Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

As members of the protein tyrosine kinase family, the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) play essential roles in cellular signal transduction pathways. Overexpression or abnormal activation of EGFR and HER2 can lead to the development of various solid tumors. Therefore, they have been confirmed as biological targets for the development of anticancer drugs. Due to the fact that many cancers are highly susceptible to develop resistance to single-target EGFR inhibitors in clinical practice, dual inhibitors that target both EGFR and HER2 have been developed to increase efficacy, reduce drug resistance and interactions, and improve patient compliance. Currently, a variety of EGFR/HER2 dual inhibitors have been developed, with several drugs already approved for marketing or in clinical trials. In this review, we summarize recent advancements in small-molecule EGFR/HER2 dual inhibitors by focusing on structure-activity relationships and share novel insights into developing anticancer agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673308896240528173317
2024-06-10
2025-09-08
Loading full text...

Full text loading...

References

  1. SeshacharyuluP. PonnusamyM.P. HaridasD. JainM. GantiA.K. BatraS.K. Targeting the EGFR signaling pathway in cancer therapy.Expert Opin. Ther. Targets2012161153110.1517/14728222.2011.64861722239438
    [Google Scholar]
  2. TsouH.R. Overbeek-KlumpersE.G. HallettW.A. ReichM.F. FloydM.B. JohnsonB.D. MichalakR.S. NilakantanR. DiscafaniC. GolasJ. RabindranS.K. ShenR. ShiX. WangY.F. UpeslacisJ. WissnerA. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity.J. Med. Chem.20054841107113110.1021/jm040159c15715478
    [Google Scholar]
  3. BaselgaJ. ArteagaC.L. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer.J. Clin. Oncol.200523112445245910.1200/JCO.2005.11.89015753456
    [Google Scholar]
  4. PahujaK.B. NguyenT.T. JaiswalB.S. PrabhashK. ThakerT.M. SengerK. ChaudhuriS. KljavinN.M. AntonyA. PhalkeS. KumarP. MravicM. StawiskiE.W. VargasD. DurinckS. GuptaR. Khanna-GuptaA. TrabuccoS.E. SokolE.S. HartmaierR.J. SinghA. ChouguleA. TrivediV. DuttA. PatilV. JoshiA. NoronhaV. ZiaiJ. BanavaliS.D. RamprasadV. DeGradoW.F. BuenoR. JuraN. SeshagiriS. Actionable activating oncogenic ERBB2/HER2 transmembrane and juxtamembrane domain mutations.Cancer Cell2018345792806.e510.1016/j.ccell.2018.09.01030449325
    [Google Scholar]
  5. HynesN.E. LaneH.A. ERBB receptors and cancer: The complexity of targeted inhibitors.Nat. Rev. Cancer20055534135410.1038/nrc160915864276
    [Google Scholar]
  6. ReidA. VidalL. ShawH. de BonoJ. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu).Eur. J. Cancer200743348148910.1016/j.ejca.2006.11.00717208435
    [Google Scholar]
  7. PatelT.A. DaveB. RodriguezA.A. ChangJ.C. PerezE.A. Colon-OteroG. Dual HER2 blockade: Preclinical and clinical data.Breast Cancer Res.201416441910.1186/s13058‑014‑0419‑525928889
    [Google Scholar]
  8. KiguchiK. KitamuraT. MooreT. RumiM. ChangH.C. TreeceD. RuffinoL. ConnollyK. DiGiovanniJ. Dual inhibition of both the epidermal growth factor receptor and erbB2 effectively inhibits the promotion of skin tumors during two-stage carcinogenesis.Cancer Prev. Res. (Phila.)20103894095210.1158/1940‑6207.CAPR‑10‑001020682802
    [Google Scholar]
  9. KannaiyanR. MahadevanD. A comprehensive review of protein kinase inhibitors for cancer therapy.Expert Rev. Anticancer Ther.201818121249127010.1080/14737140.2018.152768830259761
    [Google Scholar]
  10. MénardS. PupaS.M. CampiglioM. TagliabueE. Biologic and therapeutic role of HER2 in cancer.Oncogene200322426570657810.1038/sj.onc.120677914528282
    [Google Scholar]
  11. RoskoskiR.Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer.Biochem. Biophys. Res. Commun.2004319111110.1016/j.bbrc.2004.04.15015158434
    [Google Scholar]
  12. ChoiB.K. CaiX. YuanB. HuangZ. FanX. DengH. ZhangN. AnZ. HER3 intracellular domains play a crucial role in HER3/HER2 dimerization and activation of downstream signaling pathways.Protein Cell201231078178910.1007/s13238‑012‑2065‑y22983903
    [Google Scholar]
  13. BurgessA.W. ChoH.S. EigenbrotC. FergusonK.M. GarrettT.P.J. LeahyD.J. LemmonM.A. SliwkowskiM.X. WardC.W. YokoyamaS. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors.Mol. Cell200312354155210.1016/S1097‑2765(03)00350‑214527402
    [Google Scholar]
  14. HarveyT.S. WilkinsonA.J. TappinM.J. CookeR.M. CampbellI.D. The solution structure of human transforming growth ectodomain bound to factor.Eur. J. Biochem.199119855556210.1111/j.1432‑1033.1991.tb16050.x2050136
    [Google Scholar]
  15. BaiX. SunP. WangX. LongC. LiaoS. DangS. ZhuangS. DuY. ZhangX. LiN. HeK. ZhangZ. Structure and dynamics of the EGFR/HER2 heterodimer.Cell Discov.2023911810.1038/s41421‑023‑00523‑536781849
    [Google Scholar]
  16. Graus-PortaD. BeerliR.R. DalyJ.M. HynesN.E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling.EMBO J.19971671647165510.1093/emboj/16.7.16479130710
    [Google Scholar]
  17. LenferinkA.E.G. Pinkas-KramarskiR. van de PollM.L. van VugtM.J. KlapperL.N. TzaharE. WatermanH. SelaM. van ZoelenE.J. YardenY. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers.EMBO J.199817123385339710.1093/emboj/17.12.33859628875
    [Google Scholar]
  18. AkashiY. OkamotoI. IwasaT. YoshidaT. SuzukiM. HatashitaE. YamadaY. SatohT. FukuokaM. OnoK. NakagawaK. Enhancement of the antitumor activity of ionising radiation by nimotuzumab, a humanised monoclonal antibody to the epidermal growth factor receptor, in non-small cell lung cancer cell lines of differing epidermal growth factor receptor status.Br. J. Cancer200898474975510.1038/sj.bjc.660422218253126
    [Google Scholar]
  19. AmeliaT. KartasasmitaR.E. OhwadaT. TjahjonoD.H. Structural insight and development of EGFR tyrosine kinase inhibitors.Molecules202227381910.3390/molecules2703081935164092
    [Google Scholar]
  20. ShiY.K. WangL. HanB.H. LiW. YuP. LiuY.P. DingC.M. SongX. MaZ.Y. RenX.L. FengJ.F. ZhangH.L. ChenG.Y. HanX.H. WuN. YaoC. SongY. ZhangS.C. SongW. LiuX.Q. ZhaoS.J. LinY.C. YeX.Q. LiK. ShuY.Q. DingL.M. TanF.L. SunY. First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advancedEGFR mutation-positive lung adenocarcinoma (CONVINCE): a phase 3, open-label, randomized study.Ann. Oncol.201728102443245010.1093/annonc/mdx35928945850
    [Google Scholar]
  21. MillerV.A. HirshV. CadranelJ. ChenY.M. ParkK. KimS.W. ZhouC. SuW.C. WangM. SunY. HeoD.S. CrinoL. TanE.H. ChaoT.Y. ShahidiM. CongX.J. LorenceR.M. YangJ.C.H. Afatinib versus placebo for patients with advanced, metastatic non-small- cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial.Lancet Oncol.201213552853810.1016/S1470‑2045(12)70087‑622452896
    [Google Scholar]
  22. BoniV. DoomsC. HaleyB. ViteriS. MahipalA. SugaJ. EliL. LalaniA. BryceR. XuF. ShahN. KabbinavarF. GoldmanJ. Neratinib in pretreated EGFR exon 18-mutant non-small cell lung cancer (NSCLC): initial findings from the summit basket trial.J. Thorac. Oncol.2021163S11010.1016/j.jtho.2021.01.286
    [Google Scholar]
  23. RamalingamS.S. JänneP.A. MokT. ByrneK.O. PawelJ.V. PluzanskiA. Supplementary material: dacomitinib versus erlotinib in patients with advancedstage, previously treated non-small-cell lung cancer (ARCHER1009): a randomised, double-blind, phase 3 trial.Lancet Oncol.2014151369137810.1016/S1470‑2045(14)70452‑825439691
    [Google Scholar]
  24. MokT.S. WuY.L. AhnM.J. GarassinoM.C. KimH.R. RamalingamS.S. ShepherdF.A. HeY. AkamatsuH. TheelenW.S.M.E. LeeC.K. SebastianM. TempletonA. MannH. MarottiM. GhiorghiuS. PapadimitrakopoulouV.A. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer.N. Engl. J. Med.2017376762964010.1056/NEJMoa161267427959700
    [Google Scholar]
  25. LelaisG. EppleR. MarsiljeT.H. LongY.O. McNeillM. ChenB. LuW. AnumoluJ. BadigerS. BursulayaB. DiDonatoM. FongR. JuarezJ. LiJ. ManuiaM. MasonD.E. GordonP. GroesslT. JohnsonK. JiaY. KasibhatlaS. LiC. IsbellJ. SpraggonG. BenderS. MichellysP.Y. Discovery of (R, E)-N-(7-chloro-1-(1-[4-(dimethylamino) but-2-enoyl] azepan-3-yl) - 1H-benzo [d] imidazol-2-yl) - 2-methylisonicotinamide (EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR mu-tants for the treatment of EGFR mutant non-small-cell lung cancers.J. Med. Chem.201659146671668910.1021/acs.jmedchem.5b0198527433829
    [Google Scholar]
  26. ParkK. JӓnneP.A. KimD.W. HanJ.Y. WuM.F. LeeJ.S. KangJ.H. LeeD.H. ChoB.C. YuC.J. PangY.K. FelipE. KimH. BaekE. NohY.S. Olmutinib in T790M-positive non–small cell lung cancer after failure of first-line epidermal growth factor receptor-tyrosine kinase inhibitor therapy: A global, phase 2 study.Cancer202112791407141610.1002/cncr.3338533434335
    [Google Scholar]
  27. LuS. WangQ. ZhangG. DongX. YangC.T. SongY. ChangG.C. LuY. PanH. ChiuC.H. WangZ. FengJ. ZhouJ. XuX. GuoR. ChenJ. YangH. ChenY. YuZ. ShiahH.S. WangC.C. YangN. FangJ. WangP. WangK. HuY. HeJ. WangZ. ShiJ. ChenS. WuQ. SunC. LiC. WeiH. ChengY. SuW.C. HsiaT.C. CuiJ. SunY. OuS.H.I. ZhuV.W. Chih-Hsin YangJ. Efficacy of aumolertinib (HS-10296) in patients with advanced EGFR T790M NSCLC: updated post-national medical products administration approval results from the APOLLO registrational trial.J. Thorac. Oncol.202217341142210.1016/j.jtho.2021.10.02434801749
    [Google Scholar]
  28. ChoB.C. HanJ.Y. KimS.W. LeeK.H. ChoE.K. LeeY.G. KimD.W. KimJ.H. LeeG.W. LeeJ.S. ShimB.Y. KimJ.S. ChunS.H. LeeS.S. KimH.R. HongM.H. AhnJ.S. SunJ.M. LeeY. LeeD.H. KangJ.A. LeeN. KwonM.J. EspenschiedC. YablonovitchA. AhnM.J. A phase 1/2 study of Lazertinib 240 mg in patients with advanced EGFR T790MPositive NSCLC after previous EGFR tyrosine kinase inhibitors.J. Thorac. Oncol.202217455856710.1016/j.jtho.2021.11.02534958928
    [Google Scholar]
  29. ShiY. HuX. ZhangS. LvD. WuL. YuQ. ZhangY. LiuL. WangX. ChengY. MaZ. NiuH. WangD. FengJ. HuangC. LiuC. ZhaoH. LiJ. ZhangX. JiangY. GuC. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: a phase 2b, multicentre, single-arm, open-label study.Lancet Respir. Med.20219882983910.1016/S2213‑2600(20)30455‑033780662
    [Google Scholar]
  30. WangS. SongY. LiuD. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance.Cancer Lett.2017385515410.1016/j.canlet.2016.11.00827840244
    [Google Scholar]
  31. LimS.M. FujinoT. KimC. LeeG. LeeY.H. KimD.W. AhnJ.S. MitsudomiT. JinT. LeeS.Y. BBT-176, a Novel fourth-generation tyrosine kinase inhibitor for osimertinib-resistant EGFR mutations in non-small cell lung cancer.Clin. Cancer Res.202329163004301610.1158/1078‑0432.CCR‑22‑390137249619
    [Google Scholar]
  32. EnoM.S. BrubakerJ.D. CampbellJ.E. De SaviC. GuziT.J. WilliamsB.D. WilsonD. WilsonK. BrooijmansN. KimJ. ÖzenA. PerolaE. HsiehJ. BrownV. FetalveroK. GarnerA. ZhangZ. StevisonF. WoessnerR. SinghJ. TimsitY. KinkemaC. MedendorpC. LeeC. AlbayyaF. ZalutskayaA. SchalmS. DineenT.A. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer.J. Med. Chem.202265149662967710.1021/acs.jmedchem.2c0070435838760
    [Google Scholar]
  33. von MinckwitzG. ProcterM. de AzambujaE. ZardavasD. BenyunesM. VialeG. SuterT. ArahmaniA. RouchetN. ClarkE. KnottA. LangI. LevyC. YardleyD.A. BinesJ. GelberR.D. PiccartM. BaselgaJ. APHINITY Steering Committee and Investigators Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer.N. Engl. J. Med.2017377212213110.1056/NEJMoa170364328581356
    [Google Scholar]
  34. WaltersD.M. LindbergJ.M. AdairS.J. NewhookT.E. CowanC.R. StokesJ.B. BorgmanC.A. StelowE.B. LowreyB.T. ChopivskyM.E. GilmerT.M. ParsonsJ.T. BauerT.W. Inhibition of the growth of patient-derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor/HER2 inhibitor lapatinib.Neoplasia2013152143IN1010.1593/neo.12171223441129
    [Google Scholar]
  35. LiuZ. SangX. WangM. LiuY. LiuJ. WangX. LiuP. ChengH. Melatonin potentiates the cytotoxic effect of Neratinib in HER2+ breast cancer through promoting endocytosis and lysosomal degradation of HER2.Oncogene202140446273628310.1038/s41388‑021‑02015‑w34556812
    [Google Scholar]
  36. LiH.S. YangL.L. ZhangM.Y. ChengK. ChenY. LiuJ.Y. Remarkable response of EGFR- and HER2-amplified metastatic colon cancer to pyrotinib after failed multiline treatments: a case report and literature review.Front. Oncol.20201054886710.3389/fonc.2020.54886733194604
    [Google Scholar]
  37. ShiK. WangG. PeiJ. ZhangJ. WangJ. OuyangL. WangY. LiW. Emerging strategies to overcome resistance to third-generation EGFR inhibitors.J. Hematol. Oncol.20221519410.1186/s13045‑022‑01311‑635840984
    [Google Scholar]
  38. KobayashiS. BoggonT.J. DayaramT. JänneP.A. KocherO. MeyersonM. JohnsonB.E. EckM.J. TenenD.G. HalmosB. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.2005352878679210.1056/NEJMoa04423815728811
    [Google Scholar]
  39. WestoverD. ZugazagoitiaJ. ChoB.C. LovlyC.M. Paz-AresL. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors.Ann. Oncol.201829Suppl. 1i10i1910.1093/annonc/mdx70329462254
    [Google Scholar]
  40. KosakaT. TanizakiJ. ParanalR.M. EndohH. LydonC. CapellettiM. RepellinC.E. ChoiJ. OginoA. CallesA. ErcanD. RedigA.J. BahcallM. OxnardG.R. EckM.J. JänneP.A. Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors.Cancer Res.201777102712272110.1158/0008‑5472.CAN‑16‑340428363995
    [Google Scholar]
  41. RobichauxJ.P. ElaminY.Y. VijayanR.S.K. NilssonM.B. HuL. HeJ. ZhangF. PisegnaM. PoteeteA. SunH. LiS. ChenT. HanH. NegraoM.V. AhnertJ.R. DiaoL. WangJ. LeX. Meric-BernstamF. RoutbortM. RoeckB. YangZ. RaymondV.M. LanmanR.B. FramptonG.M. MillerV.A. SchrockA.B. AlbackerL.A. WongK. CrossJ.B. HeymachJ.V. Pan- cancer landscape and analysis of ERBB2 mutations identifies poziotinib as a clinically active inhibitor and enhancer of T-DM1 activity.Cancer Cell2019364444457.e710.1016/j.ccell.2019.09.00131588020
    [Google Scholar]
  42. MorphyR. RankovicZ. Designed multiple ligands. An emerging drug discovery paradigm.J. Med. Chem.200548216523654310.1021/jm058225d16220969
    [Google Scholar]
  43. ZhanP. LiuX. Designed multiple ligands: an emerging anti-HIV drug discovery paradigm.Curr. Pharm. Des.200915161893191710.2174/13816120978845326619519431
    [Google Scholar]
  44. ZhanP. LiuX. Rationally designed multitarget anti-HIV agents.Curr. Med. Chem.201320131743175810.2174/092986731132013001123410170
    [Google Scholar]
  45. SongA. YuH. WangC. ZhuX. LiuK. MaX. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.Curr. Pharm. Des.201421795096210.2174/138161282066614092909510225269561
    [Google Scholar]
  46. KangJ.X. ZhaoG.K. YangX.M. HuangM.X. HuiW.Q. ZengR. OuyangQ. Recent advances on dual inhibitors targeting HIV reverse transcriptase associated polymerase and ribonuclease H.Eur. J. Med. Chem.202325011519610.1016/j.ejmech.2023.11519636787657
    [Google Scholar]
  47. Kumagai, S.; Koyama, S.; Nishikawa, H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat. Rev. Cancer, 2021, 21(3), 181-197.10.1038/s41568‑020‑00322‑033462501
  48. BelloM. Guadarrama-GarcíaC. Rodriguez-FonsecaR.A. Dissecting the molecular recognition of dual lapatinib derivatives for EGFR/HER2.J. Comput. Aided Mol. Des.202034329330310.1007/s10822‑019‑00270‑431828486
    [Google Scholar]
  49. HuangL. FuL. Mechanisms of resistance to EGFR tyrosine kinase inhibitors.Acta Pharm. Sin. B20155539040110.1016/j.apsb.2015.07.00126579470
    [Google Scholar]
  50. RoskoskiR.Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.Pharmacol. Res.201913939541110.1016/j.phrs.2018.11.01430500458
    [Google Scholar]
  51. RoskoskiR.Jr. The ErbB/HER family of protein-tyrosine kinases and cancer.Pharmacol. Res.201479347410.1016/j.phrs.2013.11.00224269963
    [Google Scholar]
  52. LemmonM.A. Ligand-induced ErbB receptor dimerization.Exp. Cell Res.2009315463864810.1016/j.yexcr.2008.10.02419038249
    [Google Scholar]
  53. UllrichA. SchlessingerJ. Signal transduction by receptors with tyrosine kinase activity.Cell199061220321210.1016/0092‑8674(90)90801‑K2158859
    [Google Scholar]
  54. UllrichA. CoussensL. HayflickJ.S. DullT.J. GrayA. TamA.W. LeeJ. YardenY. LibermannT.A. SchlessingerJ. DownwardJ. MayesE.L.V. WhittleN. WaterfieldM.D. SeeburgP.H. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells.Nature1984309596741842510.1038/309418a06328312
    [Google Scholar]
  55. OgisoH. IshitaniR. NurekiO. FukaiS. YamanakaM. KimJ.H. SaitoK. SakamotoA. InoueM. ShirouzuM. YokoyamaS. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains.Cell2002110677578710.1016/S0092‑8674(02)00963‑712297050
    [Google Scholar]
  56. KilS.J. CarlinC. EGF receptor residues Leu679, Leu680 mediate selective sorting of ligand-receptor complexes in early endosomal compartments.J. Cell. Physiol.20001851476010.1002/1097‑4652(200010)185:1<47::AID‑JCP4>3.0.CO;2‑O10942518
    [Google Scholar]
  57. HeC. HobertM. FriendL. CarlinC. The epidermal growth factor receptor juxtamembrane domain has multiple basolateral plasma membrane localization determinants, including a dominant signal with a polyproline core.J. Biol. Chem.200227741382843829310.1074/jbc.M10464620012161422
    [Google Scholar]
  58. LinS.Y. MakinoK. XiaW. MatinA. WenY. KwongK.Y. BourguignonL. HungM.C. Nuclear localization of EGF receptor and its potential new role as a transcription factor.Nat. Cell Biol.20013980280810.1038/ncb0901‑80211533659
    [Google Scholar]
  59. Martín-NietoJ. VillaloboA. The human epidermal growth factor receptor contains a juxtamembrane calmodulin-binding site.Biochemistry199837122723610.1021/bi971765v9425043
    [Google Scholar]
  60. HunterT. LingN. CooperJ.A. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane.Nature1984311598548048310.1038/311480a06090944
    [Google Scholar]
  61. DavisR.J. CzechM.P. Tumor-promoting phorbol diesters cause the phosphorylation of epidermal growth factor receptors in normal human fibroblasts at threonine-654.Proc. Natl. Acad. Sci. USA19858271974197810.1073/pnas.82.7.19742984676
    [Google Scholar]
  62. ThielK.W. CarpenterG. Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation.Proc. Natl. Acad. Sci. USA200710449192381924310.1073/pnas.070385410418042729
    [Google Scholar]
  63. TakishimaK. Griswold-PrennerI. IngebritsenT. RosnerM.R. Epidermal growth factor (EGF) receptor T669 peptide kinase from 3T3-L1 cells is an EGF-stimulated “MAP” kinase.Proc. Natl. Acad. Sci. USA19918862520252410.1073/pnas.88.6.25201848706
    [Google Scholar]
  64. StamosJ. SliwkowskiM.X. EigenbrotC. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor.J. Biol. Chem.200227748462654627210.1074/jbc.M20713520012196540
    [Google Scholar]
  65. AertgeertsK. SkeneR. YanoJ. SangB.C. ZouH. SnellG. JenningsA. IwamotoK. HabukaN. HirokawaA. IshikawaT. TanakaT. MikiH. OhtaY. SogabeS. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein.J. Biol. Chem.201128621187561876510.1074/jbc.M110.20619321454582
    [Google Scholar]
  66. Pimple, S. Synthesis and biological evaluation of EGFR/HER-2 inhibitors: analogs of 5-substituted-4-anilinoquinazoline and 6,7-disubstituted-4-anilinoquinoline-3-carbonitrile: screening for development of novel PET tracers. PhD Thesis, University of Geneva: Geneva, October 2014.
  67. HynesN.E. SternD.F. The biology of erbB-2/neu/HER-2 and its role in cancer.Biochim. Biophys. Acta199411982-31651847819273
    [Google Scholar]
  68. PinetL. WangY.H. DevilleC. LescopE. GuerlesquinF. BadacheA. BontemsF. MorelletN. DurandD. AssrirN. van HeijenoortC. Structural and dynamic characterization of the C-terminal tail of ErbB2: Disordered but not random.Biophys. J.2021120101869188210.1016/j.bpj.2021.03.00533741354
    [Google Scholar]
  69. ChoH.S. MasonK. RamyarK.X. StanleyA.M. GabelliS.B. DenneyD.W.Jr LeahyD.J. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab.Nature2003421692475676010.1038/nature0139212610629
    [Google Scholar]
  70. CitriA. SkariaK.B. YardenY. The deaf and the dumb: The biology of ErbB-2 and ErbB-3.Exp. Cell Res.20032841546510.1016/S0014‑4827(02)00101‑512648465
    [Google Scholar]
  71. TaiW. MahatoR. ChengK. The role of HER2 in cancer therapy and targeted drug delivery.J. Control. Release2010146326427510.1016/j.jconrel.2010.04.00920385184
    [Google Scholar]
  72. OlayioyeM.A. NeveR.M. LaneH.A. HynesN.E. NEW EMBO MEMBERS’ REVIEW: The ErbB signaling network: receptor heterodimerization in development and cancer.EMBO J.200019133159316710.1093/emboj/19.13.315910880430
    [Google Scholar]
  73. Di FioreP.P. PierceJ.H. KrausM.H. SegattoO. KingC.R. AaronsonS.A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells.Science1987237481117818210.1126/science.28859172885917
    [Google Scholar]
  74. FleishmanS.J. SchlessingerJ. Ben-TalN. A putative molecular-activation switch in the transmembrane domain of erbB2.Proc. Natl. Acad. Sci. USA20029925159371594010.1073/pnas.25264079912461170
    [Google Scholar]
  75. SharpeS. BarberK.R. GrantC.W.M. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers.Biochemistry200039216572658010.1021/bi000038o10828974
    [Google Scholar]
  76. MendrolaJ.M. BergerM.B. KingM.C. LemmonM.A. The single transmembrane domains of ErbB receptors self-associate in cell membranes.J. Biol. Chem.200227774704471210.1074/jbc.M10868120011741943
    [Google Scholar]
  77. BazleyL.A. GullickW.J. The epidermal growth factor receptor family.Endocr. Relat. Cancer200512Suppl. 1S17S2710.1677/erc.1.0103216113093
    [Google Scholar]
  78. ParkS. AhnS. KimD.G. KimH. KangS.Y. KimK.M. High frequency of juxtamembrane domain ERBB2 mutation in gastric cancer.Cancer Genomics Proteomics202219110511210.21873/cgp.2030734949663
    [Google Scholar]
  79. BurkeC.L. LemmonM.A. CorenB.A. EngelmanD.M. SternD.F. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation.Oncogene199714668769610.1038/sj.onc.12008739038376
    [Google Scholar]
  80. TelescoS.E. RadhakrishnanR. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study.Biophys. J.20099662321233410.1016/j.bpj.2008.12.391219289058
    [Google Scholar]
  81. AnidoJ. ScaltritiM. Bech SerraJ.J. JosefatB.S. Rojo TodoF. BaselgaJ. ArribasJ. Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation.EMBO J.200625133234324410.1038/sj.emboj.760119116794579
    [Google Scholar]
  82. BrennanP.J. KumogaiT. BerezovA. MuraliR. GreeneM.I. HER2/Neu: mechanisms of dimerization/oligomerization.Oncogene200019536093610110.1038/sj.onc.120396711156522
    [Google Scholar]
  83. PrigentS.A. LemoineN.R. The type 1 (EGFR-related) family of growth factor receptors and their ligands.Prog. Growth Factor Res.19924112410.1016/0955‑2235(92)90002‑Y1355372
    [Google Scholar]
  84. IshikawaT. SetoM. BannoH. KawakitaY. OoruiM. TaniguchiT. OhtaY. TamuraT. NakayamaA. MikiH. KamiguchiH. TanakaT. HabukaN. SogabeS. YanoJ. AertgeertsK. KamiyamaK. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold.J. Med. Chem.201154238030805010.1021/jm200863422003817
    [Google Scholar]
  85. DasD. HongJ. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.Eur. J. Med. Chem.2019170557210.1016/j.ejmech.2019.03.00430878832
    [Google Scholar]
  86. ChenX. DuY. SunH. WangF. KongL. SunM. Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines. Part 1: Erlotinib analogs.Bioorg. Med. Chem. Lett.201424388488710.1016/j.bmcl.2013.12.07924411123
    [Google Scholar]
  87. SunM. ZhaoJ. ChenX. ZongZ. HanJ. DuY. SunH. WangF. Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines. Part 2: Gefitinib analogs.Bioorg. Med. Chem. Lett.201626194842484510.1016/j.bmcl.2016.08.00727524310
    [Google Scholar]
  88. SunM. JiaJ. SunH. WangF. Design and synthesis of a novel class EGFR/HER2 dual inhibitors containing tricyclic oxazine fused quinazolines scaffold.Bioorg. Med. Chem. Lett.202030912704510.1016/j.bmcl.2020.12704532139324
    [Google Scholar]
  89. SolcaF. DahlG. ZoephelA. BaderG. SandersonM. KleinC. KraemerO. HimmelsbachF. HaaksmaE. AdolfG.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker.J. Pharmacol. Exp. Ther.2012343234235010.1124/jpet.112.19775622888144
    [Google Scholar]
  90. LiD.D. QinY.J. SunJ. LiJ.R. FangF. DuQ.R. QianY. GongH.B. ZhuH.L. Optimization of substituted 6-salicyl-4-anilinoquinazoline derivatives as dual EGFR/HER2 tyrosine kinase inhibitors.PLoS One201388e6942710.1371/journal.pone.006942723936329
    [Google Scholar]
  91. ElkamhawyA. FaragA.K. ViswanathA.N.I. BedairT.M. LeemD.G. LeeK.T. PaeA.N. RohE.J. Targeting EGFR/HER2 tyrosine kinases with a new potent series of 6-substituted 4-anilinoquinazoline hybrids: Design, synthesis, kinase assay, cell-based assay, and molecular docking.Bioorg. Med. Chem. Lett.201525225147515410.1016/j.bmcl.2015.10.00326475520
    [Google Scholar]
  92. ZhouH. KimY.S. PeletierA. McCallW. EarpH.S. SartorC.I. Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance.Int. J. Radiat. Oncol. Biol. Phys.200458234435210.1016/j.ijrobp.2003.09.04614751502
    [Google Scholar]
  93. PetrovK.G. ZhangY.M. CarterM. CockerillG.S. DickersonS. GauthierC.A. GuoY. MookR.A.Jr RusnakD.W. WalkerA.L. WoodE.R. LackeyK.E. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series.Bioorg. Med. Chem. Lett.200616174686469110.1016/j.bmcl.2006.05.09016777410
    [Google Scholar]
  94. SadekM.M. SerryaR.A. KafafyA.H.N. AhmedM. WangF. AbouzidK.A.M. Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquinazoline scaffold as potential anti-cancer agents.J. Enzyme Inhib. Med. Chem.201429221522210.3109/14756366.2013.76541723402383
    [Google Scholar]
  95. GaulM.D. GuoY. AffleckK. CockerillG.S. GilmerT.M. GriffinR.J. GuntripS. KeithB.R. KnightW.B. MullinR.J. MurrayD.M. RusnakD.W. SmithK. TadepalliS. WoodE.R. LackeyK. Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines.Bioorg. Med. Chem. Lett.200313463764010.1016/S0960‑894X(02)01047‑812639547
    [Google Scholar]
  96. ElkamhawyA. SonS. LeeH.Y. El-MaghrabeyM.H. HamdM.A.E. AlshammariS.O. AbdelhameedA.A. AlshammariQ.A. AbdeenA. IbrahimS.F. MahdiW.A. AlshehriS. AlnajjarR. ChoiW.J. Al-KarmalawyA.A. LeeK. Design, synthesis, biological evaluation, and molecular dynamics studies of novel lapatinib derivatives.Pharmaceuticals (Basel)20221614310.3390/ph1601004336678540
    [Google Scholar]
  97. LanciniG.C. LazzariE. ArioliV. BellaniP. Synthesis and relationship between structure and activity of 2-nitroimidazole derivatives.J. Med. Chem.196912577578010.1021/jm00305a0125812186
    [Google Scholar]
  98. NossM.B. PanicucciR. McclellandR.A. RauthA.M. 1-Methyl-2-nitrosoimidazole: Cytotoxic and glutathione depleting capabilities.Int. J. Radiat. Oncol. Biol. Phys.19891641015101910.1016/0360‑3016(89)90906‑12703379
    [Google Scholar]
  99. XieH. LinL. TongL. JiangY. ZhengM. ChenZ. JiangX. ZhangX. RenX. QuW. YangY. WanH. ChenY. ZuoJ. JiangH. GengM. DingJ. AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo.PLoS One201167e2148710.1371/journal.pone.002148721789172
    [Google Scholar]
  100. TianC. DingP. YuanZ. LiH. ZhaoY. SunL. GuoQ. WangZ. SunL. ZhangL. JiangZ. A novel dual EGFR/HER2 inhibitor KU004 induces cell cycle arrest and apoptosis in HER2-overexpressing cancer cells.Apoptosis201520121599161210.1007/s10495‑015‑1164‑726437915
    [Google Scholar]
  101. TianC. YuanZ. XuD. DingP. WangT. ZhangL. JiangZ. Inhibition of glycolysis by a novel EGFR/HER2 inhibitor KU004 suppresses the growth of HER2+ cancer.Exp. Cell Res.2017357221122110.1016/j.yexcr.2017.05.01928532652
    [Google Scholar]
  102. FuJ. TianC. XingM. WangX. GuoH. SunL. SunL. JiangZ. ZhangL. KU004 induces G1 cell cycle arrest in human breast cancer SKBR-3 cells by modulating PI3K/Akt pathway.Biomed. Pharmacother.201468562563010.1016/j.biopha.2014.05.00624996960
    [Google Scholar]
  103. TanakaH. HirataM. ShinonomeS. WadaT. IguchiM. DohiK. InoueM. IshiokaY. HojoK. YamadaT. SugimotoT. MasunoK. NezasaK. SatoN. MatsuoK. YonezawaS. FrenkelE.P. ShichijoM. Preclinical antitumor activity of S -222611, an oral reversible tyrosine kinase inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor 2.Cancer Sci.201410581040104810.1111/cas.1244924837299
    [Google Scholar]
  104. BordoniR.E. Afatinib (BIBW-2992): a novel dual EGFR/HER2neu inhibitor with promising activity in non-small-cell lung cancer.Therapy201181152210.2217/thy.10.86
    [Google Scholar]
  105. LiD. AmbrogioL. ShimamuraT. KuboS. TakahashiM. ChirieacL.R. PaderaR.F. ShapiroG.I. BaumA. HimmelsbachF. RettigW.J. MeyersonM. SolcaF. GreulichH. WongK-K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models.Oncogene200827344702471110.1038/onc.2008.10918408761
    [Google Scholar]
  106. SuzukiT. FujiiA. OhyaJ. AmanoY. KitanoY. AbeD. NakamuraH. Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor.Cancer Sci.200798121977198410.1111/j.1349‑7006.2007.00613.x17888033
    [Google Scholar]
  107. SuzukiT. FujiiA. OhyaJ. NakamuraH. FujitaF. KoikeM. FujitaM. Antitumor activity of a dual epidermal growth factor receptor and ErbB2 kinase inhibitor MP-412 (AV-412) in mouse xenograft models.Cancer Sci.200910081526153110.1111/j.1349‑7006.2009.01197.x19459856
    [Google Scholar]
  108. DongQ. YuP. YeL. ZhangJ. WangH. ZouF. TianJ. KuriharaH. PCC0208027, a novel tyrosine kinase inhibitor, inhibits tumor growth of NSCLC by targeting EGFR and HER2 aberrations.Sci. Rep.201991569210.1038/s41598‑019‑42245‑330952931
    [Google Scholar]
  109. SpicerJ. CalvertH. VidalL. AzribiF. PerrettR. ShahidiM. TempleG. FutrealA. De BonoJ. PlummerR. D7-02: Activity of BIBW2992, an oral irreversible dual EGFR/HER2 inhibitor, in non-small cell lung cancer (NSCLC) with mutated EGFR.J. Thorac. Oncol.200728S410S41010.1097/01.JTO.0000283293.26207.0a
    [Google Scholar]
  110. ZhangJ. CaoJ. LiJ. ZhangY. ChenZ. PengW. SunS. ZhaoN. WangJ. ZhongD. ZhangX. ZhangJ. A phase I study of AST1306, a novel irreversible EGFR and HER2 kinase inhibitor, in patients with advanced solid tumors.J. Hematol. Oncol.2014712210.1186/1756‑8722‑7‑2224612546
    [Google Scholar]
  111. BarlaamB. AndertonJ. BallardP. BradburyR.H. HennequinL.F.A. HickinsonD.M. KettleJ.G. KirkG. KlinowskaT. Lambert-van der BremptC. TrigwellC. VincentJ. OgilvieD. Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors.ACS Med. Chem. Lett.20134874274610.1021/ml400146c24900741
    [Google Scholar]
  112. CrafterC. VincentJ.P. TangE. DudleyP. JamesN.H. KlinowskaT. DaviesB.R. Combining AZD8931, a novel EGFR/HER2/HER3 signalling inhibitor, with AZD5363 limits AKT inhibitor induced feedback and enhances antitumour efficacy in HER2-amplified breast cancer models.Int. J. Oncol.201547244645410.3892/ijo.2015.306226095475
    [Google Scholar]
  113. ChaM.Y. LeeK.O. KimJ.W. LeeC.G. SongJ.Y. KimY.H. LeeG.S. ParkS.B. KimM.S. Discovery of a novel Her-1/Her-2 dual tyrosine kinase inhibitor for the treatment of Her-1 selective inhibitor-resistant non-small cell lung cancer.J. Med. Chem.200952216880688810.1021/jm901146p19888761
    [Google Scholar]
  114. DasD. XieL. WangJ. XuX. ZhangZ. ShiJ. LeX. HongJ. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities - Part 1.Bioorg. Med. Chem. Lett.201929459159610.1016/j.bmcl.2018.12.05630600209
    [Google Scholar]
  115. ParkJ.H. LiuY. LemmonM.A. RadhakrishnanR. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain.Biochem. J.2012448341742310.1042/BJ2012151323101586
    [Google Scholar]
  116. YunC.H. BoggonT.J. LiY. WooM.S. GreulichH. MeyersonM. EckM.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity.Cancer Cell200711321722710.1016/j.ccr.2006.12.01717349580
    [Google Scholar]
  117. WoodE.R. TruesdaleA.T. McDonaldO.B. YuanD. HassellA. DickersonS.H. EllisB. PennisiC. HorneE. LackeyK. AlligoodK.J. RusnakD.W. GilmerT.M. ShewchukL. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.Cancer Res.200464186652665910.1158/0008‑5472.CAN‑04‑116815374980
    [Google Scholar]
  118. SanganiC.B. MakawanaJ.A. DuanY.T. YinY. TeraiyaS.B. ThumarN.J. ZhuH.L. Design, synthesis and molecular modeling of biquinoline-pyridine hybrids as a new class of potential EGFR and HER-2 kinase inhibitors.Bioorg. Med. Chem. Lett.201424184472447610.1016/j.bmcl.2014.07.09425172421
    [Google Scholar]
  119. AjaniO.O. IyayeK.T. AdemosunO.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – a review.RSC Adv.20221229185941861410.1039/D2RA02896D35873320
    [Google Scholar]
  120. LiX. YangC. WanH. ZhangG. FengJ. ZhangL. ChenX. ZhongD. LouL. TaoW. ZhangL. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer.Eur. J. Pharm. Sci.2017110516110.1016/j.ejps.2017.01.02128115222
    [Google Scholar]
  121. JerezY. HerreroB. ArreguiM. MorónB. MartínM. EchavarríaI. Neratinib for the treatment of early-stage, hormone receptor-positive, HER2-overexpressed breast cancer.Future Oncol.202016171165117710.2217/fon‑2020‑004632458702
    [Google Scholar]
  122. ZouM. LiJ. JinB. WangM. ChenH. ZhangZ. ZhangC. ZhaoZ. ZhengL. Design, synthesis and anticancer evaluation of new 4-anilinoquinoline-3-carbonitrile derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers.Bioorg. Chem.202111410520010.1016/j.bioorg.2021.10520034375195
    [Google Scholar]
  123. FryD.W. KrakerA.J. McMichaelA. AmbrosoL.A. NelsonJ.M. LeopoldW.R. ConnorsR.W. BridgesA.J. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase.Science199426551751093109510.1126/science.80664478066447
    [Google Scholar]
  124. WardW.H.J. CookP.N. SlaterA.M. DaviesD.H. HoldgateG.A. GreenL.R. Epidermal growth factor receptor tyrosine kinase.Biochem. Pharmacol.199448465966610.1016/0006‑2952(94)90042‑68080438
    [Google Scholar]
  125. WissnerA. BergerD.M. BoschelliD.H. FloydM.B.Jr GreenbergerL.M. GruberB.C. JohnsonB.D. MamuyaN. NilakantanR. ReichM.F. ShenR. TsouH.R. UpeslacisE. WangY.F. WuB. YeF. ZhangN. 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors.J. Med. Chem.200043173244325610.1021/jm000206a10966743
    [Google Scholar]
  126. DiscafaniC.M. CarrollM.L. FloydM.B.Jr HollanderI.J. HusainZ. JohnsonB.D. KitchenD. MayM.K. MaloM.S. MinnickA.A.Jr NilakantanR. ShenR. WangY.F. WissnerA. GreenbergerL.M. Irreversible inhibition of epidermal growth factor receptor tyrosine kinase with in vivo activity by N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785).Biochem. Pharmacol.199957891792510.1016/S0006‑2952(98)00356‑610086326
    [Google Scholar]
  127. FryD.W. BridgesA.J. DennyW.A. DohertyA. GreisK.D. HicksJ.L. HookK.E. KellerP.R. LeopoldW.R. LooJ.A. McNamaraD.J. NelsonJ.M. SherwoodV. SmaillJ.B. Trumpp-KallmeyerS. DobrusinE.M. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor.Proc. Natl. Acad. Sci. USA19989520120221202710.1073/pnas.95.20.120229751783
    [Google Scholar]
  128. TsouH.R. MamuyaN. JohnsonB.D. ReichM.F. GruberB.C. YeF. NilakantanR. ShenR. DiscafaniC. DeBlancR. DavisR. KoehnF.E. GreenbergerL.M. WangY.F. WissnerA. 6-Substituted-4-(3-bromophenylamino)quinazolines as putative irreversible inhibitors of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER-2) tyrosine kinases with enhanced antitumor activity.J. Med. Chem.200144172719273410.1021/jm000555511495584
    [Google Scholar]
  129. WissnerA. OverbeekE. ReichM.F. FloydM.B. JohnsonB.D. MamuyaN. RosfjordE.C. DiscafaniC. DavisR. ShiX. RabindranS.K. GruberB.C. YeF. HallettW.A. NilakantanR. ShenR. WangY.F. GreenbergerL.M. TsouH.R. Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2).J. Med. Chem.2003461496310.1021/jm020241c12502359
    [Google Scholar]
  130. SuzukiN. ShiotaT. WatanabeF. HagaN. MurashiT. OharaT. MatsuoK. OomoriN. YariH. DohiK. InoueM. IguchiM. SentouJ. WadaT. Synthesis and evaluation of novel pyrimidine-based dual EGFR/Her-2 inhibitors.Bioorg. Med. Chem. Lett.20112161601160610.1016/j.bmcl.2011.01.11921334203
    [Google Scholar]
  131. WatersonA.G. StevensK.L. RenoM.J. ZhangY.M. BorosE.E. BouvierF. RastagarA. UehlingD.E. DickersonS.H. ReepB. McDonaldO.B. WoodE.R. RusnakD.W. AlligoodK.J. RudolphS.K. Alkynyl pyrimidines as dual EGFR/ErbB2 kinase inhibitors.Bioorg. Med. Chem. Lett.20061692419242210.1016/j.bmcl.2006.01.11116483772
    [Google Scholar]
  132. SuzukiN. ShiotaT. WatanabeF. HagaN. MurashiT. OharaT. MatsuoK. OmoriN. YariH. DohiK. InoueM. IguchiM. SentouJ. WadaT. Discovery of novel 5-alkynyl-4-anilinopyrimidines as potent, orally active dual inhibitors of EGFR and Her-2 tyrosine kinases.Bioorg. Med. Chem. Lett.201222145646010.1016/j.bmcl.2011.10.10322101132
    [Google Scholar]
  133. HughesT.V. XuG. WetterS.K. ConnollyP.J. EmanuelS.L. KarnachiP. PollackS.R. PandeyN. AdamsM. Moreno-MazzaS. MiddletonS.A. GreenbergerL.M. A novel 5-[1,3,4-oxadiazol-2-yl] -N-aryl-4,6-pyrimidine diamine having dual EGFR/HER2 kinase activity: Design, synthesis, and biological activity.Bioorg. Med. Chem. Lett.200818174896489910.1016/j.bmcl.2008.07.05718678484
    [Google Scholar]
  134. GaulM.D. XuG. KirkpatrickJ. OttH. BaumannC.A. 4-Amino-6-piperazin-1-yl-pyrimidine-5-carbaldehyde oximes as potent FLT-3 inhibitors.Bioorg. Med. Chem. Lett.200717174861486510.1016/j.bmcl.2007.06.04617611106
    [Google Scholar]
  135. HuangS. LiR. LaMontagneK.R. GreenbergerL.M. ConnollyP.J. 4-Aminopyrimidine-5-carbaldehyde oximes as potent VEGFR-2 inhibitors. Part II.Bioorg. Med. Chem. Lett.20112161815181810.1016/j.bmcl.2011.01.05321316232
    [Google Scholar]
  136. HuangS. LiR. ConnollyP.J. XuG. GaulM.D. EmanuelS.L. LaMontagneK.R. GreenbergerL.M. Synthesis and biological study of 4-aminopyrimidine-5-carboxaldehyde oximes as antiproliferative VEGFR-2 inhibitors.Bioorg. Med. Chem. Lett.200616236063606610.1016/j.bmcl.2006.08.10716979339
    [Google Scholar]
  137. QiangH. GuW. HuangD. ShiW. QiuQ. DaiY. HuangW. QianH. Design, synthesis and biological evaluation of 4-aminopyrimidine-5-cabaldehyde oximes as dual inhibitors of c-Met and VEGFR-2.Bioorg. Med. Chem.201624163353335810.1016/j.bmc.2016.03.06127068889
    [Google Scholar]
  138. XuG. SearleL.L. HughesT.V. BeckA.K. ConnollyP.J. AbadM.C. NeeperM.P. StrubleG.T. SpringerB.A. EmanuelS.L. GruningerR.H. PandeyN. AdamsM. Moreno-MazzaS. Fuentes-PesqueraA.R. MiddletonS.A. GreenbergerL.M. Discovery of novel 4-amino-6-arylaminopyrimidine-5-carbaldehyde oximes as dual inhibitors of EGFR and ErbB-2 protein tyrosine kinases.Bioorg. Med. Chem. Lett.200818123495349910.1016/j.bmcl.2008.05.02418508264
    [Google Scholar]
  139. XuG. AbadM.C. ConnollyP.J. NeeperM.P. StrubleG.T. SpringerB.A. EmanuelS.L. PandeyN. GruningerR.H. AdamsM. Moreno-MazzaS. Fuentes-PesqueraA.R. MiddletonS.A. 4-Amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors.Bioorg. Med. Chem. Lett.200818164615461910.1016/j.bmcl.2008.07.02018653333
    [Google Scholar]
  140. ChaM.Y. LeeK.O. KangS.J. JungY.H. SongJ.Y. ChoiK.J. ByunJ.Y. LeeH.J. LeeG.S. ParkS.B. KimM.S. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases.J. Med. Chem.20125562846285710.1021/jm201758g22372864
    [Google Scholar]
  141. YeL. ZhaoT. DuW. LiA. GaoW. LiJ. WangL. ChenW. Discovery of aminopyridine-containing spiro derivatives as EGFR mutations inhibitors.J. Enzyme Inhib. Med. Chem.20193411233124610.1080/14756366.2019.163470431286784
    [Google Scholar]
  142. SchwabC.L. EnglishD.P. RoqueD.M. BelloneS. LopezS. CoccoE. NicolettiR. RutherfordT.J. SchwartzP.E. SantinA.D. Neratinib shows efficacy in the treatment of HER2/neu amplified uterine serous carcinoma in vitro and in vivo.Gynecol. Oncol.2014135114214810.1016/j.ygyno.2014.08.00625124161
    [Google Scholar]
  143. LiJ. WuN. TianY. ZhangJ. WuS. Aminopyridyl/Pyrazinyl spiro[indoline-3,4′-piperidine]-2-ones as highly selective and efficacious c-Met/ALK inhibitors.ACS Med. Chem. Lett.20134880681010.1021/ml400203d24900750
    [Google Scholar]
  144. YeL. TianY. LiZ. JinH. ZhuZ. WanS. ZhangJ. YuP. ZhangJ. WuS. Design, synthesis and molecular docking studies of some novel spiro[indoline-3, 4′-piperidine]-2-ones as potential c-Met inhibitors.Eur. J. Med. Chem.20125037037510.1016/j.ejmech.2012.02.01622381355
    [Google Scholar]
  145. RaiG.S. MaruJ.J. Synthetic strategies for pyrrolo[2,1-f][1,2,4]triazine: the parent moiety of antiviral drug remdesivir.Chem. Heterocycl. Compd.202056121517152210.1007/s10593‑020‑02844‑933424029
    [Google Scholar]
  146. BhideR.S. NeelsJ. QinL.Y. RuanZ. StachuraS. WeigeltC. SackJ.S. StefanskiK. GuX. XieJ.H. GoldstineC.B. SkalaS. PedicordD.L. RueppS. DharT.G.M. CarterP.H. Salter-CidL.M. PossM.A. DaviesP. Discovery and SAR of pyrrolo[2,1-f][1,2,4]triazin-4-amines as potent and selective PI3Kδ inhibitors.Bioorg. Med. Chem. Lett.201626174256426010.1016/j.bmcl.2016.07.04727476421
    [Google Scholar]
  147. WrobleskiS.T. LinS. HynesJ.Jr WuH. PittS. ShenD.R. ZhangR. GilloolyK.M. ShusterD.J. McIntyreK.W. DoweykoA.M. KishK.F. TredupJ.A. DukeG.J. SackJ.S. McKinnonM. DoddJ. BarrishJ.C. SchievenG.L. LeftherisK. Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38α MAP kinase inhibitors.Bioorg. Med. Chem. Lett.20081882739274410.1016/j.bmcl.2008.02.06718364256
    [Google Scholar]
  148. FinkB.E. ViteG.D. MastalerzH. KadowJ.F. KimS.H. LeavittK.J. DuK. CrewsD. MittT. WongT.W. HuntJ.T. VyasD.M. TokarskiJ.S. New dual inhibitors of EGFR and HER2 protein tyrosine kinases.Bioorg. Med. Chem. Lett.200515214774477910.1016/j.bmcl.2005.07.02716111887
    [Google Scholar]
  149. MastalerzH. GavaiA.V. FinkB. StruzynskiC. TarrantJ. ViteG.D. WongT.W. ZhangG. VyasD.M. Pyrrolotriazine-5-carboxylate ester inhibitors of EGFR and HER2 protein tyrosine kinases and a novel one-pot synthesis of C-4 subsitituted pyrrole-2,3-dicarboxylate diesters.Can. J. Chem.200684452853310.1139/v06‑037
    [Google Scholar]
  150. MastalerzH. ChangM. ChenP. FinkB.E. GavaiA. HanW.C. JohnsonW. LangleyD. LeeF.Y. LeavittK. MaratheP. NorrisD. OppenheimerS. SleczkaB. TarrantJ. TokarskiJ.S. ViteG.D. VyasD.M. WongH. WongT.W. ZhangH. ZhangG. 5-((4-Aminopiperidin-1-yl)methyl)pyrrolotriazine dual inhibitors of EGFR and HER2 protein tyrosine kinases.Bioorg. Med. Chem. Lett.200717174947495410.1016/j.bmcl.2007.06.01917606372
    [Google Scholar]
  151. FinkB.E. NorrisD. MastalerzH. ChenP. GoyalB. ZhaoY. KimS.H. ViteG.D. LeeF.Y. ZhangH. OppenheimerS. TokarskiJ.S. WongT.W. GavaiA.V. Novel pyrrolo[2,1-f][1,2,4]triazin-4-amines: Dual inhibitors of EGFR and HER2 protein tyrosine kinases.Bioorg. Med. Chem. Lett.201121278178510.1016/j.bmcl.2010.11.10021177105
    [Google Scholar]
  152. GavaiA.V. FinkB.E. FairfaxD.J. MartinG.S. RossiterL.M. HolstC.L. KimS.H. LeavittK.J. MastalerzH. HanW.C. NorrisD. GoyalB. SwaminathanS. PatelB. MathurA. VyasD.M. TokarskiJ.S. YuC. OppenheimerS. ZhangH. MaratheP. FargnoliJ. LeeF.Y. WongT.W. ViteG.D. Discovery and preclinical evaluation of [4-[[1-(3-fluorophenyl)methyl]-1H-indazol-5-ylamino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamic acid, (3S)-3-morpholinylmethyl ester (BMS-599626), a selective and orally efficacious inhibitor of human epidermal growth factor receptor 1 and 2 kinases.J. Med. Chem.200952216527653010.1021/jm901006519821562
    [Google Scholar]
  153. MastalerzH. ChangM. ChenP. DextrazeP. FinkB.E. GavaiA. GoyalB. HanW.C. JohnsonW. LangleyD. LeeF.Y. MaratheP. MathurA. OppenheimerS. RuedigerE. TarrantJ. TokarskiJ.S. ViteG.D. VyasD.M. WongH. WongT.W. ZhangH. ZhangG. New C-5 substituted pyrrolotriazine dual inhibitors of EGFR and HER2 protein tyrosine kinases.Bioorg. Med. Chem. Lett.20071772036204210.1016/j.bmcl.2007.01.00217270437
    [Google Scholar]
  154. MastalerzH. ChangM. GavaiA. JohnsonW. LangleyD. LeeF.Y. MaratheP. MathurA. OppenheimerS. TarrantJ. TokarskiJ.S. ViteG.D. VyasD.M. WongH. WongT.W. ZhangH. ZhangG. Novel C-5 aminomethyl pyrrolotriazine dual inhibitors of EGFR and HER2 protein tyrosine kinases.Bioorg. Med. Chem. Lett.200717102828283310.1016/j.bmcl.2007.02.05017368025
    [Google Scholar]
  155. HilmyK. TagM. AishE. ElsaftyM. AttiaH. Synthesis and biological evaluation of pyrrolo[2,3-d]pyrimidine derivatives as a novel class of antimicrobial and antiviral agents.Russ. J. Org. Chem.202157343043910.1134/S1070428021030155
    [Google Scholar]
  156. NassiriM.R. TurkS.R. BirchG.M. ColemanL.A. HudsonJ.L. PudloJ.S. TownsendL.B. DrachJ.C. Activity of acyclic halogenated tubercidin analogs against human cytomegalovirus and in uninfected cells.Antiviral Res.199116213515010.1016/0166‑3542(91)90020‑R1665958
    [Google Scholar]
  157. LiuY. ZhangC. ZhangH. LiM. YuanJ. ZhangY. ZhouJ. GuoH. ZhaoL. DuY. WangL. RenL. Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidines as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis.Eur. J. Med. Chem.20159314215510.1016/j.ejmech.2015.01.05525668494
    [Google Scholar]
  158. WangL. CherianC. Kugel DesmoulinS. PolinL. DengY. WuJ. HouZ. WhiteK. KushnerJ. MatherlyL.H. GangjeeA. Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton- coupled folate transporter over the reduced folate carrier for cellular entry.J. Med. Chem.20105331306131810.1021/jm901572920085328
    [Google Scholar]
  159. GangjeeA. KurupS. SmithC.D. Synthesis of 5,7-disubstituted-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as microtubule inhibitors.Bioorg. Med. Chem.20132151180118910.1016/j.bmc.2012.12.02923352482
    [Google Scholar]
  160. HuS. ZhaoZ. NiY. XinH. YanH. SongX. Design, synthesis and biological evaluation of 4-aryl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives as a PI3Kα inhibitor.Biol. Pharm. Bull.20194261013101810.1248/bpb.b19‑0008031155575
    [Google Scholar]
  161. YangB. QuanY. ZhaoW. JiY. YangX. LiJ. LiY. LiuX. WangY. LiY. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors.J. Enzyme Inhib. Med. Chem.2023381216928210.1080/14756366.2023.216928236656085
    [Google Scholar]
  162. SunL. CuiJ. LiangC. ZhouY. NematallaA. WangX. ChenH. TangC. WeiJ. Rational design of 4,5-disubstituted-5,7-dihydro-pyrrolo[2,3-d]pyrimidin-6-ones as a novel class of inhibitors of epidermal growth factor receptor (EGF-R) and Her2(p185erbB) tyrosine kinases.Bioorg. Med. Chem. Lett.200212162153215710.1016/S0960‑894X(02)00364‑512127526
    [Google Scholar]
  163. TraxlerP. AllegriniP.R. BrandtR. BrueggenJ. CozensR. FabbroD. GrosiosK. LaneH.A. McSheehyP. MestanJ. MeyerT. TangC. WartmannM. WoodJ. CaravattiG. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity.Cancer Res.200464144931494110.1158/0008‑5472.CAN‑03‑368115256466
    [Google Scholar]
  164. DengM. HuangH. DirschO. DahmenU. Effect and risk of AEE788, a dual tyrosine kinase inhibitor, on regeneration in a rat liver resection model.Eur. Surg. Res.2010442829510.1159/00027581820090347
    [Google Scholar]
  165. DengM. HuangH. JinH. DirschO. DahmenU. The anti-proliferative side effects of AEE788, a tyrosine kinase inhibitor blocking both EGF- and VEGF-receptor, are liver-size-dependent after partial hepatectomy in rats.Invest. New Drugs201129459360610.1007/s10637‑010‑9394‑620148349
    [Google Scholar]
  166. YadavT.T. Moin ShaikhG. KumarM.S. ChintamaneniM. YcM. A review on fused pyrimidine systems as EGFR inhibitors and their structure-activity relationship.Front Chem.20221086128810.3389/fchem.2022.86128835769445
    [Google Scholar]
  167. OguroY. MiyamotoN. OkadaK. TakagiT. IwataH. AwazuY. MikiH. HoriA. KamiyamaK. ImamuraS. Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo[3,2-d]pyrimidine derivatives: Novel VEGFR2 kinase inhibitors binding to inactive kinase conformation.Bioorg. Med. Chem.201018207260727310.1016/j.bmc.2010.08.01720833055
    [Google Scholar]
  168. BelalA. Abdel GawadN.M. MehanyA.B.M. AbourehabM.A.S. ElkadyH. Al-KarmalawyA.A. IsmaelA.S. Design, synthesis and molecular docking of new fused 1 H -pyrroles, pyrrolo[3,2- d ]pyrimidines and pyrrolo[3,2- e ][1, 4]diazepine derivatives as potent EGFR/CDK2 inhibitors.J. Enzyme Inhib. Med. Chem.20223711884190210.1080/14756366.2022.209601935801486
    [Google Scholar]
  169. LoRussoP. VenkatakrishnanK. ChioreanE.G. NoeD. WuJ.T. SankohS. CorvezM. SausvilleE.A. Phase 1 dose-escalation, pharmacokinetic, and cerebrospinal fluid distribution study of TAK-285, an investigational inhibitor of EGFR and HER2.Invest. New Drugs201432116017010.1007/s10637‑013‑9988‑x23817974
    [Google Scholar]
  170. KawakitaY. BannoH. OhashiT. TamuraT. YusaT. NakayamaA. MikiH. IwataH. KamiguchiH. TanakaT. HabukaN. SogabeS. OhtaY. IshikawaT. Design and synthesis of pyrrolo[3,2-d]pyrimidine human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors: exploration of novel back-pocket binders.J. Med. Chem.20125583975399110.1021/jm300185p22439974
    [Google Scholar]
  171. KawakitaY. MiwaK. SetoM. BannoH. OhtaY. TamuraT. YusaT. MikiH. KamiguchiH. IkedaY. TanakaT. KamiyamaK. IshikawaT. Design and synthesis of pyrrolo[3,2-d]pyrimidine HER2/EGFR dual inhibitors: Improvement of the physicochemical and pharmacokinetic profiles for potent in vivo anti-tumor efficacy.Bioorg. Med. Chem.201220206171618010.1016/j.bmc.2012.08.00222980219
    [Google Scholar]
  172. BaillacheD.J. Unciti-BrocetaA. Recent developments in anticancer kinase inhibitors based on the pyrazolo[3,4- d ]pyrimidine scaffold.RSC Med. Chem.202011101112113510.1039/D0MD00227E33479617
    [Google Scholar]
  173. ChauhanM. KumarR. Medicinal attributes of pyrazolo[3,4-d]pyrimidines: A review.Bioorg. Med. Chem.201321185657566810.1016/j.bmc.2013.07.02723932070
    [Google Scholar]
  174. SchenoneS. RadiM. MusumeciF. BrulloC. BottaM. Biologically driven synthesis of pyrazolo[3,4-d] pyrimidines as protein kinase inhibitors: an old scaffold as a new tool for medicinal chemistry and chemical biology studies.Chem. Rev.2014114147189723810.1021/cr400270z24873489
    [Google Scholar]
  175. DasJ. MoquinR.V. PittS. ZhangR. ShenD.R. McIntyreK.W. GilloolyK. DoweykoA.M. SackJ.S. ZhangH. KieferS.E. KishK. McKinnonM. BarrishJ.C. DoddJ.H. SchievenG.L. LeftherisK. Pyrazolo-pyrimidines: A novel heterocyclic scaffold for potent and selective p38α inhibitors.Bioorg. Med. Chem. Lett.20081882652265710.1016/j.bmcl.2008.03.01918359226
    [Google Scholar]
  176. DucrayR. BallardP. BarlaamB.C. HickinsonM.D. KettleJ.G. OgilvieD.J. TrigwellC.B. Novel 3-alkoxy-1H-pyrazolo[3,4-d]pyrimidines as EGFR and erbB2 receptor tyrosine kinase inhibitors.Bioorg. Med. Chem. Lett.200818395996210.1016/j.bmcl.2007.12.03518182285
    [Google Scholar]
  177. WangG.T. ManteiR.A. HubbardR.D. WilsbacherJ.L. ZhangQ. TuckerL. HuX. KovarP. JohnsonE.F. OsterlingD.J. BouskaJ. WangJ. DavidsenS.K. BellR.L. SheppardG.S. Substituted 4-amino-1H-pyrazolo[3,4-d]pyrimidines as multi-targeted inhibitors of insulin-like growth factor-1 receptor (IGF1R) and members of ErbB-family receptor kinases.Bioorg. Med. Chem. Lett.201020206067607110.1016/j.bmcl.2010.08.05220817523
    [Google Scholar]
  178. MaherM. KassabA.E. ZaherA.F. MahmoudZ. Novel pyrazolo[3,4- d ]pyrimidines: design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis.J. Enzyme Inhib. Med. Chem.201934153254610.1080/14756366.2018.156404630688116
    [Google Scholar]
  179. LamieP.F. El-KalaawyA.M. Abdel LatifN.S. RashedL.A. PhiloppesJ.N. Pyrazolo[3,4-d] pyrimidine-based dual EGFR T790M/HER2 inhibitors: Design, synthesis, structure–activity relationship and biological activity as potential antitumor and anticonvulsant agents.Eur. J. Med. Chem.202121411322210.1016/j.ejmech.2021.11322233545637
    [Google Scholar]
  180. KawakitaY. SetoM. OhashiT. TamuraT. YusaT. MikiH. IwataH. KamiguchiH. TanakaT. SogabeS. OhtaY. IshikawaT. Design and synthesis of novel pyrimido[4,5- b ]azepine derivatives as HER2/EGFR dual inhibitors.Bioorg. Med. Chem.20132182250226110.1016/j.bmc.2013.02.01423490150
    [Google Scholar]
  181. CockerillS. StubberfieldC. StablesJ. CarterM. GuntripS. SmithK. McKeownS. ShawR. TopleyP. ThomsenL. AffleckK. JowettA. HayesD. WillsonM. WoollardP. SpaldingD. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and c-erbB-2.Bioorg. Med. Chem. Lett.200111111401140510.1016/S0960‑894X(01)00219‑011378364
    [Google Scholar]
  182. GhorabM.M. AlsaidM.S. SolimanA.M. Al-MishariA.A. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors.J. Enzyme Inhib. Med. Chem.2018331677310.1080/14756366.2017.138992229098904
    [Google Scholar]
  183. AlsaidM.S. Al-MishariA.A. SolimanA.M. RagabF.A. GhorabM.M. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors.Eur. J. Med. Chem.2017141849110.1016/j.ejmech.2017.09.06129028534
    [Google Scholar]
  184. GhorabM.M. AlsaidM.S. SolimanA.M. Dual EGFR/HER2 inhibitors and apoptosis inducers: New benzo[g]quinazoline derivatives bearing benzenesulfonamide as anticancer and radiosensitizers.Bioorg. Chem.20188061162010.1016/j.bioorg.2018.07.01530041137
    [Google Scholar]
  185. SolimanA.M. AlqahtaniA.S. GhorabM.M. Novel sulfonamide benzoquinazolinones as dual EGFR/HER2 inhibitors, apoptosis inducers and radiosensitizers.J. Enzyme Inhib. Med. Chem.20193411030104010.1080/14756366.2019.160946931074303
    [Google Scholar]
  186. LinJ. ShenW. XueJ. SunJ. ZhangX. ZhangC. Novel oxazolo[4,5-g]quinazolin-2(1H)-ones: Dual inhibitors of EGFR and Src protein tyrosine kinases.Eur. J. Med. Chem.201255394810.1016/j.ejmech.2012.06.05522818848
    [Google Scholar]
  187. SenthilR. Meenakshi SundaramK.K. BupeshG. UshaS. SaravananK.M. Identification of oxazolo[4,5-g]quinazolin-2(1H)-one derivatives as EGFR inhibitors for cancer prevention.Asian Pac. J. Cancer Prev.20222351687169710.31557/APJCP.2022.23.5.168735633554
    [Google Scholar]
  188. YinS. ZhouL. LinJ. XueL. ZhangC. Design, synthesis and biological activities of novel oxazolo[4,5- g ]quinazolin-2(1H)-one derivatives as EGFR inhibitors.Eur. J. Med. Chem.201510146247510.1016/j.ejmech.2015.07.00826188620
    [Google Scholar]
  189. YinS. TangC. WangB. ZhangY. ZhouL. XueL. ZhangC. Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold.Eur. J. Med. Chem.2016120263610.1016/j.ejmech.2016.04.07227187856
    [Google Scholar]
  190. SaidM. ElshihawyH. Synthesis, anticancer activity and structure-activity relationship of some anticancer agents based on cyclopenta (b) thiophene scaffold.Pak. J. Pharm. Sci.201427488589225015456
    [Google Scholar]
  191. ElrayessR. Abdel AzizY.M. ElgawishM.S. ElewaM. ElshihawyH.A. SaidM.M. Pharmacophore modeling, 3D-QSAR, synthesis, and anti-lung cancer evaluation of novel thieno[2,3- d ][1,2,3]triazines targeting EGFR.Arch. Pharm. (Weinheim)20203532190010810.1002/ardp.20190010831894866
    [Google Scholar]
  192. ElrayessR. Abdel AzizY.M. ElgawishM.S. ElewaM. YassenA.S.A. ElhadyS.S. ElshihawyH.A. SaidM.M. Discovery of potent dual EGFR/HER2 inhibitors based on thiophene scaffold targeting H1299 lung cancer cell line.Pharmaceuticals (Basel)2020141910.3390/ph1401000933374155
    [Google Scholar]
  193. GillR.K. SinghH. RajT. SharmaA. SinghG. BariwalJ. 4-Substituted thieno[2,3- d ]pyrimidines as potent antibacterial agents: Rational design, microwave-assisted synthesis, biological evaluation and molecular docking studies.Chem. Biol. Drug Des.20179061115112110.1111/cbdd.1302828544494
    [Google Scholar]
  194. OhC. KimH. KangJ.S. YunJ. SimJ. KimH.M. HanG. Synthetic strategy for increasing solubility of potential FLT3 inhibitor thieno[2,3-d]pyrimidine derivatives through structural modifications at the C2 and C6 positions.Bioorg. Med. Chem. Lett.201727349650010.1016/j.bmcl.2016.12.03428043794
    [Google Scholar]
  195. KandeelM.M. RefaatH.M. KassabA.E. ShahinI.G. AbdelghanyT.M. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c] pyrimidine derivatives.Eur. J. Med. Chem.20159062063210.1016/j.ejmech.2014.12.00925499930
    [Google Scholar]
  196. BuggeS. MoenI.U. Kragseth SylteK-O. SundbyE. HoffB.H. Truncated structures used in search for new lead compounds and in a retrospective analysis of thienopyrimidine-based EGFR inhibitors.Eur. J. Med. Chem.20159417519410.1016/j.ejmech.2015.03.00425768701
    [Google Scholar]
  197. AzizM.A. SeryaR.A.T. LasheenD.S. Abdel-AzizA.K. EsmatA. MansourA.M. SingabA.N.B. AbouzidK.A.M. Discovery of potent VEGFR-2 inhibitors based on furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents.Sci. Rep.2016612446010.1038/srep2446027080011
    [Google Scholar]
  198. SunB. YinX. ZhangJ. HuangJ. XuY. ZhangF. WangJ. WangG. HuC. Synthesis, characterization and biological activity of tetrahydrobenzo[4,5]thieno [2,3-d]pyrimidine derivatives as epidermal growth factor receptor inhibitors.Chem. Res. Chin. Univ.201531693694110.1007/s40242‑015‑5202‑3
    [Google Scholar]
  199. YangC.R. PengB. CaoS.L. RenT.T. JiangW. WangF.C. LiY.S. WangG. LiZ. XuS. LiaoJ. WangH. LiJ. XuX. Synthesis, cytotoxic evaluation and target identification of thieno[2,3- d ]pyrimidine derivatives with a dithiocarbamate side chain at C2 position.Eur. J. Med. Chem.201815432434010.1016/j.ejmech.2018.05.02829843103
    [Google Scholar]
  200. JiX. PengT. ZhangX. LiJ. YangW. TongL. QuR. JiangH. DingJ. XieH. LiuH. Design, synthesis and biological evaluation of novel 6-alkenylamides substituted of 4-anilinothieno[2,3-d]pyrimidines as irreversible epidermal growth factor receptor inhibitors.Bioorg. Med. Chem.20142272366237810.1016/j.bmc.2014.01.03524565969
    [Google Scholar]
  201. LiJ. GuW. BiX. LiH. LiaoC. LiuC. HuangW. QianH. Design, synthesis, and biological evaluation of thieno[2,3-d]pyrimidine derivatives as novel dual c-Met and VEGFR-2 kinase inhibitors.Bioorg. Med. Chem.201725246674667910.1016/j.bmc.2017.11.01029146452
    [Google Scholar]
  202. MghwaryA.E.S. GedawyE.M. KamalA.M. Abuel- MaatyS.M. Novel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profile.J. Enzyme Inhib. Med. Chem.201934183885210.1080/14756366.2019.159316030919701
    [Google Scholar]
  203. TianC. HanZ. LiY. WangM. YangJ. WangX. ZhangZ. LiuJ. Synthesis and biological evaluation of 2,6-disubstituted-9H-purine, 2,4-disubstitued-thieno [3,2-d]pyrimidine and -7H-pyrrolo[2,3-d]pyrimidine analogues as novel CHK1 inhibitors.Eur. J. Med. Chem.201815183684810.1016/j.ejmech.2018.03.07529684894
    [Google Scholar]
  204. NiefindK. BischoffN. GolubA. BdzholaV. BalandaA. Prykhod’koA. YarmolukS. Structural hypervariability of the two human protein kinase CK2 catalytic subunit paralogs revealed by complex structures with a flavonol- and a thieno[2,3-d]pyrimidine-based inhibitor.Pharmaceuticals (Basel)2017104910.3390/ph1001000928085026
    [Google Scholar]
  205. DengY. ZhouX. Kugel DesmoulinS. WuJ. CherianC. HouZ. MatherlyL.H. GangjeeA. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry.J. Med. Chem.20095292940295110.1021/jm801132319371039
    [Google Scholar]
  206. Abd El HadiS.R. LasheenD.S. HassanM.A. AbouzidK.A.M. Design and synthesis of 4-anilinothieno[2,3-d]pyrimidine-based compounds as dual EGFR/HER-2 inhibitors.Arch. Pharm. (Weinheim)20163491182784710.1002/ardp.20160019727734525
    [Google Scholar]
  207. ElmetwallyS.A. SaiedK.F. EissaI.H. ElkaeedE.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers.Bioorg. Chem.20198810294410.1016/j.bioorg.2019.10294431051400
    [Google Scholar]
  208. MilikS.N. Abdel-AzizA.K. LasheenD.S. SeryaR.A.T. MinucciS. AbouzidK.A.M. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors.Eur. J. Med. Chem.201815531633610.1016/j.ejmech.2018.06.01129902719
    [Google Scholar]
  209. TanQ. ZhangZ. HuiJ. ZhaoY. ZhuL. Synthesis and anticancer activities of thieno[3,2-d]pyrimidines as novel HDAC inhibitors.Bioorg. Med. Chem.201422135836510.1016/j.bmc.2013.11.02124296013
    [Google Scholar]
  210. WoodringJ.L. BeheraR. SharmaA. WiedemanJ. PatelG. SinghB. GuyettP. AmataE. ErathJ. RoncalN. PennE. LeedS.E. RodriguezA. SciottiR.J. Mensa-WilmotK. PollastriM.P. Series of alkynyl-substituted thienopyrimidines as inhibitors of protozoan parasite proliferation.ACS Med. Chem. Lett.2018910996100110.1021/acsmedchemlett.8b0024530344906
    [Google Scholar]
  211. SongK. MaJ. WangX. GongP. ZhaoY. Synthesis and antitumor activities of novel 4-morpholinothieno [3,2-d]pyrimidine derivatives.Chem. Res. Chin. Univ.2014301758110.1007/s40242‑013‑3281‑6
    [Google Scholar]
  212. LiuZ. WuS. WangY. LiR. WangJ. WangL. ZhaoY. GongP. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents.Eur. J. Med. Chem.20148778279310.1016/j.ejmech.2014.10.02225440879
    [Google Scholar]
  213. ZhuW. LiuY. ZhaiX. WangX. ZhuY. WuD. ZhouH. GongP. ZhaoY. Design, synthesis and 3D-QSAR analysis of novel 2-hydrazinyl-4-morpholinothieno [3,2-d]pyrimidine derivatives as potential antitumor agents.Eur. J. Med. Chem.20125716217510.1016/j.ejmech.2012.09.00223059545
    [Google Scholar]
  214. FolkesA.J. AhmadiK. AldertonW.K. AlixS. BakerS.J. BoxG. ChuckowreeI.S. ClarkeP.A. DepledgeP. EcclesS.A. FriedmanL.S. HayesA. HancoxT.C. KugendradasA. LensunL. MooreP. OliveroA.G. PangJ. PatelS. Pergl-WilsonG.H. RaynaudF.I. RobsonA. SaghirN. SalphatiL. SohalS. UltschM.H. ValentiM. WallweberH.J.A. WanN.C. WiesmannC. WorkmanP. ZhyvoloupA. ZvelebilM.J. ShuttleworthS.J. The identification of 2-(1H-indazol-4-yl) -6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl -thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer.J. Med. Chem.200851185522553210.1021/jm800295d18754654
    [Google Scholar]
  215. PerspicaceE. Jouan-HureauxV. RagnoR. BallanteF. SartiniS. La MottaC. Da SettimoF. ChenB. KirschG. SchneiderS. FaivreB. HesseS. Design, synthesis and biological evaluation of new classes of thieno[3,2-d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2).Eur. J. Med. Chem.20136376578110.1016/j.ejmech.2013.03.02223583911
    [Google Scholar]
  216. MunchhofM.J. BeebeJ.S. CasavantJ.M. CooperB.A. DotyJ.L. HigdonR.C. HillermanS.M. SoderstromC.I. KnauthE.A. MarxM.A. RossiA.M.K. SobolovS.B. SunJ. Design and SAR of thienopyrimidine and thienopyridine inhibitors of VEGFR-2 kinase activity.Bioorg. Med. Chem. Lett.2004141212410.1016/j.bmcl.2003.10.03014684289
    [Google Scholar]
  217. WelkerM.E. KulikG. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors.Bioorg. Med. Chem.201321144063409110.1016/j.bmc.2013.04.08323735831
    [Google Scholar]
  218. CrespoM.I. PagèsL. VegaA. SegarraV. LópezM. DoménechT. MiralpeixM. BeletaJ. RyderH. PalaciosJ.M. Design, synthesis, and biological activities of new thieno[3,2-d] pyrimidines as selective type 4 phosphodiesterase inhibitors.J. Med. Chem.199841214021403510.1021/jm981012m9767640
    [Google Scholar]
  219. WoodE.R. ShewchukL.M. EllisB. BrignolaP. BrashearR.L. CaferroT.R. DickersonS.H. DicksonH.D. DonaldsonK.H. GaulM. GriffinR.J. HassellA.M. KeithB. MullinR. PetrovK.G. RenoM.J. RusnakD.W. TadepalliS.M. UlrichJ.C. WagnerC.D. VanderwallD.E. WatersonA.G. WilliamsJ.D. WhiteW.L. UehlingD.E. 6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases.Proc. Natl. Acad. Sci. USA200810582773277810.1073/pnas.070828110518287036
    [Google Scholar]
  220. WatersonA.G. PetrovK.G. HornbergerK.R. HubbardR.D. SammondD.M. SmithS.C. DicksonH.D. CaferroT.R. HinkleK.W. StevensK.L. DickersonS.H. RusnakD.W. SpeharG.M. WoodE.R. GriffinR.J. UehlingD.E. Synthesis and evaluation of aniline headgroups for alkynyl thienopyrimidine dual EGFR/ErbB-2 kinase inhibitors.Bioorg. Med. Chem. Lett.20091951332133610.1016/j.bmcl.2009.01.08019208477
    [Google Scholar]
  221. HubbardR.D. DickersonS.H. EmersonH.K. GriffinR.J. RenoM.J. HornbergerK.R. RusnakD.W. WoodE.R. UehlingD.E. WatersonA.G. Dual EGFR/ErbB-2 inhibitors from novel pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines.Bioorg. Med. Chem. Lett.200818215738574010.1016/j.bmcl.2008.09.09018842405
    [Google Scholar]
  222. StevensK.L. AlligoodK.J. AlbertiJ.G.B. CaferroT.R. ChamberlainS.D. DickersonS.H. DicksonH.D. EmersonH.K. GriffinR.J. HubbardR.D. KeithB.R. MullinR.J. PetrovK.G. GerdingR.M. RenoM.J. RheaultT.R. RusnakD.W. SammondD.M. SmithS.C. UehlingD.E. WatersonA.G. WoodE.R. Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors.Bioorg. Med. Chem. Lett.2009191212610.1016/j.bmcl.2008.11.02319028424
    [Google Scholar]
  223. RheaultT.R. CaferroT.R. DickersonS.H. DonaldsonK.H. GaulM.D. GoetzA.S. MullinR.J. McDonaldO.B. PetrovK.G. RusnakD.W. ShewchukL.M. SpeharG.M. TruesdaleA.T. VanderwallD.E. WoodE.R. UehlingD.E. Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors.Bioorg. Med. Chem. Lett.200919381782010.1016/j.bmcl.2008.12.01119111461
    [Google Scholar]
  224. LvP.C. ZhouC.F. ChenJ. LiuP.G. WangK.R. MaoW.J. LiH.Q. YangY. XiongJ. ZhuH.L. Design, synthesis and biological evaluation of thiazolidinone derivatives as potential EGFR and HER-2 kinase inhibitors.Bioorg. Med. Chem.201018131431910.1016/j.bmc.2009.10.05119914835
    [Google Scholar]
  225. MalliaM.B. SubramanianS. BanerjeeS. SarmaH.D. VenkateshM. Evaluation of 99mTc(CO)3 complex of 2-methyl-5-nitroimidazole as an agent for targeting tumor hypoxia.Bioorg. Med. Chem.200614237666767010.1016/j.bmc.2006.08.01116949291
    [Google Scholar]
  226. BornJ.L. SmithB.R. HarperN. KochC.J. Metabolism and radiosensitization of 4,5-dimethylmisonidazole, a ring-substituted analog of misonidazole.Biochem. Pharmacol.19924361337134410.1016/0006‑2952(92)90511‑G1562284
    [Google Scholar]
  227. TaoX.X. DuanY.T. ChenL.W. TangD.J. YangM.R. WangP.F. XuC. ZhuH.L. Design, synthesis and biological evaluation of pyrazolyl-nitroimidazole derivatives as potential EGFR/HER-2 kinase inhibitors.Bioorg. Med. Chem. Lett.201626267768310.1016/j.bmcl.2015.11.04026652482
    [Google Scholar]
  228. SeverB. AltıntopM.D. RadwanM.O. ÖzdemirA. OtsukaM. FujitaM. CiftciH.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors.Eur. J. Med. Chem.201918211164810.1016/j.ejmech.2019.11164831493743
    [Google Scholar]
  229. AbdelsalamE.A. Abd El-HafeezA.A. EldehnaW.M. El HassabM.A. MarzoukH.M.M. ElaasserM.M. Abou TalebN.A. AminK.M. Abdel-AzizH.A. GhoshP. HammadS.F. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer.J. Enzyme Inhib. Med. Chem.20223712265228210.1080/14756366.2022.210484136000167
    [Google Scholar]
  230. AltıntopM.D. ÖzdemirA. Turan-ZitouniG. IlgınS. AtlıÖ. DemirelR. KaplancıklıZ.A. A novel series of thiazolyl–pyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity.Eur. J. Med. Chem.20159234235210.1016/j.ejmech.2014.12.05525576739
    [Google Scholar]
  231. LvP.C. LiD.D. LiQ.S. LuX. XiaoZ.P. ZhuH.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents.Bioorg. Med. Chem. Lett.201121185374537710.1016/j.bmcl.2011.07.01021802290
    [Google Scholar]
  232. SeverB. AltıntopM.D. GençerH.K. KapkaçH.A. AtliO. BaysalM. OzdemirA. Synthesis of new thiazolyl-pyrazoline derivatives and evaluation of their antimicrobial, cytotoxic and genotoxic effects.Lett. Drug Des. Discov.201815774475610.2174/1570180814666170925152902
    [Google Scholar]
  233. HavrylyukD. RomanO. LesykR. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids.Eur. J. Med. Chem.201611314516610.1016/j.ejmech.2016.02.03026922234
    [Google Scholar]
  234. OttanàR. MaccariR. BarrecaM.L. BrunoG. RotondoA. RossiA. ChiricostaG. Di PaolaR. SautebinL. CuzzocreaS. VigoritaM.G. 5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents.Bioorg. Med. Chem.200513134243425210.1016/j.bmc.2005.04.05815905093
    [Google Scholar]
  235. GududuruV. HurhE. DaltonJ.T. MillerD.D. Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3-yl-amides for prostate cancer.Bioorg. Med. Chem. Lett.200414215289529310.1016/j.bmcl.2004.08.02915454213
    [Google Scholar]
  236. SamadhiyaP. SharmaR. SrivastavaS.K. SrivastavaS.D. Synthesis and biological evaluation of 4-thiazolidinone derivatives as antitubercular and antimicrobial agents.Arab. J. Chem.20147565766510.1016/j.arabjc.2010.11.015
    [Google Scholar]
  237. HuJ. WangY. WeiX. WuX. ChenG. CaoG. ShenX. ZhangX. TangQ. LiangG. LiX. Synthesis and biological evaluation of novel thiazolidinone derivatives as potential anti-inflammatory agents.Eur. J. Med. Chem.20136429230110.1016/j.ejmech.2013.04.01023644212
    [Google Scholar]
  238. QiuK.M. WangH.H. WangL.M. LuoY. YangX.H. WangX.M. ZhuH.L. Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors.Bioorg. Med. Chem.20122062010201810.1016/j.bmc.2012.01.05122361272
    [Google Scholar]
  239. RenY.J. WangZ.C. ZhangX. QiuH.Y. WangP.F. GongH-B. JiangA-Q. ZhuH-L. EGFR/HER-2 inhibitors: synthesis, biological evaluation and 3D-QSAR analysis of dihydropyridine-containing thiazolinone derivatives.RSC Advances2015528214452145410.1039/C4RA10606G
    [Google Scholar]
  240. ZongX. CaiJ. ChenJ. SunC. LiL. JiM. Discovery of 3,3a,4,5-tetrahydro-2H-benzo[g]indazole containing quinoxaline derivatives as novel EGFR/HER-2 dual inhibitors.RSC Advances2015532248142482310.1039/C5RA02576A
    [Google Scholar]
  241. TsengC.H. ChenY.L. HsuC.Y. ChenT.C. ChengC.M. TsoH.C. LuY.J. TzengC.C. Synthesis and antiproliferative evaluation of 3-phenylquinolinylchalcone derivatives against non-small cell lung cancers and breast cancers.Eur. J. Med. Chem.20135927428210.1016/j.ejmech.2012.11.02723237975
    [Google Scholar]
  242. CoronaP. CartaA. LorigaM. VitaleG. PagliettiG. Synthesis and in vitro antitumor activity of new quinoxaline derivatives.Eur. J. Med. Chem.20094441579159110.1016/j.ejmech.2008.07.02518774202
    [Google Scholar]
  243. SangandeF. JuliantiE. TjahjonoD.H. 2-substituted 4-aminoquinazoline derivatives as potential dual inhibitors of EGFR and HER2: an in silico and in vitro study.Med. Chem. Res.202231576277110.1007/s00044‑022‑02876‑0
    [Google Scholar]
  244. TuS.H. KuC.Y. HoC.T. ChenC.S. HuangC.S. LeeC.H. ChenL.C. PanM.H. ChangH.W. ChangC.H. ChangY.J. WeiP.L. WuC.H. HoY.S. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells.Mol. Nutr. Food Res.201155345546610.1002/mnfr.20100025421370452
    [Google Scholar]
  245. BelloM. Saldaña-RiveroL. Correa-BasurtoJ. GarcíaB. Sánchez-EspinosaV.A. Structural and energetic basis for the molecular recognition of dual synthetic vs. natural inhibitors of EGFR/HER2.Int. J. Biol. Macromol.201811156958610.1016/j.ijbiomac.2017.12.16229329808
    [Google Scholar]
  246. MacphersonI.R. SpiliopoulouP. RafiiS. SaggeseM. BairdR.D. Garcia-CorbachoJ. ItalianoA. BonneterreJ. CamponeM. CrestiN. PosnerJ. TakedaY. ArimuraA. SpicerJ. A phase I/II study of epertinib plus trastuzumab with or without chemotherapy in patients with HER2-positive metastatic breast cancer.Breast Cancer Res.2020221110.1186/s13058‑019‑1178‑031892325
    [Google Scholar]
  247. ZhangT. LiQ. ChenS. LuoY. FanY. XuB. Phase I study of QLNC120, a novel EGFR and HER2 kinase inhibitor, in pre-treated patients with HER2-overexpressing advanced breast cancer.Oncotarget2017822367503676010.18632/oncotarget.1358127902470
    [Google Scholar]
  248. LinL. PanH. LiX. ZhaoC. SunJ. HuX. ZhangY. WangM. RenX. LuoX. ShanG. HuiA.M. WuZ. LiuH. TianL. ShiY. A phase I study of FCN-411, a pan-HER inhibitor, in EGFR-mutated advanced NSCLC after progression on EGFR tyrosine kinase inhibitors.Lung Cancer20221669810610.1016/j.lungcan.2022.01.02535248866
    [Google Scholar]
  249. PropperD.J. GaoF. SaundersM.P. SarkerD. HartleyJ.A. SpanswickV.J. LoweH.L. HackettL.D. NgT.T. BarberP.R. WeitsmanG.E. PearceS. WhiteL. LopesA. ForsythS. HochhauserD. PANTHER: AZD8931, inhibitor of EGFR, ERBB2 and ERBB3 signalling, combined with FOLFIRI: a Phase I/II study to determine the importance of schedule and activity in colorectal cancer.Br. J. Cancer2023128224525410.1038/s41416‑022‑02015‑x36352028
    [Google Scholar]
  250. WangJ. HanY. ShiX. LiQ. ZhangP. YuanP. MaF. LuoY. CaiR. FanY. ChenS. LiQ. XuB. Phase I safety and pharmacokinetic study of cipatinib, an original dual tyrosine kinase inhibitor.Thorac. Cancer2018981041104710.1111/1759‑7714.1278429893055
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673308896240528173317
Loading
/content/journals/cmc/10.2174/0109298673308896240528173317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test