskaL. PoonA. KwokP.Y. LawtonM.T. ChenY. ZaroffJ.G. SidneyS. McCullochC.E. YoungW.L. KimH. Angiopoietin- like 4 (ANGPTL4) gene polymorphisms and risk of brain arteriovenous malformations.Cerebrovasc. Dis.201131433834510.1159/00032260121212665
    [Google Scholar]
  47. ErkinovaSA SokolovaEA OrlovKY KiselevVS StrelnikovNV DubovoyAV VoroninaEN FilipenkoML Angiopoietin-like proteins 4 (ANGPTL4) gene polymorphisms and risk of brain arteriovenous malformation.J. Stroke Cerebrovasc. Dis.201827908913
    [Google Scholar]
  48. RomeoS. YinW. KozlitinaJ. PennacchioL.A. BoerwinkleE. HobbsH.H. CohenJ.C. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans.J. Clin. Invest.20091191707919075393
    [Google Scholar]
  49. BailettiD. BertocciniL. MancinaR.M. BarchettaI. CapocciaD. CossuE. PujiaA. LenziA. LeonettiF. CavalloM.G. RomeoS. BaroniM.G. ANGPTL4 gene E40K variation protects against obesity-associated dyslipidemia in participants with obesity.Obes. Sci. Pract.201951839010.1002/osp4.31130820332
    [Google Scholar]
  50. HuM.M. ShuH.B. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases.Cell. Mol. Immunol.202320121403141210.1038/s41423‑023‑01086‑x37932533
    [Google Scholar]
  51. FolsomA.R. PeacockJ.M. DemerathE. BoerwinkleE. Variation in ANGPTL4 and risk of coronary heart disease: the atherosclerosis risk in communities study.Metabolism200857111591159610.1016/j.metabol.2008.06.01618940399
    [Google Scholar]
  52. StitzielN.O. Variants in ANGPTL4 and the risk of coronary artery disease.N. Engl. J. Med.201637523230628112900
    [Google Scholar]
  53. AryalB. SinghA.K. ZhangX. VarelaL. RotllanN. GoedekeL. ChaubeB. CamporezJ.P. VatnerD.F. HorvathT.L. ShulmanG.I. SuárezY. Fernández-HernandoC. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis.JCI Insight201836e9791810.1172/jci.insight.9791829563332
    [Google Scholar]
  54. TanZ.W. TeoZ. TanC. ChooC.C. LooW.S. SongY. TamZ.Y. NgS.P. KohH.Z. NgY.S. ShochatS.G. YauY.H. ZhuP. TanN.S. ANGPTL4 T266M variant is associated with reduced cancer invasiveness.Biochim. Biophys. Acta Mol. Cell Res.20171864101525153610.1016/j.bbamcr.2017.06.01028641978
    [Google Scholar]
  55. ChaubeB. CitrinK.M. SahraeiM. SinghA.K. de UrturiD.S. DingW. PierceR.W. RaaisaR. CardoneR. KibbeyR. Fernández-HernandoC. SuárezY. Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis.Nat. Commun.2023141825110.1038/s41467‑023‑43900‑038086791
    [Google Scholar]
  56. TalmudP.J. SmartM. PresswoodE. CooperJ.A. NicaudV. DrenosF. PalmenJ. MarmotM.G. BoekholdtS.M. WarehamN.J. KhawK.T. KumariM. HumphriesS.E. ANGPTL4 E40K and T266M.Arterioscler. Thromb. Vasc. Biol.200828122319232510.1161/ATVBAHA.108.17691718974381
    [Google Scholar]
  57. SaponaroC. GagginiM. CarliF. GastaldelliA. The subtle balance between lipolysis and lipogenesis: A critical point in metabolic homeostasis.Nutrients20157119453947410.3390/nu711547526580649
    [Google Scholar]
  58. Alves-BezerraM. CohenD.E. Triglyceride metabolism in the liver.Compr. Physiol.2017811829357123
    [Google Scholar]
  59. IqbalJ. HussainM.M. Intestinal lipid absorption.Am. J. Physiol. Endocrinol. Metab.20092966E1183E119410.1152/ajpendo.90899.200819158321
    [Google Scholar]
  60. WangJ. HegeleR.A. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650).Lipids Health Dis.2007612310.1186/1476‑511X‑6‑2317883852
    [Google Scholar]
  61. WangH. EckelR.H. Lipoprotein lipase: from gene to obesity.Am. J. Physiol. Endocrinol. Metab.20092972E271E28810.1152/ajpendo.90920.200819318514
    [Google Scholar]
  62. DijkW. HeineM. VergnesL. BoonM.R. SchaartG. HesselinkM.K.C. ReueK. van Marken LichtenbeltW.D. OlivecronaG. RensenP.C.N. HeerenJ. KerstenS. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure.eLife20154e0842810.7554/eLife.0842826476336
    [Google Scholar]
  63. SongW. YangY. HeizerP. TuY. WestonT.A. KimJ.R. MunguiaP. JungH. FongJ.L.C. TranC. PlougM. BeigneuxA.P. YoungS.G. FongL.G. Intracapillary LPL levels in brown adipose tissue, visualized with an antibody-based approach, are regulated by ANGPTL4 at thermoneutral temperatures.Proc. Natl. Acad. Sci. USA20231208e221983312010.1073/pnas.221983312036787365
    [Google Scholar]
  64. CushingE.M. ChiX. SylversK.L. ShettyS.K. PotthoffM.J. DaviesB.S.J. Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting.Mol. Metab.20176880981810.1016/j.molmet.2017.06.00728752045
    [Google Scholar]
  65. SukoninaV. LookeneA. OlivecronaT. OlivecronaG. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue.Proc. Natl. Acad. Sci. USA200610346174501745510.1073/pnas.060402610317088546
    [Google Scholar]
  66. BeigneuxA.P. AllanC.M. SandovalN.P. ChoG.W. HeizerP.J. JungR.S. StanhopeK.L. HavelP.J. BirraneG. MeiyappanM. GillJ.E.IV MurakamiM. MiyashitaK. NakajimaK. PlougM. FongL.G. YoungS.G. Lipoprotein lipase is active as a monomer.Proc. Natl. Acad. Sci. USA2019116136319632810.1073/pnas.190098311630850549
    [Google Scholar]
  67. KristensenK.K. Leth-EspensenK.Z. MertensH.D.T. BirraneG. MeiyappanM. OlivecronaG. JørgensenT.J.D. YoungS.G. PlougM. Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism.Proc. Natl. Acad. Sci. USA202011784337434610.1073/pnas.192020211732034094
    [Google Scholar]
  68. MyslingS. KristensenK.K. LarssonM. KovrovO. BensadouenA. JørgensenT.J.D. OlivecronaG. YoungS.G. PlougM. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding.eLife20165e2095810.7554/eLife.2095827929370
    [Google Scholar]
  69. Leth-EspensenK.Z. KristensenK.K. KumariA. WintherA.L. YoungS.G. JørgensenT.J.D. PlougM. The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding.Proceedings of the National Academy of Sciences of the United States of America202111812e202665011810.1073/pnas.2026650118
    [Google Scholar]
  70. ZhenE.Y. ChenY.Q. RussellA.M. EhsaniM. SiegelR.W. QianY. KonradR.J. Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity.Proc. Natl. Acad. Sci. USA20231207e221408112010.1073/pnas.221408112036763533
    [Google Scholar]
  71. ChenY.Q. ZhenE.Y. RussellA.M. EhsaniM. SiegelR.W. QianY. KonradR.J. Decoding the role of angiopoietin-like protein 4/8 complex–mediated plasmin generation in the regulation of LPL activity.J. Lipid Res.2023641010044110.1016/j.jlr.2023.10044137666362
    [Google Scholar]
  72. YoonH. ShawJ.L. HaigisM.C. GrekaA. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity.Mol. Cell202181183708373010.1016/j.molcel.2021.08.02734547235
    [Google Scholar]
  73. LytriviM. CastellA.L. PoitoutV. CnopM. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes.J. Mol. Biol.202043251514153410.1016/j.jmb.2019.09.01631628942
    [Google Scholar]
  74. MaX.M. GengK. LawB.Y.K. WangP. PuY.L. ChenQ. XuH.W. TanX.Z. JiangZ.Z. XuY. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes.Cell Biol. Toxicol.202339127729910.1007/s10565‑021‑09692‑z35235096
    [Google Scholar]
  75. WuJ. DobbsN. YangK. YanN. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion.Immunity2020531115126.e510.1016/j.immuni.2020.06.00932640258
    [Google Scholar]
  76. NewmanL.E. ShadelG.S. Mitochondrial DNA release in innate immune signaling.Annu. Rev. Biochem.202392129933210.1146/annurev‑biochem‑032620‑10440137001140
    [Google Scholar]
  77. CramerP. AlphaFold2 and the future of structural biology.Nat. Struct. Mol. Biol.202128970470510.1038/s41594‑021‑00650‑134376855
    [Google Scholar]
  78. MosessonM.W. Fibrinogen and fibrin structure and functions.J. Thromb. Haemost.2005381894190410.1111/j.1538‑7836.2005.01365.x16102057
    [Google Scholar]
  79. BakerS.K. StricklandS. A critical role for plasminogen in inflammation.J. Exp. Med.20202174e2019186510.1084/jem.2019186532159743
    [Google Scholar]
  80. ShiK. ZouM. JiaD.M. ShiS. YangX. LiuQ. DongJ. ShethK.N. WangX. ShiF.D. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke.Circ. Res.20211281627510.1161/CIRCRESAHA.120.31759633070717
    [Google Scholar]
  81. Le LayJ.E. DuQ. MehtaM.B. BhagrooN. HummerB.T. FalloonJ. CarlsonG. RosenbaumA.I. JinC. KimkoH. TsaiL.F. NovickS. CookB. HanD. HanC.Y. VaisarT. ChaitA. KarathanasisS.K. RhodesC.J. HirshbergB. DamschroderM.M. HsiaJ. GrimsbyJ.S. Blocking endothelial lipase with monoclonal antibody MEDI5884 durably increases high density lipoprotein in nonhuman primates and in a phase 1 trial.Sci. Transl. Med.202113590eabb060210.1126/scitranslmed.abb060233883272
    [Google Scholar]
  82. YasudaT IshidaT RaderDJ. Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis.Circulation201074226370
    [Google Scholar]
  83. ChenY.Q. PottanatT.G. SiegelR.W. EhsaniM. QianY.W. KonradR.J. Angiopoietin-like protein 4 (ANGPTL4) is an inhibitor of endothelial lipase (EL) while the ANGPTL4/8 complex has reduced EL-inhibitory activity.Heliyon202179e0789810.1016/j.heliyon.2021.e0789834504977
    [Google Scholar]
  84. MontaigneD. ButruilleL. StaelsB. PPAR control of metabolism and cardiovascular functions.Nat. Rev. Cardiol.2021181280982310.1038/s41569‑021‑00569‑634127848
    [Google Scholar]
  85. NeelsJ.G. GrimaldiP.A. Physiological functions of peroxisome proliferator-activated receptor β.Physiol. Rev.201494379585810.1152/physrev.00027.201324987006
    [Google Scholar]
  86. LenzM. SchönbauerR. StojkovicS. LichtenauerM. PaarV. GattererC. SchukroC. EmichM. Fritzer-SzekeresM. Strametz-JuranekJ. SponderM. Long-term physical activity modulates adipsin and ANGPTL4 serum levels, a potential link to exercise-induced metabolic changes.Panminerva Med.202365329230210.23736/S0031‑0808.21.04382‑234309331
    [Google Scholar]
  87. GóreckaM. KrzemińskiK. MikulskiT. ZiembaA.W. ANGPTL4, IL-6 and TNF-α as regulators of lipid metabolism during a marathon run.Sci. Rep.20221211994010.1038/s41598‑022‑17439‑x36402848
    [Google Scholar]
  88. NorheimF. HjorthM. LangleiteT.M. LeeS. HolenT. BindesbøllC. StadheimH.K. GulsethH.L. BirkelandK.I. KiellandA. JensenJ. DalenK.T. DrevonC.A. Regulation of angiopoietin-like protein 4 production during and after exercise.Physiol. Rep.201428e1210910.14814/phy2.1210925138789
    [Google Scholar]
  89. CullbergK.B. ChristiansenT. PaulsenS.K. BruunJ.M. PedersenS.B. RichelsenB. Effect of weight loss and exercise on angiogenic factors in the circulation and in adipose tissue in obese subjects.Obesity (Silver Spring)201321345446010.1002/oby.2006023401397
    [Google Scholar]
  90. SabaratnamR. PedersenA.J.T. KristensenJ.M. HandbergA. WojtaszewskiJ.F.P. HøjlundK. Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes.Physiol. Rep.2018612e1372310.14814/phy2.1372329924476
    [Google Scholar]
  91. ChangH. KwonO. ShinM.S. KangG.M. LeemY.H. LeeC.H. KimS.J. RohE. KimH.K. YounB.S. KimM.S. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation.J. Appl. Physiol.2018125371572210.1152/japplphysiol.00984.201629952246
    [Google Scholar]
  92. CatoireM. AlexS. ParaskevopulosN. MattijssenF. Evers-van GoghI. SchaartG. JeppesenJ. KneppersA. MensinkM. VosholP.J. OlivecronaG. TanN.S. HesselinkM.K.C. BerbéeJ.F. RensenP.C.N. KalkhovenE. SchrauwenP. KerstenS. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise.Proc. Natl. Acad. Sci. USA201411111E1043E105210.1073/pnas.140088911124591600
    [Google Scholar]
  93. IngerslevB. HansenJ.S. HoffmannC. ClemmesenJ.O. SecherN.H. SchelerM. Hrabĕ de AngelisM. HäringH.U. PedersenB.K. WeigertC. PlomgaardP. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP.Mol. Metab.20176101286129510.1016/j.molmet.2017.06.01829031727
    [Google Scholar]
  94. GeorgiadiA. LichtensteinL. DegenhardtT. BoekschotenM.V. van BilsenM. DesvergneB. MüllerM. KerstenS. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress.Circ. Res.2010106111712172110.1161/CIRCRESAHA.110.21738020378851
    [Google Scholar]
  95. HorvathT.L. SarmanB. García-CáceresC. EnrioriP.J. SotonyiP. ShanabroughM. BorokE. ArgenteJ. ChowenJ.A. Perez-TilveD. PflugerP.T. BrönnekeH.S. LevinB.E. DianoS. CowleyM.A. TschöpM.H. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity.Proc. Natl. Acad. Sci. USA201010733148751488010.1073/pnas.100428210720679202
    [Google Scholar]
  96. MooreK.J. RosenE.D. FitzgeraldM.L. RandowF. AnderssonL.P. AltshulerD. MilstoneD.S. MortensenR.M. SpiegelmanB.M. FreemanM.W. The role of PPAR-γ in macrophage differentiation and cholesterol uptake.Nat. Med.200171414710.1038/8332811135614
    [Google Scholar]
  97. VarelaL. KimJ.G. Fernández-TussyP. AryalB. LiuZ.W. Fernández-HernandoC. HorvathT.L. Astrocytic lipid metabolism determines susceptibility to diet-induced obesity.Sci. Adv.2021750eabj281410.1126/sciadv.abj281434890239
    [Google Scholar]
  98. ChristofidesA. KonstantinidouE. JaniC. BoussiotisV.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses.Metabolism202111415433810.1016/j.metabol.2020.15433832791172
    [Google Scholar]
  99. KlotzL DaniI EdenhoferF NoldenL EvertB PaulB KolanusW KlockgetherT KnolleP DiehlL Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy.J. Immunol.2007178212231
    [Google Scholar]
  100. FanJ. WatanabeT. Hepatic lipase.J. Atheroscler. Thromb.199851414510.5551/jat1994.5.4110077457
    [Google Scholar]
  101. KobayashiJ. MiyashitaK. NakajimaK. MabuchiH. Hepatic lipase: A comprehensive view of its role on plasma lipid and lipoprotein metabolism.J. Atheroscler. Thromb.201522101001101110.5551/jat.3161726194979
    [Google Scholar]
  102. SinghA.K. ChaubeB. ZhangX. SunJ. CitrinK.M. Canfrán-DuqueA. AryalB. RotllanN. VarelaL. LeeR.G. HorvathT.L. PriceN.L. SuárezY. Fernández-HernandoC. Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice.J. Clin. Invest.202113117e14098910.1172/JCI14098934255741
    [Google Scholar]
  103. Hickson-BickD.L.M. BujaM.L. McMillinJ.B. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes.J. Mol. Cell. Cardiol.200032351151910.1006/jmcc.1999.109810731449
    [Google Scholar]
  104. SteinbergG.R. HardieD.G. New insights into activation and function of the AMPK.Nat. Rev. Mol. Cell Biol.202324425527210.1038/s41580‑022‑00547‑x36316383
    [Google Scholar]
  105. KimH.K. YounB.S. ShinM.S. NamkoongC. ParkK.H. BaikJ.H. KimJ.B. ParkJ.Y. LeeK. KimY.B. KimM.S. Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight.Diabetes201059112772278010.2337/db10‑014520798332
    [Google Scholar]
  106. YeudallS UpchurchCM SeegrenPV PavelecCM GreulichJ LemkeMC HarrisTE DesaiBN HoehnKL LeitingerN Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism.Sci. Adv.20228eabq198410.1126/sciadv.abq1984
    [Google Scholar]
  107. ChenY. ZhangJ. CuiW. SilversteinR.L. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate.J. Exp. Med.20222196e2021131410.1084/jem.2021131435438721
    [Google Scholar]
  108. GlatzJ.F.C. HeatherL.C. LuikenJ.J.F.P. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease.Physiol. Rev.20231042physrev.00011.202310.1152/physrev.00011.202337882731
    [Google Scholar]
  109. JabsM. RoseA.J. LehmannL.H. TaylorJ. MollI. SijmonsmaT.P. HerberichS.E. SauerS.W. PoschetG. FedericoG. MoglerC. WeisE.M. AugustinH.G. YanM. GretzN. SchmidR.M. AdamsR.H. GröneH.J. HellR. OkunJ.G. BacksJ. NawrothP.P. HerzigS. FischerA. Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart.Circulation2018137242592260810.1161/CIRCULATIONAHA.117.02973329353241
    [Google Scholar]
  110. AryalB. RotllanN. AraldiE. RamírezC.M. HeS. ChoustermanB.G. FennA.M. WanschelA. Madrigal-MatuteJ. WarrierN. Martín-VenturaJ.L. SwirskiF.K. SuárezY. Fernández-HernandoC. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression.Nat. Commun.2016711231310.1038/ncomms1231327460411
    [Google Scholar]
  111. SchejaL. HeerenJ. The endocrine function of adipose tissues in health and cardiometabolic disease.Nat. Rev. Endocrinol.201915950752410.1038/s41574‑019‑0230‑631296970
    [Google Scholar]
  112. de CandiaP. PrattichizzoF. GaravelliS. AlviggiC. La CavaA. MatareseG. The pleiotropic roles of leptin in metabolism, immunity, and cancer.J. Exp. Med.20212185e2019159310.1084/jem.2019159333857282
    [Google Scholar]
  113. StephensT.W. BasinskiM. BristowP.K. Bue-ValleskeyJ.M. BurgettS.G. CraftL. HaleJ. HoffmannJ. HsiungH.M. KriauciunasA. MacKellarW. RosteckP.R.Jr SchonerB. SmithD. TinsleyF.C. ZhangX-Y. HeimanM. The role of neuropeptide Y in the antiobesity action of the obese gene product.Nature1995377654953053210.1038/377530a07566151
    [Google Scholar]
  114. CowleyM.A. SmartJ.L. RubinsteinM. CerdánM.G. DianoS. HorvathT.L. ConeR.D. LowM.J. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus.Nature2001411683648048410.1038/3507808511373681
    [Google Scholar]
  115. ZengW. PirzgalskaR.M. PereiraM.M.A. KubasovaN. BarateiroA. SeixasE. LuY.H. KozlovaA. VossH. MartinsG.G. FriedmanJ.M. DomingosA.I. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis.Cell20151631849410.1016/j.cell.2015.08.05526406372
    [Google Scholar]
  116. CaronA. LeeS. ElmquistJ.K. GautronL. Leptin and brain–adipose crosstalks.Nat. Rev. Neurosci.201819315316510.1038/nrn.2018.729449715
    [Google Scholar]
  117. RecazensE. MouiselE. LanginD. Hormone-sensitive lipase: sixty years later.Prog. Lipid Res.20218210108410.1016/j.plipres.2020.10108433387571
    [Google Scholar]
  118. GuoZ. YangH. ZhangJ.R. ZengW. HuX. Leptin receptor signaling sustains metabolic fitness of alveolar macrophages to attenuate pulmonary inflammation.Sci. Adv.2022828eabo306410.1126/sciadv.abo306435857512
    [Google Scholar]
  119. NaylorC. PetriW.A.Jr Leptin regulation of immune responses.Trends Mol. Med.2016222889810.1016/j.molmed.2015.12.00126776093
    [Google Scholar]
  120. FriedmanJ.M. Leptin and the endocrine control of energy balance.Nat. Metab.20191875476410.1038/s42255‑019‑0095‑y32694767
    [Google Scholar]
  121. MancusoP. MyersM.G.Jr GoelD. SerezaniC.H. O’BrienE. GoldbergJ. AronoffD.M. Peters-GoldenM. Ablation of leptin receptor-mediated ERK activation impairs host defense against Gram-negative pneumonia.J. Immunol.2012189286787510.4049/jimmunol.120046522685316
    [Google Scholar]
  122. ZhouY. YuX. ChenH. SjöbergS. RouxJ. ZhangL. IvoulsouA.H. BensaidF. LiuC.L. LiuJ. TordjmanJ. ClementK. LeeC.H. HotamisligilG.S. LibbyP. ShiG.P. Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages.Cell Metab.20152261045105810.1016/j.cmet.2015.09.01326481668
    [Google Scholar]
  123. Al-HassiH.O. BernardoD. MurugananthanA.U. MannE.R. EnglishN.R. JonesA. KammM.A. ArebiN. HartA.L. BlakemoreA.I.F. StaggA.J. KnightS.C. A mechanistic role for leptin in human dendritic cell migration: differences between ileum and colon in health and Crohn’s disease.Mucosal Immunol.20136475176110.1038/mi.2012.11323168838
    [Google Scholar]
  124. Zarkesh-EsfahaniH. PockleyA.G. WuZ. HellewellP.G. WeetmanA.P. RossR.J.M. Leptin indirectly activates human neutrophils via induction of TNF-alpha.J. Immunol.200417231809181410.4049/jimmunol.172.3.180914734764
    [Google Scholar]
  125. DengJ. LiuY. YangM. WangS. ZhangM. WangX. KoK.H. HuaZ. SunL. CaoX. LuL. Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response.Arthritis Rheum.201264113564357310.1002/art.3463722833425
    [Google Scholar]
  126. YuY. LiuY. ShiF.D. ZouH. MatareseG. La CavaA. Cutting edge: Leptin-induced RORγt expression in CD4+ T cells promotes Th17 responses in systemic lupus erythematosus.J. Immunol.201319073054305810.4049/jimmunol.120327523447682
    [Google Scholar]
  127. LeeK.C. WuP.S. LinH.C. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis.Clin. Mol. Hepatol.2023291779810.3350/cmh.2022.023736226471
    [Google Scholar]
  128. SuX. ZhangG. ChengY. WangB. Leptin in skin disease modulation.Clin. Chim. Acta202151681410.1016/j.cca.2021.01.01333485901
    [Google Scholar]
  129. GrayN.E. LamL.N. YangK. ZhouA.Y. KoliwadS. WangJ.C. Erratum for: Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes.J. Biol. Chem.2017292391613510.1074/jbc.A111.29412428963337
    [Google Scholar]
  130. RamshankerN. JessenN. VossT.S. PedersenS.B. JørgensenJ.O.L. NielsenT.S. FrystykJ. MøllerN. Effects of short-term prednisolone treatment on indices of lipolysis and lipase signaling in abdominal adipose tissue in healthy humans.Metabolism20199911010.1016/j.metabol.2019.06.01331260678
    [Google Scholar]
  131. KoliwadS.K. GrayN.E. WangJ.C. Angiopoietin-like 4 (Angptl4).Adipocyte20121318218710.4161/adip.2078723700531
    [Google Scholar]
  132. GrayN.E. LamL.N. YangK. ZhouA.Y. KoliwadS. WangJ.C. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes.J. Biol. Chem.2012287118444845610.1074/jbc.M111.29412422267746
    [Google Scholar]
  133. ChenT.C. BenjaminD.I. KuoT. LeeR.A. LiM.L. MarD.J. CostelloD.E. NomuraD.K. WangJ.C. The glucocorticoid-Angptl4-ceramide axis induces insulin resistance through PP2A and PKCζ.Sci. Signal.201710489eaai790510.1126/scisignal.aai7905
    [Google Scholar]
  134. GomesD. SobolewskiC. ConzelmannS. SchaerT. LefaiE. AlfaiateD. TseligkaE.D. GoossensN. TapparelC. NegroF. FotiM. ClémentS. ANGPTL4 is a potential driver of HCV-induced peripheral insulin resistance.Sci. Rep.2023131676710.1038/s41598‑023‑33728‑537185283
    [Google Scholar]
  135. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  136. ChenX. LiJ. KangR. KlionskyD.J. TangD. Ferroptosis: machinery and regulation.Autophagy20211792054208110.1080/15548627.2020.181091832804006
    [Google Scholar]
  137. KoppulaP. ZhuangL. GanB. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy.Protein Cell202112859962010.1007/s13238‑020‑00789‑533000412
    [Google Scholar]
  138. YangW.H. HuangZ. WuJ. DingC.K.C. MurphyS.K. ChiJ.T. A TAZ–ANGPTL4–NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer.Mol. Cancer Res.2020181799010.1158/1541‑7786.MCR‑19‑069131641008
    [Google Scholar]
  139. ShenC.J. ChanR.H. LinB.W. LiN.C. HuangY.H. ChangW.C. ChenB.K. Oleic acid-induced metastasis of KRAS/p53-mutant colorectal cancer relies on concurrent KRAS activation and IL-8 expression bypassing EGFR activation.Theranostics202313134650466610.7150/thno.8585537649607
    [Google Scholar]
  140. ShenC.J. ChangK.Y. LinB.W. LinW.T. SuC.M. TsaiJ.P. LiaoY.H. HungL.Y. ChangW.C. ChenB.K. Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis.Theranostics202010167083709910.7150/thno.4474432641980
    [Google Scholar]
  141. DengW. ZhongL. YeS. LuoJ. RenG. HuangJ. ZhuangX. Mir22hg facilitates ferritinophagy-mediated ferroptosis in sepsis by recruiting the m6A reader YTHDC1 and enhancing Angptl4 mRNA stability.J. Bioenerg. Biomembr.202456440541810.1007/s10863‑024‑10022‑138842666
    [Google Scholar]
  142. SunY ChenP ZhaiB ZhangM XiangY FangJ XuS GaoY ChenX SuiX LiG The emerging role of ferroptosis in inflammation.Biomed. Pharmacother.2020127110108
    [Google Scholar]
  143. ChenX. KangR. KroemerG. TangD. Ferroptosis in infection, inflammation, and immunity.J. Exp. Med.20212186e2021051810.1084/jem.2021051833978684
    [Google Scholar]
  144. OtengA.B. RuppertP.M. BoutensL. DijkW. van DierendonckX.M.H. OlivecronaG. StienstraR. KerstenS. Characterization of ANGPTL4 function in macrophages and adipocytes using Angptl4-knockout and Angptl4-hypomorphic mice.J. Lipid Res.201960101741175410.1194/jlr.M09412831409739
    [Google Scholar]
  145. LichtensteinL. MattijssenF. de WitN.J. GeorgiadiA. HooiveldG.J. van der MeerR. HeY. QiL. KösterA. TamsmaJ.T. TanN.S. MüllerM. KerstenS. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages.Cell Metab.201012658059210.1016/j.cmet.2010.11.00221109191
    [Google Scholar]
  146. LiY. GongW. LiuJ. ChenX. SuoY. YangH. GaoX. Angiopoietin-like protein 4 promotes hyperlipidemia-induced renal injury by down-regulating the expression of ACTN4.Biochem. Biophys. Res. Commun.2022595697510.1016/j.bbrc.2022.01.06135101665
    [Google Scholar]
  147. DesaiU. LeeE.C. ChungK. GaoC. GayJ. KeyB. HansenG. MachajewskiD. PlattK.A. SandsA.T. SchneiderM. Van SligtenhorstI. SuwanichkulA. VogelP. WilganowskiN. WingertJ. ZambrowiczB.P. LandesG. PowellD.R. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice.Proc. Natl. Acad. Sci. USA200710428117661177110.1073/pnas.070504110417609370
    [Google Scholar]
  148. OtengA.B. BhattacharyaA. BrodesserS. QiL. TanN.S. KerstenS. Feeding Angptl4 −/− mice trans fat promotes foam cell formation in mesenteric lymph nodes without leading to ascites.J. Lipid Res.20175861100111310.1194/jlr.M07427828412693
    [Google Scholar]
  149. DengM. KutrolliE. SadewasserA. MichelS. JoibariM.M. JaschinskiF. OlivecronaG. NilssonS.K. KerstenS. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy.J. Lipid Res.202263710023710.1016/j.jlr.2022.10023735667416
    [Google Scholar]
  150. ChoD.I. AhnM.J. ChoH.H. ChoM. JunJ.H. KangB.G. LimS.Y. YooS.J. KimM.R. KimH.S. LeeS.J. DatL.T. LeeC. KimY.S. AhnY. ANGPTL4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation.Exp. Mol. Med.202355242644210.1038/s12276‑023‑00937‑x36782020
    [Google Scholar]
  151. SunB BaiL LiQ SunY LiM WangJ ShiX ZhaoM. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis.Toxicol In Vitro202494105709
    [Google Scholar]
  152. LiL. ChongH.C. NgS.Y. KwokK.W. TeoZ. TanE.H.P. ChooC.C. SeetJ.E. ChoiH.W. BuistM.L. ChowV.T.K. TanN.S. Angiopoietin-like 4 increases pulmonary tissue leakiness and damage during influenza pneumonia.Cell Rep.201510565466310.1016/j.celrep.2015.01.01125660016
    [Google Scholar]
  153. LiL. FooB.J.W. KwokK.W. SakamotoN. MukaeH. IzumikawaK. MandardS. QuenotJ.P. LagrostL. TehW.K. Singh KohliG. ZhuP. ChoiH. BuistM.L. SeetJ.E. YangL. HeF. Kwong ChowV.T. TanN.S. Antibody treatment against angiopoietin-like 4 reduces pulmonary edema and injury in secondary pneumococcal pneumonia.MBio2019103e02469-1810.1128/mBio.02469‑1831164474
    [Google Scholar]
  154. BhatrajuP.K. MorrellE.D. StanawayI.B. SatheN.A. SrivastavaA. PostelnicuR. GreenR. AndrewsA. GonzalezM. KratochvilC.J. KumarV.K. HsiangT.Y. GaleM.Jr AnesiG.L. WylesD. BroadhurstM.J. Brett-MajorD. MukherjeeV. SevranskyJ.E. LandsittelD. HungC. AltemeierW.A. GharibS.A. UyekiT.M. CobbJ.P. LieblerJ.M. CrosslinD.R. JarvikG.P. SegalL.N. EvansL. MikacenicC. WurfelM.M. Angiopoietin-like4 is a novel marker of COVID-19 severity.Crit. Care Explor.202251e082710.1097/CCE.000000000000082736600780
    [Google Scholar]
  155. ChenS. JiangJ. SuM. ChenP. LiuX. LeiW. ZhangS. WuQ. RongF. LiX. ZhengX. XiaoQ. A nomogram based on the expression level of angiopoietin-like 4 to predict the severity of community-acquired pneumonia.BMC Infect. Dis.202323167710.1186/s12879‑023‑08648‑437821811
    [Google Scholar]
  156. JungK.H. SonM.K. YanH.H. FangZ. KimJ. KimS.J. ParkJ.H. LeeJ.E. YoonY.C. SeoM.S. HanB.S. KoS. SuhY.J. LimJ.H. LeeD.H. TeoZ. WeeJ.W.K. TanN.S. HongS.S. ANGPTL 4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a.EMBO Mol. Med.2020128e1122210.15252/emmm.20191122232638512
    [Google Scholar]
  157. WeeW.K.J. LowZ.S. OoiC.K. HenategalaB.P. LimZ.G.R. YipY.S. VosM.I.G. TanW.W.R. ChengH.S. TanN.S. Single-cell analysis of skin immune cells reveals an Angptl4-ifi20b axis that regulates monocyte differentiation during wound healing.Cell Death Dis.202213218010.1038/s41419‑022‑04638‑735210411
    [Google Scholar]
  158. ZuoY. DaiL. LiL. HuangY. LiuX. LiuX. DuanX. JiangS. DengG.M. ChenH. ANGPTL4 regulates psoriasis via modulating hyperproliferation and inflammation of keratinocytes.Front. Pharmacol.20221385096710.3389/fphar.2022.85096735860030
    [Google Scholar]
  159. QiX. BieM. JiangR. KangF. HIF-1α regulates osteoclastogenesis and alveolar bone resorption in periodontitis via ANGPTL4.Arch. Oral Biol.202315310573610.1016/j.archoralbio.2023.10573637290266
    [Google Scholar]
  160. Di MiccoR. KrizhanovskyV. BakerD. d’Adda di FagagnaF. Cellular senescence in ageing: from mechanisms to therapeutic opportunities.Nat. Rev. Mol. Cell Biol.2021222759510.1038/s41580‑020‑00314‑w33328614
    [Google Scholar]
  161. ErenM. BoeA.E. MurphyS.B. PlaceA.T. NagpalV. Morales-NebredaL. UrichD. QuagginS.E. BudingerG.R.S. MutluG.M. MiyataT. VaughanD.E. PAI-1–regulated extracellular proteolysis governs senescence and survival in Klotho mice.Proc. Natl. Acad. Sci. USA2014111197090709510.1073/pnas.132194211124778222
    [Google Scholar]
  162. ÖzcanS. AlessioN. AcarM.B. MertE. OmerliF. PelusoG. GalderisiU. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses.Aging (Albany NY)2016871316132910.18632/aging.10097127288264
    [Google Scholar]
  163. OdagiriN. MatsubaraT. HiguchiM. TakadaS. UrushimaH. Sato-MatsubaraM. TeranishiY. YoshizatoK. KawadaN. IkedaK. Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells.Mol. Cell. Biochem.20194551-271910.1007/s11010‑018‑3466‑x30426301
    [Google Scholar]
  164. ZhangB. FuD. XuQ. CongX. WuC. ZhongX. MaY. LvZ. ChenF. HanL. QianM. ChinY.E. LamE.W.F. ChiaoP. SunY. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1.Nat. Commun.201891172310.1038/s41467‑018‑04010‑429712904
    [Google Scholar]
  165. JongH.L. MustafaM.R. VanhoutteP.M. AbuBakarS. WongP.F. MicroRNA 299-3p modulates replicative senescence in endothelial cells.Physiol. Genomics201345725626710.1152/physiolgenomics.00071.201223362143
    [Google Scholar]
  166. CroweE.P. TuzerF. GregoryB.D. DonahueG. GosaiS.J. CohenJ. LeungY.Y. YetkinE. NativioR. WangL.S. SellC. BoniniN.M. BergerS.L. JohnsonF.B. TorresC. Changes in the transcriptome of human astrocytes accompanying oxidative stress-induced senescence.Front. Aging Neurosci.2016820810.3389/fnagi.2016.0020827630559
    [Google Scholar]
  167. TakebayashiS. TanakaH. HinoS. NakatsuY. IgataT. SakamotoA. NaritaM. NakaoM. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.Aging Cell201514468969710.1111/acel.1235126009982
    [Google Scholar]
  168. FloreaV. BhagavatulaN. SimovicG. MacedoF.Y. FockR.A. RodriguesC.O. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.PLoS One201389e7314610.1371/journal.pone.007314624039874
    [Google Scholar]
  169. SimcoxJ. LammingD.W. The central moTOR of metabolism.Dev. Cell202257669170610.1016/j.devcel.2022.02.02435316619
    [Google Scholar]
  170. MalickW.A. DoR. RosensonR.S. Severe hypertriglyceridemia: Existing and emerging therapies.Pharmacol. Ther.202325110854410.1016/j.pharmthera.2023.10854437848164
    [Google Scholar]
  171. TsaiY.T. WuA.C. YangW.B. KaoT.J. ChuangJ.Y. ChangW.C. HsuT.I. ANGPTL4 induces TMZ resistance of glioblastoma by promoting cancer stemness enrichment via the EGFR/AKT/4E-BP1 cascade.Int. J. Mol. Sci.20192022562510.3390/ijms2022562531717924
    [Google Scholar]
  172. JiangQ. MiaoR. WangY. WangW. ZhaoD. NiuY. DingQ. LiY. LeungP.C.K. WeiD. ChenZ.J. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21.FASEB J.2023372e2269310.1096/fj.202201246RR36607250
    [Google Scholar]
  173. LiH. GeC. ZhaoF. YanM. HuC. JiaD. TianH. ZhuM. ChenT. JiangG. XieH. CuiY. GuJ. TuH. HeX. YaoM. LiuY. LiJ. Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin β1 signaling in human hepatocellular carcinoma.Hepatology201154391091910.1002/hep.2447921674552
    [Google Scholar]
  174. LiY. GaoA. ZengT. LiuD. ZhangQ. RanX. TangZ. LiY. LiuJ. ZhangT. ShiG. ZhouW. ZouW. PengJ. ZhangJ. LiH. ZouJ. ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1.J. Transl. Med.20242214610.1186/s12967‑023‑04819‑838212795
    [Google Scholar]
  175. LiaoY-H. ChiangK-H. ShiehJ-M. HuangC-R. ShenC-J. HuangW-C. ChenB-K. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma.Oncogene201736162228224210.1038/onc.2016.37127797381
    [Google Scholar]
  176. ZhuP. TanM.J. HuangR.L. TanC.K. ChongH.C. PalM. LamC.R.I. BoukampP. PanJ.Y. TanS.H. KerstenS. LiH.Y. DingJ.L. TanN.S. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors.Cancer Cell201119340141510.1016/j.ccr.2011.01.01821397862
    [Google Scholar]
  177. ChongH.C. ChanJ.S. GohC.Q. GounkoN.V. LuoB. WangX. FooS. WongM.T. ChoongC. KerstenS. TanN.S. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice.Mol Ther.2014229159360410.1038/mt.2014.102
    [Google Scholar]
  178. GohY.Y. PalM. ChongH.C. ZhuP. TanM.J. PunuguL. LamC.R.I. YauY.H. TanC.K. HuangR.L. TanS.M. TangM.B.Y. DingJ.L. KerstenS. TanN.S. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration.Am. J. Pathol.201017762791280310.2353/ajpath.2010.10012920952587
    [Google Scholar]
  179. ClementL.C. MacéC. Avila-CasadoC. JolesJ.A. KerstenS. ChughS.S. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome.Nat. Med.2014201374610.1038/nm.339624317117
    [Google Scholar]
  180. GuoK. PanP. WuM. MaY. LuJ. ChenH. Hyposialylated angiopoietin-like-4 induces apoptosis of podocytes via β1 Integrin/FAK signaling in diabetic nephropathy.Mol. Cell. Endocrinol.202050511073010.1016/j.mce.2020.11073031981598
    [Google Scholar]
  181. Gomez PerdigueroE. Liabotis-FontugneA. DurandM. FayeC. Ricard-BlumS. SimonuttiM. AugustinS. RobbB.M. PaquesM. ValenzuelaD.M. MurphyA.J. YancopoulosG.D. ThurstonG. GalaupA. MonnotC. GermainS. ANGPTL4-αvβ3 interaction counteracts hypoxia-induced vascular permeability by modulating Src signalling downstream of vascular endothelial growth factor receptor 2.J. Pathol.2016240446147110.1002/path.480527577973
    [Google Scholar]
  182. LiF. ZhangH. HuangY. LiD. ZhengZ. XieK. CaoC. WangQ. ZhaoX. HuangZ. ChenS. ChenH. FanQ. DengF. HouL. DengX. TanW. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer.Drug Resist Updat.20247310105910.1016/j.drup.2024.101059
    [Google Scholar]
  183. WangY. YangX. LiQ. ZhangY. ChenL. HongL. XieZ. YangS. DengX. CaoM. YiG. FuM. Single-cell RNA sequencing reveals the Müller subtypes and inner blood–retinal barrier regulatory network in early diabetic retinopathy.Front. Mol. Neurosci.202215104863410.3389/fnmol.2022.104863436533134
    [Google Scholar]
  184. YangQ. YinR.X. CaoX.L. HuangF. ZhouY.J. ChenW.X. ANGPTL4 variants and their haplotypes are associated with serum lipid levels, the risk of coronary artery disease and ischemic stroke and atorvastatin cholesterol-lowering responses.Nutr. Metab. (Lond.)20181517010.1186/s12986‑018‑0308‑530323852
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673320024240829070906
Loading
/content/journals/cmc/10.2174/0109298673320024240829070906
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ANGPTL4; cellular senescence; inflammation; lipid metabolism; LPL; SNP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test