Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Hepatitis B is still one of the most important infectious diseases among humans, which is considered a serious threat to their lives. Early diagnosis of this disease can be an effective measure in stopping the chain of transmission and treatment of the disease. In this review study, an attempt has been made to explain the use of biosensors as a fast, high-efficiency, and low-cost method in diagnosis. The biosensors prepared for hepatitis detection included DNA-based, aptamers-based, protein-based, enzyme-based, antibody-based, and polymers-based biosensors, each of which had different advantages. The results of this review showed that almost all introduced biosensors had an acceptable performance. However, we suggest that aptamers are desirable for biosensing applications because they can change their structure to properly bind to their target, are cost-effective to prepare, and are highly sensitive.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673295474240531100312
2025-06-11
2025-10-22
Loading full text...

Full text loading...

References

  1. LiX.M. ZhanZ.M. JuH.Q. ZhangS.S. Label-free electrochemical detection of short sequences related to the hepatitis B virus using 4,4′-diaminoazobenzene based on multiwalled carbon nanotube-modified GCE.Oligonucleotides200818432132810.1089/oli.2008.014318928329
    [Google Scholar]
  2. ChenJ. LiL. YinQ. ShenT. A review of epidemiology and clinical relevance of Hepatitis B virus genotypes and subgenotypes.Clin. Res. Hepatol. Gastroenterol.202347710218010.1016/j.clinre.2023.10218037479136
    [Google Scholar]
  3. SheykhhasanM. TanzadehpanahH. Ahmadieh YazdiA. MahakiH. SeyedebrahimiR. AkbariM. ManoochehriH. KalhorN. DamaP. FLVCR1-AS1 and FBXL19-AS1: Two putative lncRNA candidates in multiple human cancers.Noncoding RNA202291110.3390/ncrna901000136649030
    [Google Scholar]
  4. LinX. LianX. LuoB. HuangX.C. A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF.Inorg. Chem. Commun.202011910809510.1016/j.inoche.2020.108095
    [Google Scholar]
  5. ZhangC. LiuH. LiX. XuF. LiZ. Modularized synthetic biology enabled intelligent biosensors.Trends Biotechnol.20234181055106510.1016/j.tibtech.2023.03.00536967259
    [Google Scholar]
  6. KavitaV. DNA biosensors-a review.J. Bioeng. Biomed. Sci.20177222
    [Google Scholar]
  7. TanzadehpanahH. LotfianE. AvanA. SakiS. NobariS. MahmoodianR. SheykhhasanM. FroutaghM.H.S. GhotbaniF. JamshidiR. MahakiH. Role of SARS-COV-2 and ACE2 in the pathophysiology of peripheral vascular diseases.Biomed. Pharmacother.202316611532110.1016/j.biopha.2023.11532137597321
    [Google Scholar]
  8. YaoC.Y. FuW-L. Biosensors for hepatitis B virus detection.World J. Gastroenterol.20142035124851249210.3748/wjg.v20.i35.1248525253948
    [Google Scholar]
  9. LamontagneR.J. BaggaS. BouchardM.J. Hepatitis B virus molecular biology and pathogenesis.Hepatoma Res.20162716318610.20517/2394‑5079.2016.0528042609
    [Google Scholar]
  10. GlebeD. UrbanS. Viral and cellular determinants involved in hepadnaviral entry.World J. Gastroenterol.2007131223810.3748/wjg.v13.i1.2217206752
    [Google Scholar]
  11. HuJ. LiuK. Complete and incomplete hepatitis B virus particles: Formation, function, and application.Viruses2017935610.3390/v903005628335554
    [Google Scholar]
  12. HerrscherC. RoingeardP. BlanchardE. Hepatitis B virus entry into cells.Cells202096148610.3390/cells906148632570893
    [Google Scholar]
  13. Yashaswee Yeluri Ashwini Dudala Lahary Chunchu Priyanka Kushwaha Sudhakar Kotlapati Amrutha Guguloth GugulothA. Sai Krishna Guguloth Plant-based natural inhibitors of human liver carcinogenesis: A mechanistic overview, focusing on hepatitis B and hepatitis C viruses.Int. J. Sci. Res. Arch.20238113114910.30574/ijsra.2023.8.1.0358
    [Google Scholar]
  14. FatehiF. BinghamR.J. StockleyP.G. TwarockR. An age-structured model of hepatitis B viral infection highlights the potential of different therapeutic strategies.Sci. Rep.2022121125210.1038/s41598‑021‑04022‑z35075156
    [Google Scholar]
  15. ManoochehriH. AsadiS. TanzadehpanahH. SheykhhasanM. GhorbaniM. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients.Gene Rep.20212510141510.1016/j.genrep.2021.101415
    [Google Scholar]
  16. SarinS.K. KumarM. EslamM. GeorgeJ. Al MahtabM. AkbarS.M.F. JiaJ. TianQ. AggarwalR. MuljonoD.H. OmataM. OokaY. HanK.H. LeeH.W. JafriW. ButtA.S. ChongC.H. LimS.G. PwuR.F. ChenD.S. Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission.Lancet Gastroenterol. Hepatol.20205216722810.1016/S2468‑1253(19)30342‑531852635
    [Google Scholar]
  17. ZamaniA. SardarianK. MaghsoodA.H. FarimaniM. HajiloiiM. SaidijamM. RezaeepoorM. MahakiH. Evaluation of Toxoplasma gondii B1 gene in placental tissues of pregnant women with acute toxoplasmosis.Adv. Biomed. Res.20187111910.4103/abr.abr_58_1830211132
    [Google Scholar]
  18. RongX. AilingF. XiaodongL. JieH. MinL. Monitoring hepatitis B by using point-of-care testing: biomarkers, current technologies, and perspectives.Expert Rev. Mol. Diagn.202121219521110.1080/14737159.2021.187656533467927
    [Google Scholar]
  19. AbuN. Mohd BakhoriN. ShuebR.H. Lateral flow assay for hepatitis B detection: A review of current and new assays.Micromachines2023146123910.3390/mi1406123937374824
    [Google Scholar]
  20. GründlerP. Chemical sensors.ChemTexts.2017341610.1007/s40828‑017‑0052‑x
    [Google Scholar]
  21. MalhotraB.D. SinghalR. ChaubeyA. SharmaS.K. KumarA. Recent trends in biosensors.Curr. Appl. Phys.200552929710.1016/j.cap.2004.06.021
    [Google Scholar]
  22. FaridbodF. GanjaliM.R. LarijaniB. NorouziP. HosseiniM. Biosensors in endocrinology-review article.Iran. J. Public Health201443194104
    [Google Scholar]
  23. DamiatiS. SchusterB. Electrochemical biosensors based on S-layer proteins.Sensors2020206172110.3390/s2006172132204503
    [Google Scholar]
  24. LouB. LiuY. ShiM. ChenJ. LiK. TanY. ChenL. WuY. WangT. LiuX. JiangT. PengD. LiuZ. Aptamer-based biosensors for virus protein detection.Trends Analyt. Chem.202215711673810.1016/j.trac.2022.11673835874498
    [Google Scholar]
  25. HuY. ChenR. ChenM. AnJ. LuoM. LyuY. HuN. GuoW. LiW. LiuY. Magnetic separation and enzymatic catalysis conjugated colorimetric immunosensor for Hepatitis B surface antigen detection.Microchem. J.202116810615510.1016/j.microc.2021.106155
    [Google Scholar]
  26. LiF. FengY. DongP. TangB. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor.Biosens. Bioelectron.20102592084208810.1016/j.bios.2010.02.00420207131
    [Google Scholar]
  27. LuoX. LeeT.M.H. HsingI.M. Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid.Anal. Chem.200880197341734610.1021/ac801023618771276
    [Google Scholar]
  28. TanzadehpanahH. MahakiH. ManoochehriH. SoleimaniM. NajafiR. AS1411 aptamer improves therapeutic efficacy of PEGylated nanoliposomes loaded with gefitinib in the mice bearing CT26 colon carcinoma.J. Nanopart. Res.2022241225210.1007/s11051‑022‑05630‑0
    [Google Scholar]
  29. WangQ. WangJ. HuangY. DuY. ZhangY. CuiY. KongD. Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal.Biosens. Bioelectron.202219711373910.1016/j.bios.2021.11373934781175
    [Google Scholar]
  30. FalahiS. Rafiee-PourH.A. ZarejousheghaniM. RahimiP. JosephY. Non-coding RNA-based biosensors for early detection of liver cancer.Biomedicines20219896410.3390/biomedicines908096434440168
    [Google Scholar]
  31. KongH.Y. ByunJ. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science.Biomol. Ther.201321642343410.4062/biomolther.2013.08524404332
    [Google Scholar]
  32. FontaineN. Dauphin-DucharmeP. Confounding effects on the response of electrochemical aptamer-based biosensors.Curr. Opin. Electrochem.20234110136110.1016/j.coelec.2023.101361
    [Google Scholar]
  33. ShakooriZ. SalimianS. KharraziS. AdabiM. SaberR. Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus.Anal. Bioanal. Chem.2015407245546110.1007/s00216‑014‑8303‑925399076
    [Google Scholar]
  34. MohsinD.H. MashkourM.S. FatemiF. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus.Chem. Pap.202175127929510.1007/s11696‑020‑01292‑1
    [Google Scholar]
  35. ChoK.H. ShinD.H. OhJ. AnJ.H. LeeJ.S. JangJ. Multidimensional conductive nanofilm-based flexible aptasensor for ultrasensitive and selective HBsAg detection.ACS Appl. Mater. Interfaces20181034284122841910.1021/acsami.8b0991830080381
    [Google Scholar]
  36. MaoX. LiuS. YangC. LiuF. WangK. ChenG. Colorimetric detection of hepatitis B virus (HBV) DNA based on DNA-templated copper nanoclusters.Anal. Chim. Acta201690910110810.1016/j.aca.2016.01.00926851090
    [Google Scholar]
  37. SalimianR. ShahrokhianS. PanahiS. Enhanced electrochemical activity of a hollow carbon sphere/polyaniline-based electrochemical biosensor for HBV DNA marker detection.ACS Biomater. Sci. Eng.2019552587259410.1021/acsbiomaterials.8b0152033405764
    [Google Scholar]
  38. WangH.B. ZhongZ.T. ZhangT. ZhaoY.D. Development of dual strip biosensors based on hybridization chain reaction and microplate strategies for signal amplification of HBV-DNA detection.Sens. Actuators B Chem.202031012782910.1016/j.snb.2020.127829
    [Google Scholar]
  39. NegahdariB. DarvishiM. SaeediA.A. Gold nanoparticles and hepatitis B virus.Artif. Cells Nanomed. Biotechnol.201947145546110.1080/21691401.2018.155378630836779
    [Google Scholar]
  40. MashhadizadehM.H. TalemiR.P. Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor.Mater. Sci. Eng. C20165977378110.1016/j.msec.2015.10.08226652432
    [Google Scholar]
  41. DingC. ZhaoF. ZhangM. ZhangS. Hybridization biosensor using 2,9-dimethyl-1,10-phenantroline cobalt as electrochemical indicator for detection of hepatitis B virus DNA.Bioelectrochemistry2008721283310.1016/j.bioelechem.2007.11.00118096445
    [Google Scholar]
  42. ZhangS. TanQ. LiF. ZhangX. Hybridization biosensor using diaquabis[N-(2-pyridinylmethyl)benzamide-κ2N,O]-cadmium(II) dinitrate as a new electroactive indicator for detection of human hepatitis B virus DNA.Sens. Actuators B Chem.2007124229029610.1016/j.snb.2006.12.040
    [Google Scholar]
  43. TaoY. YiK. WangH. LiK. LiM. Metal nanoclusters combined with CRISPR-Cas12a for hepatitis B virus DNA detection.Sens. Actuators B Chem.202236113171110.1016/j.snb.2022.131711
    [Google Scholar]
  44. XiZ. GongQ. WangC. ZhengB. Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles.Sci. Rep.201881944410.1038/s41598‑018‑27792‑529930331
    [Google Scholar]
  45. KafeeroH.M. NdagireD. OcamaP. KatoC.D. WampandeE. WalusansaA. KajumbulaH. KateeteD. SendagireH. Hepatitis B virus (HBV) serological patterns among the HBsAg negative hospital attendees screened for immunization.Sci. Rep.2022121742510.1038/s41598‑022‑11535‑835523938
    [Google Scholar]
  46. ChungJ.W. KimS.D. BernhardtR. PyunJ.C. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV).Sens. Actuators B Chem.2005111-11241642210.1016/j.snb.2005.03.055
    [Google Scholar]
  47. ChoiY.H. LeeG.Y. KoH. ChangY.W. KangM.J. PyunJ.C. Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film.Biosens. Bioelectron.20145628629410.1016/j.bios.2014.01.03524518301
    [Google Scholar]
  48. WangC.F. SunX.Y. SuM. WangY.P. LvY.K. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules.Analyst202014551550156210.1039/C9AN02047K31951223
    [Google Scholar]
  49. TanZ. DongH. LiuQ. LiuH. ZhaoP. WangP. LiY. ZhangD. ZhaoZ. DongY. A label-free immunosensor based on PtPd NCs@MoS2 nanoenzymes for hepatitis B surface antigen detection.Biosens. Bioelectron.201914211155610.1016/j.bios.2019.11155631377574
    [Google Scholar]
  50. WuY. ZengL. XiongY. LengY. WangH. XiongY. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B.Talanta201818125826410.1016/j.talanta.2018.01.02629426510
    [Google Scholar]
  51. AlizadehN. HallajR. SalimiA. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification.Biosens. Bioelectron.20179418419210.1016/j.bios.2017.02.03928284078
    [Google Scholar]
  52. BodulevO.L. GribasA.V. SakharovI.Y. Microplate chemiluminescent assay for HBV DNA detection using 3-(10′-phenothiazinyl)propionic acid/N-morpholinopyridine pair as enhancer of HRP-catalyzed chemiluminescence.Anal. Biochem.2018543333610.1016/j.ab.2017.11.02629203136
    [Google Scholar]
  53. HuyT.Q. HanhN.T.H. ThuyN.T. ChungP.V. NgaP.T. TuanM.A. A novel biosensor based on serum antibody immobilization for rapid detection of viral antigens.Talanta20118627127710.1016/j.talanta.2011.09.01222063541
    [Google Scholar]
  54. LyS.Y. ChoN.S. Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor.J. Clin. Virol.2009441434710.1016/j.jcv.2008.09.00518977688
    [Google Scholar]
  55. SaffariZ. SepahiM. Ahangari-CohanR. KhoobiM. Hamidi-FardM. GhavidelA. AghasadeghiM.R. NorouzianD. A quartz crystal microbalance biosensor based on polyethylenimine-modified gold electrode to detect hepatitis B biomarker.Anal. Biochem.202366111498110.1016/j.ab.2022.11498136400147
    [Google Scholar]
  56. CaiY. YanJ. ZhuL. WangH. LuY. A rapid immunochromatographic method based on a secondary antibody-labelled magnetic nanoprobe for the detection of hepatitis B preS2 surface antigen.Biosensors2020101116110.3390/bios1011016133142715
    [Google Scholar]
  57. WangX. LiY. QuanD. WangJ. ZhangY. DuJ. PengJ. FuQ. ZhouY. JiaS. WangY. ZhanL. Detection of hepatitis B surface antigen by target-induced aggregation monitored by dynamic light scattering.Anal. Biochem.2012428211912510.1016/j.ab.2012.06.01122728957
    [Google Scholar]
  58. HallajR. MottaghiM. GhafaryZ. JalaliF. Ultrasensitive electrochemical detection of hepatitis b virus surface antigen based on hybrid nanomaterials.Microchem. J.202218210795810.1016/j.microc.2022.107958
    [Google Scholar]
  59. AlipourE. ShariatpanahiS.P. GhourchianH. PiroB. FathipourM. BoutorabiS.M. ZnoykoS.L. NikitinP.I. Designing a magnetic inductive micro-electrode for virus monitoring: Modelling and feasibility for hepatitis B virus.Mikrochim. Acta2020187846310.1007/s00604‑020‑04429‑x32686021
    [Google Scholar]
  60. WangX. LiY. WangH. FuQ. PengJ. WangY. DuJ. ZhouY. ZhanL. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma.Biosens. Bioelectron.201026240441010.1016/j.bios.2010.07.12120729056
    [Google Scholar]
  61. PerdikarisA. AlexandropoulosN. KintziosS. Development of a novel, ultra-rapid biosensor for the qualitative detection of hepatitis B virus-associated antigens and anti-HBV, based on “membrane-engineered” fibroblast cells with virus-specific antibodies and antigens.Sensors2009932176218610.3390/s9030217622574007
    [Google Scholar]
  62. SabouriS. GhourchianH. ShourianM. BoutorabiM. A gold nanoparticle-based immunosensor for the chemiluminescence detection of the hepatitis B surface antigen.Anal. Methods20146145059506610.1039/C4AY00461B
    [Google Scholar]
  63. LiuM. ZhengC. CuiM. ZhangX. YangD.P. WangX. CuiD. Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen.Mikrochim. Acta20181851045810.1007/s00604‑018‑2989‑x30218157
    [Google Scholar]
  64. BabamiriB. HallajR. SalimiA. Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe@CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads.Sens. Actuators B Chem.201825455156010.1016/j.snb.2017.07.016
    [Google Scholar]
  65. GhafaryZ. HallajR. SalimiA. AkhtariK. A novel immunosensing method based on the capture and enzymatic release of sandwich-type covalently conjugated thionine–gold nanoparticles as a new fluorescence label used for ultrasensitive detection of hepatitis B virus surface antigen.ACS Omega2019413153231533610.1021/acsomega.9b0071331572831
    [Google Scholar]
  66. YuX. LvR. MaZ. LiuZ. HaoY. LiQ. XuD. An impedance array biosensor for detection of multiple antibody–antigen interactions.Analyst2006131674575010.1039/B517148B16732363
    [Google Scholar]
  67. WiJ. JeongM.S. HongH.J. Construction and characterization of an anti-hepatitis B virus preS1 humanized antibody that binds to the essential receptor binding site.J. Microbiol. Biotechnol.20172771336134410.4014/jmb.1703.0306628478661
    [Google Scholar]
  68. QianW. YaoD. YuF. XuB. ZhouR. BaoX. LuZ. Immobilization of antibodies on ultraflat polystyrene surfaces.Clin. Chem.20004691456146310.1093/clinchem/46.9.145610973890
    [Google Scholar]
  69. ChanG.S.C. WongW.X.F. ChongF.C. Immobilization of hepatitis B antibody onto the reduced graphene oxide.J. Teknol.201577317710.11113/jt.v77.6895
    [Google Scholar]
  70. AmorimM.S. SalesM.G.F. FrascoM.F. Recent advances in virus imprinted polymers.Biosens. Bioelectron.2022X100131
    [Google Scholar]
  71. WangY. MaJ. QiuT. TangM. ZhangX. DongW. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer.Eur. J. Pharm. Sci.202116310586410.1016/j.ejps.2021.10586433965502
    [Google Scholar]
  72. LimH.J. SahaT. TeyB.T. TanW.S. HassanS.S. OoiC.W. Quartz crystal microbalance-based biosensing of hepatitis B antigen using a molecularly imprinted polydopamine film.Talanta202224912365910.1016/j.talanta.2022.12365935728452
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673295474240531100312
Loading
/content/journals/cmc/10.2174/0109298673295474240531100312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test