Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Anthocyanins (ANCs) are obtained from pigmented foods like blueberry, strawberry, and red cabbage and are phenolic compounds belonging to the flavonoids family. ANCs have garnered significant attention in recent years due to their diverse biological activities and potential health benefits. This comprehensive review presents a holistic exploration of anthocyanins, spanning from their chemical structure and biosynthesis pathways to the myriad analytical techniques employed for their identification and quantification. Furthermore, the rich tapestry of plant sources yields anthocyanins is delved into, highlighting their incorporation into various pharmaceutical formulations. This review aims to provide a comprehensive synthesis of current knowledge on anthocyanins, spanning from their origins in nature to their multifaceted pharmacological activities and innovative pharmaceutical applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673310694240605074429
2024-06-15
2025-10-22
Loading full text...

Full text loading...

References

  1. KhooH. AzlanA. TangS. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits.Food Nutr. Res.2017611136177910.1080/16546628.2017.1361779
    [Google Scholar]
  2. JackmanR.L. YadaR. TungM.A. A review: Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis.J. Food Biochem.198711427930810.1111/j.1745‑4514.1987.tb00128.x
    [Google Scholar]
  3. LiuY. TikunovY. SchoutenR.E. MarcelisL.F.M. VisserR.G.F. BovyA. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review.Front Chem.201865210.3389/fchem.2018.0005229594099
    [Google Scholar]
  4. GeX. TimrovI. BinnieS. BiancardiA. CalzolariA. BaroniS. Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution.J. Phys. Chem. A2015119163816382210.1021/acs.jpca.5b0127225830823
    [Google Scholar]
  5. MazzaG. MiniatiE. Anthocyanins in Fruits.Vegetables, and Grains2018136210.1201/9781351069700
    [Google Scholar]
  6. PriorR.L. WuX. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities.Free Radic. Res.200640101014102810.1080/1071576060075852217015246
    [Google Scholar]
  7. TurturicăM. OanceaA. RapaneauG. BahrimG. Anthocyanins: Naturally occuring fruit pigments with functional properties.Gup.Ugal.Ro.201539924
    [Google Scholar]
  8. Bkowska-BarczakA. Acylated anthocyanins as stable, natural food colorants - a review.Pol. J. Food Nutr. Sci.2005552107116
    [Google Scholar]
  9. TrouillasP. Sancho-GarcíaJ.C. De FreitasV. GierschnerJ. OtyepkaM. DanglesO. Stabilizing and modulating color by copigmentation: Insights from theory and experiment.Chem. Rev.201611694937498210.1021/acs.chemrev.5b0050726959943
    [Google Scholar]
  10. Castañeda-OvandoA. Pacheco-HernándezM.L. Páez-HernándezM.E. RodríguezJ.A. Galán-VidalC.A. Chemical studies of anthocyanins: A review.Food Chem.2009113485987110.1016/j.foodchem.2008.09.001
    [Google Scholar]
  11. EkiciL. SimsekZ. OzturkI. SagdicO. YetimH. Effects of temperature, time, and ph on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models.Food Anal. Methods2014761328133610.1007/s12161‑013‑9753‑y
    [Google Scholar]
  12. DussiM.C. SugarD. WrolstadR.E. Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color.J. Amer. Soc. Horticult. Sci. jashs.1995120578578910.21273/JASHS.120.5.785
    [Google Scholar]
  13. SmeriglioA. BarrecaD. BelloccoE. TrombettaD. Chemistry, pharmacology and health benefits of anthocyanins.Phytother. Res.20163081265128610.1002/ptr.564227221033
    [Google Scholar]
  14. ClarkeS.D. NakamuraM.T. Raman characterization of fungal DHN and DOPA melanin biosynthesis pathways.J Fungi200471084110.1016/B0‑12‑443710‑9/00224‑6
    [Google Scholar]
  15. HeF. MuL. YanG.L. LiangN.N. PanQ.H. WangJ. ReevesM.J. DuanC.Q. Biosynthesis of anthocyanins and their regulation in colored grapes.Molecules201015129057909110.3390/molecules1512905721150825
    [Google Scholar]
  16. ZhouL.J. GengZ. WangY. WangY. LiuS. ChenC. SongA. JiangJ. ChenS. ChenF. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum.Hortic. Res.20218124810.1038/s41438‑021‑00675‑z34848687
    [Google Scholar]
  17. YanY. HuangL. KoffasM.A.G. Biosynthesis of 5-deoxyflavanones in microorganisms.Biotechnol. J.20072101250126210.1002/biot.20070011917806100
    [Google Scholar]
  18. YanY. LiZ. KoffasM.A.G. High-yield anthocyanin biosynthesis in engineered Escherichia coli.Biotechnol. Bioeng.2008100112614010.1002/bit.2172118023053
    [Google Scholar]
  19. FarooqS. ShahM.A. SiddiquiM.W. DarB.N. MirS.A. AliA. Recent trends in extraction techniques of anthocyanins from plant materials.J. Food Meas. Charact.20201463508351910.1007/s11694‑020‑00598‑8
    [Google Scholar]
  20. Rodriguez-SaonaL.E. WrolstadR.E. Extraction, Isolation, and Purification of Anthocyanins.Current Protocols in Food Analytical ChemistryJohn Wiley & Sons, Inc200110.1002/0471142913.faf0101s00
    [Google Scholar]
  21. MartínJ. NavasM.J. Jiménez-MorenoA.M. AsueroA.G. Anthocyanin pigments: importance sample preparation and extraction.phenolic compounds : natural sources, importance and applicationsintechopen201710.5772/66892
    [Google Scholar]
  22. LiazidA. GuerreroR.F. CantosE. PalmaM. BarrosoC.G. Microwave assisted extraction of anthocyanins from grape skins.Food Chem.201112431238124310.1016/j.foodchem.2010.07.053
    [Google Scholar]
  23. YangZ. ZhaiW. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS.Innov. Food Sci. Emerg. Technol.201011347047610.1016/j.ifset.2010.03.003
    [Google Scholar]
  24. Espada-BellidoE. Ferreiro-GonzálezM. CarreraC. PalmaM. BarrosoC.G. BarberoG.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp.Food Chem.2017219233210.1016/j.foodchem.2016.09.12227765221
    [Google Scholar]
  25. DemirdövenA. ÖzdoğanK. Erdoğan-TokatlıK. Extraction of anthocyanins from red cabbage by ultrasonic and conventional methods: Optimization and evaluation.J. Food Biochem.201539549150010.1111/jfbc.12153
    [Google Scholar]
  26. ZouT.B. WangM. GanR.Y. LingW.H. Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology.Int. J. Mol. Sci.20111253006301710.3390/ijms1205300621686165
    [Google Scholar]
  27. HenryM.C. YonkerC.R. Supercritical fluid chromatography, pressurized liquid extraction, and supercritical fluid extraction.Anal. Chem.200678123909391610.1021/ac060570316771531
    [Google Scholar]
  28. IdhamZ. ZainiA.S. PutraN.R. RusliN.M. MahatN.S. YianL.N. Che YunusM.A. Effect of flow rate, particle size and modifier ratio on the supercritical fluid extraction of anthocyanins from Hibiscus sabdariffa (L).IOP Conf. Ser. Mater Sci. Eng.202093210.1088/1757‑899X/932/1/012031
    [Google Scholar]
  29. GhafoorK. ParkJ. ChoiY.H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology.Innov. Food Sci. Emerg. Technol.201011348549010.1016/j.ifset.2010.01.013
    [Google Scholar]
  30. Castañeda-OvandoA. Galán-VidalC.A. Contreras-LópezE. Páez-HernándezM.E. Purification of anthocyanins with o-dihydroxy arrangement by sorption in cationic resins charged with Fe(III).J. Chem.201420141910.1155/2014/367236
    [Google Scholar]
  31. DegenhardtA. KnappH. WinterhalterP. Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity.J. Agric. Food Chem.200048233834310.1021/jf990876t10691638
    [Google Scholar]
  32. da CostaC. HortonD. MargolisS.A. Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectrometry and capillary electrophoresis.J. Chromatogr. A20008811-240341010.1016/S0021‑9673(00)00328‑9
    [Google Scholar]
  33. NicDaéidN. Forensic sciences | Systematic drug identification.Encyclopedia of Analytical Science.Discovery the University of Dundee Research2019758010.1016/B978‑0‑12‑409547‑2.14457‑9
    [Google Scholar]
  34. SahaS. SinghJ. PaulA. SarkarR. KhanZ. BanerjeeK. Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry.J. AOAC Int.20201031233910.5740/jaoacint.19‑020131462350
    [Google Scholar]
  35. RyuS.N. ParkS.Z. KangS.S. HanS.J. Determination of C3G content in blackish purple rice using HPLC and UV-vis spectrophotometer.Hangug Jagmul Haghoeji200348369371
    [Google Scholar]
  36. GhanjaouiM.E. MandilA. Ait Sidi MouA. SlimaniR. High performance liquid chromatography quality control.Int. J. Adv. Chem.2020816016910.14419/ijac.v8i1.30723
    [Google Scholar]
  37. DugoP. MondelloL. ErranteG. ZappiaG. DugoG. Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection.J. Agric. Food Chem.20014983987399210.1021/jf001495e11513700
    [Google Scholar]
  38. RuizA. Hermosín-GutiérrezI. VergaraC. von BaerD. ZapataM. HitschfeldA. ObandoL. MardonesC. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS.Food Res. Int.201351270671310.1016/j.foodres.2013.01.043
    [Google Scholar]
  39. Lopes-da-SilvaF. de Pascual-TeresaS. Rivas-GonzaloJ. Santos-BuelgaC. Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection.Eur. Food Res. Technol.2002214324825310.1007/s00217‑001‑0434‑5
    [Google Scholar]
  40. KrishnanV. RaniR. PushkarS. LalS.K. SrivastavaS. KumariS. VinuthaT. DahujaA. PraveenS. SachdevA. Anthocyanin fingerprinting and dynamics in differentially pigmented exotic soybean genotypes using modified HPLC–DAD method.J. Food Meas. Charact.20201441966197510.1007/s11694‑020‑00443‑y
    [Google Scholar]
  41. SalehiB. Sharifi-RadJ. CappelliniF. ReinerŽ. ZorzanD. ImranM. SenerB. KilicM. El-ShazlyM. FahmyN.M. Al-SayedE. MartorellM. TonelliC. PetroniK. DoceaA.O. CalinaD. MaroyiA. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action.Front. Pharmacol.202011130010.3389/fphar.2020.0130032982731
    [Google Scholar]
  42. ChangY.C. HuangK.X. HuangA.C. HoY.C. WangC.J. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.Food Chem. Toxicol.20064471015102310.1016/j.fct.2005.12.00616473450
    [Google Scholar]
  43. Bowen-ForbesC.S. ZhangY. NairM.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits.J. Food Compos. Anal.201023655456010.1016/j.jfca.2009.08.012
    [Google Scholar]
  44. CassidyA. MukamalK.J. LiuL. FranzM. EliassenA.H. RimmE.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women.Circulation2013127218819610.1161/CIRCULATIONAHA.112.12240823319811
    [Google Scholar]
  45. Sohail AkhM. Ali ShehatW. Phytochemical and pharmacological aspects of anthocyanins.Asian. J. Appl. Sci.2020133949910.3923/ajaps.2020.94.99
    [Google Scholar]
  46. BellD.R. GochenaurK. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts.J. Appl. Physiol.200610041164117010.1152/japplphysiol.00626.200516339348
    [Google Scholar]
  47. ToufektsianM.C. de LorgerilM. NagyN. SalenP. DonatiM.B. GiordanoL. MockH.P. PeterekS. MatrosA. PetroniK. PiluR. RotilioD. TonelliC. de LeirisJ. BoucherF. MartinC. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury.J. Nutr.2008138474775210.1093/jn/138.4.74718356330
    [Google Scholar]
  48. XieL. SuH. SunC. ZhengX. ChenW. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms.Trends Food Sci. Technol.201872132410.1016/j.tifs.2017.12.002
    [Google Scholar]
  49. SkatesE. OverallJ. DeZegoK. WilsonM. EspositoD. LilaM.A. KomarnytskyS. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage.Food Chem. Toxicol.201811144545310.1016/j.fct.2017.11.03229196236
    [Google Scholar]
  50. LeeB. LeeM. LefevreM. KimH.R. Anthocyanins inhibit lipogenesis during adipocyte differentiation of 3T3-L1 preadipocytes.Plant Foods Hum. Nutr.201469213714110.1007/s11130‑014‑0407‑z24682657
    [Google Scholar]
  51. KwonS.H. AhnI.S. KimS.O. KongC.S. ChungH.Y. DoM.S. ParkK.Y. Anti-obesity and hypolipidemic effects of black soybean anthocyanins.J. Med. Food200710355255610.1089/jmf.2006.14717887951
    [Google Scholar]
  52. ZhouJ. ZhuY.F. ChenX.Y. HanB. LiF. ChenJ.Y. PengX.L. LuoL.P. ChenW. YuX.P. Black rice-derived anthocyanins inhibit HER-2-positive breast cancer epithelial-mesenchymal transition-mediated metastasis in vitro by suppressing FAK signaling.Int. J. Mol. Med.20174061649165610.3892/ijmm.2017.318329039492
    [Google Scholar]
  53. DreiseitelA. OosterhuisB. VukmanK.V. SchreierP. OehmeA. LocherS. HajakG. SandP.G. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1.Br. J. Pharmacol.200915881942195010.1111/j.1476‑5381.2009.00495.x19922539
    [Google Scholar]
  54. LinB.W. GongC.C. SongH.F. CuiY.Y. Effects of anthocyanins on the prevention and treatment of cancer.Br. J. Pharmacol.2017174111226124310.1111/bph.1362727646173
    [Google Scholar]
  55. BlandoF. CalabrisoN. BerlandH. MaioranoG. GerardiC. CarluccioM.A. AndersenM. Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables.Int. J. Mol. Sci.201819116910.3390/ijms19010169
    [Google Scholar]
  56. HassimottoN.M.A. MoreiraV. NascimentoN.G. SoutoP.C.M.C. TeixeiraC. LajoloF.M. Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside.BioMed Res. Int.2013201311010.1155/2013/14671623484081
    [Google Scholar]
  57. TsudaT. HorioF. OsawaT. Cyanidin 3-O-β-D-glucoside suppresses nitric oxide production during a zymosan treatment in rats.J. Nutr. Sci. Vitaminol.200248430531010.3177/jnsv.48.30512489822
    [Google Scholar]
  58. SzymanowskaU. ZłotekU. KaraśM. BaraniakB. Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors.Food Chem.2015172717710.1016/j.foodchem.2014.09.04325442525
    [Google Scholar]
  59. JungH. LeeH.J. ChoH. LeeK. KwakH.K. HwangK.T. Anthocyanins in Rubus fruits and antioxidant and anti-inflammatory activities in RAW 264.7 cells.Food Sci. Biotechnol.20152451879188610.1007/s10068‑015‑0246‑1
    [Google Scholar]
  60. SzymanowskaU. BaraniakB. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries.Antioxidants20198829910.3390/antiox808029931405151
    [Google Scholar]
  61. ŠarićA. SobočanecS. BalogT. KušićB. ŠverkoV. Dragović-UzelacV. LevajB. ČosićZ. Mačak ŠafrankoŽ. MarottiT. Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus Cerasus cv. Maraska).Plant Foods Hum. Nutr.200964423123710.1007/s11130‑009‑0135‑y19763832
    [Google Scholar]
  62. LachinT. RezaH. Anti diabetic effect of cherries in alloxan induced diabetic rats.Recent Pat. Endocr. Metab. Immune Drug Discov.201261677210.2174/18722141279901530822280223
    [Google Scholar]
  63. GuoH. LingW. The update of anthocyanins on obesity and type 2 diabetes: Experimental evidence and clinical perspectives.Rev. Endocr. Metab. Disord.201516111310.1007/s11154‑014‑9302‑z25557610
    [Google Scholar]
  64. EdirisingheI. Burton-FreemanB. Anti-diabetic actions of Berry polyphenols : Review on proposed mechanisms of action.J. Berry Res.20166223725010.3233/JBR‑160137
    [Google Scholar]
  65. YazdankhahS. HojjatiM. AziziM.H. The antidiabetic potential of black mulberry extract-enriched pasta through inhibition of enzymes and glycemic index.Plant Foods Hum. Nutr.201974114915510.1007/s11130‑018‑0711‑030632080
    [Google Scholar]
  66. MartineauL.C. CoutureA. SpoorD. Benhaddou-AndaloussiA. HarrisC. MeddahB. LeducC. BurtA. VuongT. Mai LeP. PrentkiM. BennettS.A. ArnasonJ.T. HaddadP.S. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait.Phytomedicine2006139-1061262310.1016/j.phymed.2006.08.00516979328
    [Google Scholar]
  67. TalagavadiV. RapisardaP. GalvanoF. PiergiuseppeP. MarcoG. Cyanidin-3-O-β-glucoside and protocatechuic acid activate AMPK/mTOR/S6K pathway and improve glucose homeostasis in mice.J. Funct. Food.20162133834810.1016/j.jff.2015.12.007
    [Google Scholar]
  68. GrafD. SeifertS. JaudszusA. BubA. WatzlB. Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats.PLoS One201386e6669010.1371/journal.pone.006669023825152
    [Google Scholar]
  69. Hsieh-LoM. Castillo-HerreraG. MojicaL. Black bean anthocyanin-rich extract from supercritical and pressurized extraction increased in vitro antidiabetic potential, while having similar storage stability.Foods20209565510.3390/foods905065532438746
    [Google Scholar]
  70. ChenZ. WangC. PanY. GaoX. ChenH. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice.Food Funct.20189142643910.1039/C7FO00983F29220052
    [Google Scholar]
  71. RojoL.E. RibnickyD. LogendraS. PoulevA. Rojas-SilvaP. KuhnP. DornR. GraceM.H. LilaM.A. RaskinI. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis).Food Chem.2012131238739610.1016/j.foodchem.2011.08.06626279603
    [Google Scholar]
  72. WuT. TangQ. GaoZ. YuZ. SongH. ZhengX. ChenW. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice.PLoS One2013810e7758510.1371/journal.pone.007758524143244
    [Google Scholar]
  73. KarriS. SharmaS. HatwareK. PatilK. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective.Biomed. Pharmacother.201911022423810.1016/j.biopha.2018.11.07630481727
    [Google Scholar]
  74. KangI. LeeY. LeeM. Anthocyanins: What they are and how they relate to obesity prevention. Nutrition in the Prevention and Treatment of Abdominal Obesity. WatsonR.S. United StatesAcademic PressVol. 21940943010.1016/B978‑0‑12‑816093‑0.00028‑8
    [Google Scholar]
  75. KhanM.I. ShinJ.H. ShinT.S. KimM.Y. ChoN.J. KimJ.D. Anthocyanins from Cornus kousa ethanolic extract attenuate obesity in association with anti-angiogenic activities in 3T3-L1 cells by down-regulating adipogeneses and lipogenesis.PLoS One20181312e020855610.1371/journal.pone.020855630521605
    [Google Scholar]
  76. KimH.J. KooK.A. ParkW.S. KangD.M. KimH.S. LeeB.Y. GooY.M. KimJ.H. LeeM.K. WooD.K. KwakS.S. AhnM.J. Anti-obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet potatoes.J. Food Biochem.20204410e1343810.1111/jfbc.1343832812262
    [Google Scholar]
  77. KawkH.W. NamG.H. KimM.J. KimS.Y. KimG.N. KimY.M. Anti-obesity effect of an Ethanol extract of cheongchunchal in vitro and in vivo.Nutrients20201211345310.3390/nu1211345333187189
    [Google Scholar]
  78. GanesanK. XuB. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits.Int. J. Mol. Sci.20171811233110.3390/ijms1811233129113066
    [Google Scholar]
  79. SongH. ShenX. WangF. LiY. ZhengX. Black current anthocyanins improve lipid metabolism and modulate gut microbiota in high-fat diet-induced obese mice.Mol. Nutr. Food Res.2021656200109010.1002/mnfr.20200109033559369
    [Google Scholar]
  80. TianB. ZhaoJ. ZhangM. ChenZ. MaQ. LiuH. NieC. ZhangZ. AnW. LiJ. Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota.Mol. Nutr. Food Res.2021658200074510.1002/mnfr.20200074533629483
    [Google Scholar]
  81. WuT. YangL. GuoX. ZhangM. LiuR. SuiW. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism.Food Funct.2018942112212010.1039/C7FO02061A29632909
    [Google Scholar]
  82. CappelliniF. MarinelliA. ToccaceliM. TonelliC. PetroniK. Anthocyanins: from mechanisms of regulation in plants to health benefits in foods.Front. Plant Sci.20211274804910.3389/fpls.2021.74804934777426
    [Google Scholar]
  83. IsaakC.K. PetkauJ.C. BlewettH. OK. SiowY.L. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis.Can. J. Physiol. Pharmacol.201795890491010.1139/cjpp‑2016‑066728384410
    [Google Scholar]
  84. DohaM. HodaM. ShereinA. HagarE. Cardioprotective potency of anthocyanin-rich extract of red cabbage against isoproterenol-induced myocardial infarction in experimental animals.J. Appl. Pharm. Sci.2021112203010.7324/JAPS.2021.110804
    [Google Scholar]
  85. BlandoF. MarchelloS. MaioranoG. DuranteM. SignoreA. LausM.N. SoccioM. MitaG. Bioactive compounds and antioxidant capacity in anthocyanin-rich carrots: A comparison between the black carrot and the apulian landrace “polignano” carrot.Plants202110356410.3390/plants1003056433802658
    [Google Scholar]
  86. PetroniK. TrineiM. FornariM. CalvenzaniV. MarinelliA. MicheliL.A. PiluR. MatrosA. MockH.P. TonelliC. GiorgioM. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice.Nutr. Metab. Cardiovasc. Dis.201727546246910.1016/j.numecd.2017.02.00228428026
    [Google Scholar]
  87. ZhangM. MaJ. BiH. SongJ. YangH. XiaZ. DuY. GaoT. WeiL. Characterization and cardioprotective activity of anthocyanins from Nitraria tangutorum Bobr. by-products.Food Funct.2017882771278210.1039/C7FO00569E28702596
    [Google Scholar]
  88. UllahR. KhanM. ShahS.A. SaeedK. KimM.O. Natural antioxidant anthocyanins-A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration.Nutrients2019116119510.3390/nu1106119531141884
    [Google Scholar]
  89. ThornthwaiteJ.T. ThibadoS.P. ThornthwaiteK.A. Bilberry anthocyanins as agents to address oxidative stress.Pathology202017918710.1016/B978‑0‑12‑815972‑9.00017‑2
    [Google Scholar]
  90. SuttisansaneeU. CharoenkiatkulS. JongruaysupB. TabtimsriS. SiriwanD. TemviriyanukulP. Mulberry fruit cultivar 'chiang mai' prevents beta-amyloid toxicity in PC12 neuronal cells and in a drosophila model of Alzheimer's disease.Molecules2020258183710.3390/molecules25081837
    [Google Scholar]
  91. El-ShiekhR.A. AshourR.M. Abd El-HaleimE.A. AhmedK.A. Abdel-SattarE. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice.Biomed. Pharmacother.202012811030310.1016/j.biopha.2020.11030332480228
    [Google Scholar]
  92. ZhangJ. WuJ. LiuF. TongL. ChenZ. ChenJ. HeH. XuR. MaY. HuangC. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review.Eur. J. Pharmacol.201985817250010.1016/j.ejphar.2019.17250031238064
    [Google Scholar]
  93. de Rus JacquetA. TimmersM. MaS.Y. ThiemeA. McCabeG.P. VestJ.H.C. LilaM.A. RochetJ.C. Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson’s disease-related symptoms.J. Ethnopharmacol.201720640842510.1016/j.jep.2017.02.02128214539
    [Google Scholar]
  94. WangL.S. StonerG.D. Anthocyanins and their role in cancer prevention.Cancer Lett.2008269228129010.1016/j.canlet.2008.05.02018571839
    [Google Scholar]
  95. HuiC. BinY. XiaopingY. LongY. ChunyeC. MantianM. WenhuaL. Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo.Nutr. Cancer20106281128113610.1080/01635581.2010.49482121058201
    [Google Scholar]
  96. SuantaiB. JantakeeK. KaewkodT. SangboonruangS. ChitovT. TragoolpuaY. Anthocyanins in red jasmine rice (Oryza sativa L.) extracts and efficacy on inhibition of herpes simplex virus, free radicals and cancer cell.Nutrients2022149140510.3390/nu14091905
    [Google Scholar]
  97. RadbehZ. AsefiN. HamishehkarH. RoufegarinejadL. PezeshkiA. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (Cornelian cherry) bioactive compounds.Biomed. Pharmacother.202012510990610.1016/j.biopha.2020.10990632106382
    [Google Scholar]
  98. JoshiR. RanaA. KumarV. KumarD. PadwadY.S. YadavS.K. GulatiA. Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities.J. Food Sci. Technol.20175471953196310.1007/s13197‑017‑2631‑728720952
    [Google Scholar]
  99. MazzoniL. GiampieriF. Alvarez SuarezJ.M. GasparriniM. MezzettiB. Forbes HernandezT.Y. BattinoM.A. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines.Food Funct.201910117103712010.1039/C9FO01721F31621765
    [Google Scholar]
  100. Céspedes-AcuñaC.L. XiaoJ. WeiZ.J. ChenL. BastiasJ.M. AvilaJ.G. Alarcon-EnosJ. Werner-NavarreteE. KuboI. Antioxidant and anti-inflammatory effects of extracts from Aristotelia chilensis in human colon cancer cells.J. Berry Res.20188427529610.3233/JBR‑180356
    [Google Scholar]
  101. ZhangH. HassanY.I. RenaudJ. LiuR. YangC. SunY. TsaoR. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models.Mol. Nutr. Food Res.20176110160092810.1002/mnfr.20160092828691370
    [Google Scholar]
  102. GonzaliS. PerataP. Anthocyanins from purple tomatoes as novel antioxidants to promote human health.Antioxidants2020910101710.3390/antiox910101733092051
    [Google Scholar]
  103. SzymanowskaU. KaraśM. ZłotekU. JakubczykA. Effect of fortification with raspberry juice on the antioxidant and potentially anti-inflammatory activity of wafers subjected to in vitro digestion.Foods202110479110.3390/foods1004079133916956
    [Google Scholar]
  104. JungS. LeeM.S. ChoiA.J. KimC.T. KimY. Anti-inflammatory effects of high hydrostatic pressure extract of mulberry (Morus alba) Fruit on LPS-Stimulated RAW264.7 cells.Molecules201924710.3390/molecules24071425
    [Google Scholar]
  105. HarlanL. MenaL.T. RamalingamL. JayarathneS. ShenC.L. Moustaid-MoussaN. Mechanisms mediating anti-inflammatory effects of delta-tocotrienol and tart cherry anthocyanins in 3T3-L1 adipocytes.Nutrients20201211335610.3390/nu12113356
    [Google Scholar]
  106. HurstR.D. LyallK.A. WellsR.W. SawyerG.M. LomiwesD. NgametuaN. HurstS.M. Daily consumption of an anthocyanin-rich extract made from new zealand blackcurrants for 5 weeks supports exercise recovery through the management of oxidative stress and inflammation: A randomized placebo controlled pilot study.Front. Nutr.202071610.3389/fnut.2020.0001632175326
    [Google Scholar]
  107. TasinovO. DinchevaI. BadjakovI. Kiselova-KanevaY. GalunskaB. NogueirasR. IvanovaD. Phytochemical composition, anti-inflammatory and er stress-reducing potential of Sambucus ebulus L. fruit extract.Plants20211011244610.3390/plants1011244634834808
    [Google Scholar]
  108. BanaeiS. MazaniM. Inhibitory effects of Ficus carica and Olea europaea on pro-inflammatory cytokines: A review.Iran. J. Basic Med. Sci.202225226827510.22038/IJBMS.2022.60954.13494
    [Google Scholar]
  109. SharmaS. ChunduriV. KumarA. KumarR. KhareP. KondepudiK.K. BishnoiM. GargM. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization.PLoS One2018134e019436710.1371/journal.pone.019436729617385
    [Google Scholar]
  110. Scientific Opinion on the re-evaluation of anthocyanins (E 163) as a food additive.EFSA J.2013114314510.2903/j.efsa.2013.3145
    [Google Scholar]
  111. YamashitaK. TagawaR. HigamiY. TokunagaE. Noninvasive and safe cell viability assay for breast cancer MCF-7 cells using natural food pigment.Biology20209822710.3390/biology908022732823990
    [Google Scholar]
  112. RoseP.M. CantrillV. BenohoudM. TidderA. RaynerC.M. BlackburnR.S. Application of anthocyanins from blackcurrant ( Ribes nigrum L.) fruit waste as renewable hair dyes.J. Agric. Food Chem.201866266790679810.1021/acs.jafc.8b0104429808681
    [Google Scholar]
  113. PriettoL. MirapalheteT.C. PintoV.Z. HoffmannJ.F. VanierN.L. LimL.T. Guerra DiasA.R. da Rosa ZavarezeE. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage.Lebensm. Wiss. Technol.20178049250010.1016/j.lwt.2017.03.006
    [Google Scholar]
  114. YongH. LiuJ. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films.Food Packag. Shelf Life20202610055010.1016/j.fpsl.2020.100550
    [Google Scholar]
  115. Akhavan MahdaviS. JafariS.M. AssadpoorE. DehnadD. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin.Int. J. Biol. Macromol.20168537938510.1016/j.ijbiomac.2016.01.01126772915
    [Google Scholar]
  116. MirzaeiM. Emam-DjomehZ. AskariG. Spray-drying microencapsulation of anthocyanins of black seedless barberry (Berberis vulgaris).J. Food Process. Preserv.20214510e1585810.1111/jfpp.15858
    [Google Scholar]
  117. Fidan-YardimciM. AkayS. SharifiF. Sevimli-GurC. OngenG. Yesil-CeliktasO. A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport.Food Chem.2019293576510.1016/j.foodchem.2019.04.08631151649
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673310694240605074429
Loading
/content/journals/cmc/10.2174/0109298673310694240605074429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test