Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Systemic arterial hypertension is a serious chronic health problem caused by multiple factors. It is a major risk factor for Cardiovascular Diseases (CVDs), including heart failure, coronary heart disease, and myocardial infarction. Hypertension can be effectively treated with inhibitors of the Angiotensin Converting Enzyme (ACE), such as captopril, enalapril, and lisinopril. However, these drugs are associated with significant adverse reactions (, persistent coughing, skin rashes, and angioedema).

Objective

Considering the recent insights obtained by our group into the antihypertensive effect of boroxazolidones, the aim of the current contribution was to design and synthesize a series of these compounds derived from α-amino acids and evaluate them ( and ) as inhibitors of ACE and acetylcholinesterase (AChE).

Methods

The best candidates were examined for their antihypertensive activity to regulate high blood pressure in male spontaneously hypertensive rats. Although boron-containing compounds were once thought to be toxic in any medical context, they have increasingly been used as antibiotics, antiseptics, and antineoplastic agents. BXZ-His, BXZ-Lys, BXZ-Orn, BXZ-Phe, and BXZ-Pro were selected as promising ACE and AChE inhibitors. After synthesis, these molecules were tested as ACE and AChE inhibitors, finding that most were effective at micromolar concentrations. The two best candidates, BXZ-Lys and BXZ-His, were evaluated with spontaneously hypertensive rats.

Results

BXZ-Lys significantly decreased systolic, diastolic, and mean blood pressure, being more potent than a common ACE inhibitor, captopril.

Conclusion

Future research is required to elucidate the mechanism of action of this antihypertensive effect.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673310296240820070142
2024-08-30
2025-10-23
Loading full text...

Full text loading...

References

  1. Campos-NonatoI. Hernández-BarreraL. Pedroza-TobíasA. MedinaC. BarqueraS. Hypertension in Mexican adults: prevalence, diagnosis and type of treatment. Ensanut MC 2016.Salud Publica Mex.201860323324310.21149/881329746740
    [Google Scholar]
  2. HarrisonD.G. The mosaic theory revisited: Common molecular mechanisms coordinating diverse organ and cellular events in hypertension.J. Am. Soc. Hypert.20132013687410.1016/j.jash.2012.11.007
    [Google Scholar]
  3. Wagner GrauP. Fisiopatología de la hipertensión arterial: nuevos conceptos.Rev. Peru. Ginecol. Obstet.201864217518410.31403/rpgo.v64i2075
    [Google Scholar]
  4. MoncloaA.B. San MartinM.G. SotoA.T. Fisiopatologia de La hipertensión arterial.Diagnóstico Perú2015544184188
    [Google Scholar]
  5. VenturaH.O. LavieC.J. Editorial: Epidemiology and managing aspects of hypertension.Curr. Opin. Cardiol.201934432933010.1097/HCO.000000000000063131021877
    [Google Scholar]
  6. Lira CE.U.M.T. Impacto de la hipertensión arterial como factor de riesgo cardiovascular.Rev. Med. Clin. Las Condes201526215616310.1016/j.rmclc.2015.04.004
    [Google Scholar]
  7. Victoria RamosM. María Victoria RamosD. Hipertensión arterial: novedades de las guías 2018 hipertensión arterial: novedades de las guías 2018 comentario editorial.Rev. Urug. Cardiol.201928536010.29277/cardio.34.1.10
    [Google Scholar]
  8. AlcazarJ.M. OliverasA. OrteL.M. JimenezS. Hipertensión arterial esencialS.J. Nefrología al Día201611313641
    [Google Scholar]
  9. EttehadD. EmdinC.A. KiranA. AndersonS.G. CallenderT. EmbersonJ. ChalmersJ. RodgersA. RahimiK. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis.Lancet20163871002295796710.1016/S0140‑6736(15)01225‑826724178
    [Google Scholar]
  10. BundyJ.D. LiC. StuchlikP. BuX. KellyT.N. MillsK.T. HeH. ChenJ. WheltonP.K. HeJ. Systolic blood pressure reduction and risk of cardiovascular disease and mortality.JAMA Cardiol.20172777578110.1001/jamacardio.2017.142128564682
    [Google Scholar]
  11. KumarN. YinC. The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ace inhibition, and its therapeutic potential in hypertension and cardiovascular diseases.Pharmacol. Res.2018201826827910.1016/j.phrs.2018.07.006
    [Google Scholar]
  12. Nguyen Dinh CatA. TouyzR.M. A new look at the renin–angiotensin system—focusing on the vascular system.Peptides201132102141215010.1016/j.peptides.2011.09.01021945916
    [Google Scholar]
  13. FalkenhahnM. GohlkeP. PaulM. StollM. UngerT. The renin-angiotensin system in the heart and vascular wall: new therapeutic aspects.J. Cardiovasc. Pharmacol.199424Suppl. 2S6S1310.1097/00005344‑199406242‑000037898096
    [Google Scholar]
  14. CrowleyS.D. CoffmanT.M. Recent advances involving the renin-angiotensin system.Experim. Cell Res.201220121049105610.1016/j.yexcr.2012.02.023
    [Google Scholar]
  15. ArendseL.B. DanserA.H.J. PoglitschM. TouyzR.M. BurnettJ.C.Jr Llorens-CortesC. EhlersM.R. SturrockE.D. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure.Pharmacol. Rev.201971453957010.1124/pr.118.01712931537750
    [Google Scholar]
  16. Paz OcaranzaM. RiquelmeJ.A. GarcíaL. JalilJ.E. ChiongM. SantosR.A.S. LavanderoS. Counter-regulatory renin–angiotensin system in cardiovascular disease.Nat. Rev. Cardiol.2020202011612910.1038/s41569‑019‑0244‑8
    [Google Scholar]
  17. Mun’imA. AhmadI. YanuarA. MuliaK. Review of angiotensin-converting enzyme inhibitory assay: Rapid method in drug discovery of herbal plants.Pharmacogn. Rev.201711211710.4103/phrev.phrev_45_1628503045
    [Google Scholar]
  18. KoD. AziziP. KohM. ChongA. AustinP. StukelT. JackeviciusC. Comparative effectiveness of ACE inhibitors and angiotensin receptor blockers in patients with prior myocardial infarction.Open Heart201961e00101010.1136/openhrt‑2019‑00101031218004
    [Google Scholar]
  19. Rivera-JardónF.F. Castro-MorenoP. Figueroa-GuillénE.S. Gallardo-OrtízI.A. Godínez-HernándezD. Ibarra-BarajasM. AngiotensinI.I. Angiotensin II augments renal vasoconstriction via AT1 receptors in L-NAME-induced hypertensive rats.Proc. West. Pharmacol. Soc.200952474922128421
    [Google Scholar]
  20. ChenJ. WangY. YeR. WuY. XiaW. Comparison of analytical methods to assay inhibitors of angiotensin I- converting enzyme.Food Chem.201314143329333410.1016/j.foodchem.2013.06.04823993489
    [Google Scholar]
  21. BlackH.R. Evolving role of aldosterone blockers alone and in combination with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers in hypertension management: a review of mechanistic and clinical data.Am. Heart J.2004147456457210.1016/j.ahj.2003.10.03415077068
    [Google Scholar]
  22. WijesekaraI. KimS.K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry.Mar. Drugs2010841080109310.3390/md804108020479968
    [Google Scholar]
  23. MesserliF. H. BangaloreS. BavishiC. RimoldiS. F. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use?J. Am. Coll.Cardiol.201820101080109310.1016/j.jacc.2018.01.058
    [Google Scholar]
  24. LataroR.M. SilvaC.A.A. Tefé-SilvaC. PradoC.M. SalgadoH.C. Acetylcholinesterase inhibition attenuates the development of hypertension and inflammation in spontaneously hypertensive rats.Am. J. Hypertens.201528101201120810.1093/ajh/hpv01725758777
    [Google Scholar]
  25. AgrawalN. AkellaA. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro viakinin-dependent mechanisms.Indian J. Exp. Biol.2016546365369
    [Google Scholar]
  26. Alves-LopesR. NevesK.B. TouyzR.M. Muscarinic receptor type-3 in hypertension and cholinergic-adrenergic crosstalk: Genetic insights and potential for new antihypertensive targets.Can. J. Cardiol.201935555555710.1016/j.cjca.2019.02.00330954389
    [Google Scholar]
  27. SaternosH.C. AlmarghalaniD.A. GibsonH.M. MeqdadM.A. AntypasR.B. LingireddyA. AbouAlaiwiW.A. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system.Physiol. Genomics20185011910.1152/physiolgenomics.00062.201729093194
    [Google Scholar]
  28. WuS. ShiZ. WangX. RenF. XieZ. LeiL. ChenP. Activation of the cholinergic anti-inflammatory pathway attenuated angiotension II-dependent hypertension and renal injury.Front. Pharmacol.20211259368210.3389/fphar.2021.59368233815099
    [Google Scholar]
  29. OsipovA.V. AverinA.S. ShaykhutdinovaE.R. DyachenkoI.A. TsetlinV.I. UtkinY.N. The regulation of the cardiovascular system.Russian J. Bioorg. Chem.20234911810.1134/S1068162023010211
    [Google Scholar]
  30. CavalcanteG.L. FerreiraF.N. da SilvaM.T.B. SorianoR.N. FilhoA.L.M.M. ArcanjoD.D.R. SabinoJ.P.J. Acetylcholinesterase inhibition prevents alterations in cardiovascular autonomic control and gastric motility in L-NAME-induced hypertensive rats.Life Sci.202025611791510.1016/j.lfs.2020.11791532504752
    [Google Scholar]
  31. LataroR.M. SilvaM.A.B. MestrinerF.L. CauS.B.A. TostesR.C.A. SalgadoH.C. Chronic treatment with acetylcholinesterase inhibitors attenuates vascular dysfunction in spontaneously hypertensive rats.Am. J. Hypertens.201932657958710.1093/ajh/hpz03630875426
    [Google Scholar]
  32. SchondorfR. Acetylcholinesterase inhibition in the treatment of hypotension.J. Neurol. Neurosurg. Psych.20032003118710.1136/jnnp.74.9.1187
    [Google Scholar]
  33. WalterU. Studies on erythrocyte acetylcholinesterase in essential hypertension.Klin. Wochenschr.1982601685385710.1007/BF017283527132236
    [Google Scholar]
  34. Martins SilvaJ. Gorjão ClaraJ. Erythrocyte acetylcholinesterase in essential hypertension hypertension view project long term consequences o pregnancy hypertensive diseases (preclampsia, gestational hypertension) in the women and its childhood view project.J. Neural Transm.19804912713210.1007/BF01249194
    [Google Scholar]
  35. BlancoJ.H.D. GastaldiA.C. GardimC.B. AraujoJ.E. SimõesM.V. OliveiraL.F.L. CarvalhoE.E.V. SouzaH.C.D. Chronic cholinergic stimulation promotes changes in cardiovascular autonomic control in spontaneously hypertensive rats.Auton. Neurosci.20151939710310.1016/j.autneu.2015.09.00226471065
    [Google Scholar]
  36. CavalcanteG.L. BrognaraF. OliveiraL.V.C. LataroR.M. DurandM.T. de OliveiraA.P. da NóbregaA.C.L. SalgadoH.C. SabinoJ.P.J. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure.Acta Physiol. (Oxf.)20212323e1366310.1111/apha.1366333884761
    [Google Scholar]
  37. BenczeM. BorošA. BehuliakM. VavřínováA. VaněčkováI. ZichaJ. Changes in cardiovascular autonomic control induced by chronic inhibition of acetylcholinesterase during pyridostigmine or donepezil treatment of spontaneously hypertensive rats.Eur. J. Pharmacol.202497117652610.1016/j.ejphar.2024.17652638537804
    [Google Scholar]
  38. Andrade-JorgeE. Garcia-AvilaA.K. Ocampo-NestorA.L. Trujillo-FerraraJ.G. Soriano-UrsuaM.A. Advances of bioinformatics applied to development and evaluation of boron-containing compounds.Curr. Org. Chem.201822329830610.2174/1385272821666170427124336
    [Google Scholar]
  39. García-ÁvilaA.K. Farfán-GarcíaE.D. Guevara-SalazarJ.A. Trujillo-FerraraJ.G. Soriano-UrsúaM.A. Scope of translational medicine in developing boron-containing compounds for therapeutics.World J. Transl. Med.201761110.5528/wjtm.v6.i1.1
    [Google Scholar]
  40. Ocampo-NéstorA. L. Trujillo-FerraraJ. G. Abad-GarcíaA. Reyes-LópezC. Geninatti-CrichS. Soriano-UrsúaM. A. Boron’s journey: Advances in the study and application of pharmacokinetics. expert opinion on therapeutic patents.Tayl. Franc.201727220321510.1080/13543776.2017.1252750
    [Google Scholar]
  41. GarciaA.A. RayevskiA. Andrade-JorgeE. Trujillo- FerraraJ.G. Structural and biological overview of boron- containing amino acids in the medicinal chemistry field.Curr. Med. Chem.20182510.2174/092986732566618092615040330259808
    [Google Scholar]
  42. Araujo-AlvarezJ.M. Trujillo-FerraraJ.G. Ponce-FrancoD. Correa-BasurtoJ. DelgadoA. QuerejetaE. (+)-( S )-trujillon, (+)-( S )-4-(2,2-diphenyl-1,3,2-oxazabolidin-5-oxo)propionic acid, a novel glutamatergic analog, modifies the activity of globus pallidus neurons by selective NMDA receptor activation.Chirality201123642943710.1002/chir.2059418570295
    [Google Scholar]
  43. Soriano-UrsúaM.A. Farfán-GarcíaE.D. Geninatti-CrichS. Turning fear of boron toxicity into boron-containing drug design.Curr. Med. Chem.201926265005501810.2174/092986732666619032715495430919770
    [Google Scholar]
  44. Farfán-GarcíaE.D. Castillo-MendietaN.T. Ciprés-FloresF.J. Padilla-MartínezI.I. Trujillo-FerraraJ.G. Soriano-UrsúaM.A. Current Data Regarding the Structure- Toxicity Relationship of Boron-Containing Compounds. Toxicology Letters.IrelandElsevier201611512510.1016/j.toxlet.2016.06.018
    [Google Scholar]
  45. DonoiuI. MilitaruC. ObleagăO. HunterJ.M. NeamţuJ. BiţăA. ScoreiI.R. RogoveanuO.C. Effects of boron-containing compounds on cardiovascular disease risk factors – a review.J. Trace Element. Med. Biol.20182018475610.1016/j.jtemb.2018.06.003
    [Google Scholar]
  46. Soriano-UrsúaM.A. DasB.C. Trujillo-FerraraJ.G. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy.Expert Opin. Ther. Pat.201424548550010.1517/13543776.2014.881472
    [Google Scholar]
  47. López-CabreraY. Castillo-GarcíaE.L. Altamirano-EspinoJ.A. Pérez-CapistranT. Farfán-GarcíaE.D. Trujillo-FerraraJ.G. Soriano-UrsúaM.A. Profile of three boron-containing compounds on the body weight, metabolism and inflammatory markers of diabetic rats.J. Trace Elem. Med. Biol.20185042442910.1016/j.jtemb.2018.08.00930262315
    [Google Scholar]
  48. ValdezIR. Santiago-QuintanaJM. RosalezM. FarfanE. Soriano-UrsuaMA. Theoretical evaluation of bortezomib and other boron-containing compounds as inhibitors of SARS-CoV-2 main protease.ChemRxiv.2020
    [Google Scholar]
  49. Soriano-UrsúaM.A. McNaught-FloresD.A. Nieto-AlamillaG. Segura-CabreraA. Correa-BasurtoJ. Arias-MontañoJ.A. Trujillo-FerraraJ.G. Cell-based and in-silico studies on the high intrinsic activity of two boron- containing salbutamol derivatives at the human β2-adrenoceptor.Bioorg. Med. Chem.201220293394110.1016/j.bmc.2011.11.05422182578
    [Google Scholar]
  50. Pérez-RodríguezM. García-MendozaE. Farfán-GarcíaE.D. DasB.C. Ciprés-FloresF.J. Trujillo-FerraraJ.G. Tamay-CachF. Soriano-UrsúaM.A. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine.Neurotoxicology201762929910.1016/j.neuro.2017.06.00428595910
    [Google Scholar]
  51. Soriano-UrsúaM.A. Mancilla-PercinoT. Correa-BasurtoJ. QuerejetaE. Trujillo-FerraraJ.G. Give boron a chance: boron containing compounds reach ionotropic and metabotropic transmembrane receptors.Mini Rev. Med. Chem.201111121031103810.2174/13895571179724774321861808
    [Google Scholar]
  52. SmoumR. RubinsteinA. DembitskyV.M. SrebnikM. Boron containing compounds as protease inhibitors. Chemical reviews.Am. Chem. Soc.201220124156422010.1021/cr608202m
    [Google Scholar]
  53. Farfán-GarcíaE.D. Castillo-GarcíaE.L. Soriano-UrsúaM.A. More than boric acid: Increasing relevance of boron in medicine.World J. Transl. Med.2018711410.5528/wjtm.v7.i1.1
    [Google Scholar]
  54. Soriano-UrsúaM.A. Arias-MontañoJ.A. Correa-BasurtoJ. Hernández-MartínezC.F. López-CabreraY. Castillo-HernándezM.C. Padilla-MartínezI.I. Trujillo-FerraraJ.G. Insights on the role of boron containing moieties in the design of new potent and efficient agonists targeting the β2 adrenoceptor.Bioorg. Med. Chem. Lett.201525482082510.1016/j.bmcl.2014.12.07725592716
    [Google Scholar]
  55. RodaE. NionS. BernocchiG. CocciniT. Blood–brain barrier (BBB) toxicity and permeability assessment after L-(4-10Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.Brain Res.201415831344410.1016/j.brainres.2014.08.01525128598
    [Google Scholar]
  56. DaughertyA. RateriD. HongL. BalakrishnanA. Measuring blood pressure in mice using volume pressure recording, a tail-cuff method.J. Vis. Exp.200927129110.3791/129119488026
    [Google Scholar]
  57. KubotaY. UmegakiK. KagotaS. TanakaN. NakamuraK. KunitomoM. ShinozukaK. Evaluation of blood pressure measured by tail-cuff methods (without heating) in spontaneously hypertensive rats.Biol. Pharm. Bull.20062981756175810.1248/bpb.29.175616880638
    [Google Scholar]
  58. RochaW.A. LunzW. BaldoM.P. PimentelE.B. DantasE.M. RodriguesS.L. MillJ.G. Kinetics of cardiac and vascular remodeling by spontaneously hypertensive rats after discontinuation of long-term captopril treatment.Braz. J. Med. Biol. Res.201043439039610.1590/S0100‑879X201000750002320379690
    [Google Scholar]
  59. NateshR. SchwagerS.L.U. SturrockE.D. AcharyaK.R. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex.Nature2003421692255155410.1038/nature0137012540854
    [Google Scholar]
  60. RiordanJ.F. Angiotensin-I-converting enzyme and its relatives.Genome Biol.20034822510.1186/gb‑2003‑4‑8‑225
    [Google Scholar]
  61. VaškůA. SoučekM. ZnojilV. ŘiháčekI. TschöplováS. StřelcováL. CídlK. BlažkováM. HájekD. HolláL. VáchaJ. Angiotensin I-converting enzyme and angiotensinogen gene interaction and prediction of essential hypertension. Kidney International.Nature Publishing Group1998Vol. 531479148210.1046/j.1523‑1755.1998.00924.x
    [Google Scholar]
  62. SentandreuM. ToldráF. A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme.Food Chem.200697354655410.1016/j.foodchem.2005.06.006
    [Google Scholar]
  63. HooperN.M. Angiotensin I-converting enzyme (ACE).xPharm: The comprehensive pharmacology referenceElsevier200710.1016/B978‑008055232‑3.60552‑5
    [Google Scholar]
  64. GeorgiadisD. BeauF. CzarnyB. CottonJ. YiotakisA. DiveV. Roles of the two active sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin: insights from selective inhibitors.Circ. Res.200393214815410.1161/01.RES.0000081593.33848.FC12805239
    [Google Scholar]
  65. HaleT.M. RobertsonS.J. BurnsK.D. DeBloisD. Short-term ACE inhibition confers long-term protection against target organ damage.Hypert. Res.201235660461010.1038/hr.2012.2
    [Google Scholar]
  66. MiguelM. MansoM. AleixandreA. AlonsoM.J. SalaicesM. López-FandiñoR. Vascular effects, angiotensin I-converting enzyme (ACE)-inhibitory activity, and antihypertensive properties of peptides derived from egg white.J. Agric. Food Chem.20075526106151062110.1021/jf072307o18047278
    [Google Scholar]
  67. MiguelM. López-FandiñoR. RamosM. AleixandreA. Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats.Br. J. Nutr.200594573173710.1079/BJN2005157016277776
    [Google Scholar]
  68. RasslerB. HawlitschekC. BrendelJ. ZimmerH. G. How do young and old spontaneously hypertensive rats respond to antihypertensive therapy? comparative studies on the effects of combined captopril and nifedipine treatment.Biomedicines20221012305910.3390/biomedicines10123059
    [Google Scholar]
  69. HawlitschekC. BrendelJ. GabrielP. SchierleK. SalamehA. ZimmerH.G. RasslerB. Antihypertensive and cardioprotective effects of different monotherapies and combination therapies in young spontaneously hypertensive rats – a pilot study.Saudi J. Biol. Sci.202229133934510.1016/j.sjbs.2021.08.09335002427
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673310296240820070142
Loading
/content/journals/cmc/10.2174/0109298673310296240820070142
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ACE inhibitor; AChE inhibitor; boron; boroxazolidones; Hypertension; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test