Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. With an increasing number of patients, NAFLD has been identified as a risk factor for Hepatocellular Carcinoma (HCC). The precise pathophysiology of NAFLD-related HCC has not been completely understood recently.

Objective

We analyzed the hub genes related to NAFLD and HCC to predict the risk of NAFLD progressing to HCC.

Methods

Two datasets of NAFLD were used to identify differentially expressed genes. Lasso-Cox regression analysis was performed to determine a gene model to predict the risk of the progression from NAFLD to HCC. Three validation datasets were analyzed to evaluate the performance of the gene model, including normal and NAFLD with fibrosis, NAFLD with fibrosis and NAFLD-related HCC, and normal and NASH-related HCC.

Results

Seven genes, including COL1A1, TIPM1, VCAN, FOS, CD79A, CXCL9, and VWF, were identified as the hub genes, and then a gene model was constructed. By calculating, the area under the receiver operating characteristic curves (AUCs) for risk prediction were 0.97, 0.886, and 0.751 in the three validation datasets, respectively. Gene set enrichment analysis indicated that the MAPK, TGFβ, p53, PPAR, insulin signaling pathways, and fatty acid metabolism were significantly upregulated in the high-risk group. GTPase activity and intrinsic apoptotic signaling pathway had significant upregulation in the low-risk group.

Conclusion

The seven hub genes may predict the risk of NAFLD developing into HCC by mediating the potential molecular mechanism, which could be used as biomarkers for predicting the progression, diagnosis, and treatment of NAFLD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673288887240212065116
2024-02-21
2025-10-23
Loading full text...

Full text loading...

References

  1. YounossiZ. AnsteeQ.M. MariettiM. HardyT. HenryL. EslamM. GeorgeJ. BugianesiE. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.2018151112010.1038/nrgastro.2017.10928930295
    [Google Scholar]
  2. SantilliF. D’ArdesD. GuagnanoM.T. DavìG. Metabolic syndrome: Sex-related cardiovascular risk and therapeutic approach.Curr. Med. Chem.201724242602262728699503
    [Google Scholar]
  3. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.2843126707365
    [Google Scholar]
  4. LeM.H. YeoY.H. LiX. LiJ. ZouB. WuY. YeQ. HuangD.Q. ZhaoC. ZhangJ. LiuC. ChangN. XingF. YanS. WanZ.H. TangN.S.Y. MayumiM. LiuX. LiuC. RuiF. YangH. YangY. JinR. LeR.H.X. XuY. LeD.M. BarnettS. StaveC.D. CheungR. ZhuQ. NguyenM.H. 2019 global NAFLD prevalence: A systematic review and meta-analysis.Clin. Gastroenterol. Hepatol.202220122809281710.1016/j.cgh.2021.12.00234890795
    [Google Scholar]
  5. YounossiZ.M. GolabiP. PaikJ.M. HenryA. Van DongenC. HenryL. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review.Hepatology20237741335134710.1097/HEP.000000000000000436626630
    [Google Scholar]
  6. Méndez-SánchezN. Chávez-TapiaN.C. Zamora-ValdésD. Medina-SantillánR. UribeM. Hepatobiliary diseases and insulin resistance.Curr. Med. Chem.200714181988199910.2174/09298670778136854017691941
    [Google Scholar]
  7. TackeF. WeiskirchenR. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: Mechanisms, treatment and prevention.Ann. Transl. Med.20219872910.21037/atm‑20‑435433987427
    [Google Scholar]
  8. KleinerD.E. MakhloufH.R. Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children.Clin. Liver Dis.201620229331210.1016/j.cld.2015.10.01127063270
    [Google Scholar]
  9. AnsteeQ.M. ReevesH.L. KotsilitiE. GovaereO. HeikenwalderM. From NASH to HCC: Current concepts and future challenges.Nat. Rev. Gastroenterol. Hepatol.201916741142810.1038/s41575‑019‑0145‑731028350
    [Google Scholar]
  10. HuangD.Q. El-SeragH.B. LoombaR. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.202118422323810.1038/s41575‑020‑00381‑633349658
    [Google Scholar]
  11. ShahP.A. PatilR. HarrisonS.A. NAFLD-related hepatocellular carcinoma: The growing challenge.Hepatology202377132333810.1002/hep.3254235478412
    [Google Scholar]
  12. TaylorR.S. TaylorR.J. BaylissS. HagströmH. NasrP. SchattenbergJ.M. IshigamiM. ToyodaH. Wai-Sun WongV. PelegN. ShlomaiA. SebastianiG. SekoY. BhalaN. YounossiZ.M. AnsteeQ.M. McPhersonS. NewsomeP.N. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis.Gastroenterology202015861611162510.1053/j.gastro.2020.01.04332027911
    [Google Scholar]
  13. HagströmH. NasrP. EkstedtM. HammarU. StålP. HultcrantzR. KechagiasS. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD.J. Hepatol.20176761265127310.1016/j.jhep.2017.07.02728803953
    [Google Scholar]
  14. HuangD.Q. SingalA.G. KanwalF. LamperticoP. ButiM. SirlinC.B. NguyenM.H. LoombaR. Hepatocellular carcinoma surveillance - utilization, barriers and the impact of changing aetiology.Nat. Rev. Gastro. Hepat202379780910.1038/s41575‑023‑00818‑8
    [Google Scholar]
  15. IoannouG.N. Epidemiology and risk-stratification of NAFLD-associated HCC.J. Hepatol.20217561476148410.1016/j.jhep.2021.08.01234453963
    [Google Scholar]
  16. HarrisonS.A. AllenA.M. DubourgJ. NoureddinM. AlkhouriN. Challenges and opportunities in NASH drug development.Nat. Med.202329356257310.1038/s41591‑023‑02242‑636894650
    [Google Scholar]
  17. StefanN. HäringH.U. CusiK. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies.Lancet Diabetes Endocrinol.20197431332410.1016/S2213‑8587(18)30154‑230174213
    [Google Scholar]
  18. RinellaM.E. Neuschwander-TetriB.A. SiddiquiM.S. AbdelmalekM.F. CaldwellS. BarbD. KleinerD.E. LoombaR. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease.Hepatology20237751797183510.1097/HEP.000000000000032336727674
    [Google Scholar]
  19. TincopaM.A. LoombaR. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.Lancet Gastroenterol. Hepatol.20238766067010.1016/S2468‑1253(23)00066‑337060912
    [Google Scholar]
  20. CasteraL. Friedrich-RustM. LoombaR. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease.Gastroenterology201915651264128110.1053/j.gastro.2018.12.03630660725
    [Google Scholar]
  21. SelvarajE.A. MózesF.E. JayaswalA.N.A. ZafarmandM.H. ValiY. LeeJ.A. LevickC.K. YoungL.A.J. PalaniyappanN. LiuC.H. AithalG.P. Romero-GómezM. BrosnanM.J. TuthillT.A. AnsteeQ.M. NeubauerS. HarrisonS.A. BossuytP.M. PavlidesM. AnsteeQ. DalyA. JohnsonK. GovaereO. CockellS. TiniakosD. BedossaP. OakleyF. CordellH. DayC. WondersK. BossuytP. ZafarmandH. ValiY. LeeJ. RatziuV. ClementK. PaisR. SchuppanD. SchattenbergJ. Vidal-PuigT. VaccaM. Rodrigues-CuencaS. AllisonM. KamzolasI. PetsalakiE. OresicM. HyötyläinenT. McGlincheyA. MatoJ.M. MilletO. DufourJ-F. BerzigottiA. PavlidesM. HarrisonS. NeubauerS. CobboldJ. MozesF. AkhtarS. BanerjeeR. KellyM. ShumbayawondaE. DennisA. ErpicumC. Romero-GómezM. Gómez-GonzálezE. AmpueroJ. CastellJ. Gallego-DuránR. FernándezI. Montero-VallejoR. KarsdalM. ErhardtsenE. RasmussenD. LeemingD.J. FiskerM.J. SinisiA. MusaK. BetsouF. SandtE. ToniniM. BugianesiE. RossoC. ArmandiA. MarraF. GastaldelliA. SvegliatiG. BoursierJ. FrancqueS. VonghiaL. EkstedtM. KechagiasS. Yki-JarvinenH. LuukkonenP. van MilS. PapatheodoridisG. Cortez-PintoH. ValentiL. PettaS. MieleL. GeierA. TrautweinC. AithalG. HockingsP. NewsomeP. WennD. Pereira RodriguesC.M. ChaumatP. HanfR. TrylesinskiA. OrtizP. DuffinK. BrosnanJ. TuthillT. McLeodE. ErtleJ. YounesR. OstroffR. AlexanderL. KjærM.S. MikkelsenL.F. BalpM-M. BrassC. JenningsL. MarticM. LoefflerJ. HanauerG. ShankarS. FournierC. PepinK. EhmanR. MyersJ. HoG. TorstensonR. MyersR. DowardL. LITMUS Investigators Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis.J. Hepatol.202175477078510.1016/j.jhep.2021.04.04433991635
    [Google Scholar]
  22. RasmussenD.G.K. AnsteeQ.M. TorstensonR. GoldingB. PattersonS.D. BrassC. ThakkerP. HarrisonS. BillinA.N. SchuppanD. DufourJ.F. AnderssonA. WigleyI. ShumbayawondaE. DennisA. SchoelchC. RatziuV. YunisC. BossuytP. KarsdalM.A. NAFLD and NASH biomarker qualification in the LITMUS consortium–Lessons learned.J. Hepatol.202378485286510.1016/j.jhep.2022.11.02836526000
    [Google Scholar]
  23. ZengT. ChenG. QiaoX. ChenH. SunL. MaQ. LiN. WangJ. DaiC. XuF. NUSAP1 could be a potential target for preventing nafld progression to liver cancer.Front. Pharmacol.20221382314010.3389/fphar.2022.82314035431924
    [Google Scholar]
  24. MengQ. LiX. XiongX. Identification of hub genes associated with non-alcoholic steatohepatitis using integrated bioinformatics analysis.Front. Genet.20221387251810.3389/fgene.2022.87251835559030
    [Google Scholar]
  25. FujiwaraN. KubotaN. CrouchetE. KoneruB. MarquezC.A. JajoriyaA.K. PandaG. QianT. ZhuS. GoossensN. WangX. LiangS. ZhongZ. LewisS. TaouliB. SchwartzM.E. FielM.I. SingalA.G. MarreroJ.A. FobarA.J. ParikhN.D. RamanI. LiQ.Z. TaguriM. OnoA. AikataH. NakaharaT. NakagawaH. MatsushitaY. TateishiR. KoikeK. KobayashiM. HigashiT. NakagawaS. YamashitaY. BeppuT. BabaH. KumadaH. ChayamaK. BaumertT.F. HoshidaY. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease.Sci. Transl. Med.202214650eabo447410.1126/scitranslmed.abo447435731891
    [Google Scholar]
  26. LeungH. LongX. NiY. QianL. NychasE. SiliceoS.L. PohlD. HanhinevaK. LiuY. XuA. NielsenH.B. BeldaE. ClémentK. LoombaR. LiH. JiaW. PanagiotouG. Risk assessment with gut microbiome and metabolite markers in NAFLD development.Sci. Transl. Med.202214648eabk085510.1126/scitranslmed.abk085535675435
    [Google Scholar]
  27. MahmoudiA. ButlerA.E. OrekhovA.N. JamialahmadiT. SahebkarA. Statins as a potential treatment for non-alcoholic fatty liver disease: Target deconvolution using protein-protein interaction network analysis.Curr. Med. Chem.20233137644746
    [Google Scholar]
  28. MahmoudiA. ButlerA.E. De VincentisA. JamialahmadiT. SahebkarA. Microarray-based detection of critical overexpressed genes in the progression of hepatic fibrosis in non-alcoholic fatty liver disease: A protein-protein interaction network analysis.Curr. Med. Chem.20233037194229
    [Google Scholar]
  29. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  30. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  31. GustavssonE.K. ZhangD. ReynoldsR.H. Garcia-RuizS. RytenM. ggtranscript : An R package for the visualization and interpretation of transcript isoforms using ggplot2.Bioinformatics202238153844384610.1093/bioinformatics/btac40935751589
    [Google Scholar]
  32. Gene OntologyC. Gene Ontology Consortium Gene ontology consortium: Going forward.Nucleic Acids Res.201543D1D1049D105610.1093/nar/gku117925428369
    [Google Scholar]
  33. KanehisaM. SatoY. KawashimaM. FurumichiM. TanabeM. KEGG as a reference resource for gene and protein annotation.Nucleic Acids Res.201644D1D457D46210.1093/nar/gkv107026476454
    [Google Scholar]
  34. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  35. OtasekD. MorrisJ.H. BouçasJ. PicoA.R. DemchakB. Cytoscape automation: Empowering workflow-based network analysis.Genome Biol.201920118510.1186/s13059‑019‑1758‑431477170
    [Google Scholar]
  36. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx24728407145
    [Google Scholar]
  37. EngebretsenS. BohlinJ. Statistical predictions with glmnet.Clin. Epigenetics201911112310.1186/s13148‑019‑0730‑131443682
    [Google Scholar]
  38. WuT.Z. HuE.Q. XuS.B. ChenM.J. GuoP.F. DaiZ.H. FengT.Z. ZhouL. TangW.L. ZhanL. FuX.C. LiuS.S. BoX.C. YuG.C. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation-Amsterdam202123100141
    [Google Scholar]
  39. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  40. EstesC. RazaviH. LoombaR. YounossiZ. SanyalA.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.Hepatology201867112313310.1002/hep.2946628802062
    [Google Scholar]
  41. TangS. MaoX. ChenY. YanL. YeL. LiS. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death.Front. Immunol.20221387023910.3389/fimmu.2022.87023935572532
    [Google Scholar]
  42. DuD. LiuC. QinM. ZhangX. XiT. YuanS. HaoH. XiongJ. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma.Acta Pharm. Sin. B202212255858010.1016/j.apsb.2021.09.01935256934
    [Google Scholar]
  43. ZhangX. FanL. WuJ. XuH. LeungW.Y. FuK. WuJ. LiuK. ManK. YangX. HanJ. RenJ. YuJ. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization.J. Hepatol.201971116317410.1016/j.jhep.2019.03.01430914267
    [Google Scholar]
  44. FangZ.Q. XuH. DuanJ.L. RuanB. LiuJ.J. SongP. DingJ. XuC. LiZ.W. DouK.F. WangL. Short-term tamoxifen administration improves hepatic steatosis and glucose intolerance through JNK/MAPK in mice.Signal Transduct Tar.20238194
    [Google Scholar]
  45. TakamuraS. TerakiY. KatayamaE. KawaguchiT. KawaguchiM. NakanoD. TsutsumiT. NagoshiS. NakamaT. TorimuraT. Effects of interleukin-17 inhibitors on hepatic fibrosis index in patients with psoriasis and metabolic dysfunction-associated fatty liver disease: Directed acyclic graphs.Clin. Mol. Hepatol.202228226927210.3350/cmh.2022.004035164434
    [Google Scholar]
  46. LeiH. MaY. TanJ. LiuQ. Helicobacter pylori regulates the apoptosis of human megakaryocyte cells via NF-κB/IL-17 signaling.OncoTargets Ther.2021142065207410.2147/OTT.S26805633776453
    [Google Scholar]
  47. PulliB. AliM. IwamotoY. ZellerM.W.G. SchobS. LinnoilaJ.J. ChenJ.W. Myeloperoxidase–hepatocyte–stellate cell cross talk promotes hepatocyte injury and fibrosis in experimental nonalcoholic steatohepatitis.Antioxid. Redox Signal.201523161255126910.1089/ars.2014.610826058518
    [Google Scholar]
  48. Junior LaiY.S. NguyenH.T. SalmanidaF.P. ChangK.T. MERTK(+/hi) M2c macrophages induced by baicalin alleviate non-alcoholic fatty liver disease.Int. J. Mol. Sci.2021221910604
    [Google Scholar]
  49. BalogS. FujiwaraR. PanS.Q. El-BaradieK.B. ChoiH.Y. SinhaS. YangQ. AsahinaK. ChenY. LiM. SalomonM. NgS.W.K. TsukamotoH. Emergence of highly profibrotic and proinflammatory Lrat + Fbln2 + HSC subpopulation in alcoholic hepatitis.Hepatology202378121222410.1002/hep.3279336181700
    [Google Scholar]
  50. JustoB.L. JasiulionisM.G. Characteristics of TIMP1, CD63, and β1-Integrin and the functional impact of their interaction in cancer.Int. J. Mol. Sci.20212217931910.3390/ijms2217931934502227
    [Google Scholar]
  51. WangL. WangJ. ChenL. TIMP1 represses sorafenib-triggered ferroptosis in colorectal cancer cells by activating the PI3K/Akt signaling pathway.Immunopharmacol. Immunotoxicol.202345441942510.1080/08923973.2022.216073136541209
    [Google Scholar]
  52. MeissburgerB. StachorskiL. RöderE. RudofskyG. WolfrumC. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans.Diabetologia20115461468147910.1007/s00125‑011‑2093‑921437772
    [Google Scholar]
  53. WangK. LinB. BremsJ.J. GamelliR.L. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway.Apoptosis201318556657710.1007/s10495‑013‑0827‑523456624
    [Google Scholar]
  54. EguchiA. IwasaM. SugimotoR. TempakuM. YoshikawaK. YoshizawaN. PoveroD. SugimotoK. HasegawaH. TakeiY. NakagawaH. Complement complex 1 subunit q-mediated hepatic stellate cell activation with connective tissue growth factor elevation is a prognostic factor for survival in rat and human chronic liver diseases.Hepatol. Commun.20226123515352710.1002/hep4.209736199236
    [Google Scholar]
  55. AyeshaM. MajidA. ZhaoD. GreenawayF.T. YanN. LiuQ. LiuS. SunM.Z. MiR-4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A.J. Adv. Res.20223614716110.1016/j.jare.2021.05.00335127170
    [Google Scholar]
  56. FengJ. LiY. LiY. YinQ. LiH. LiJ. ZhouB. MengJ. LianH. WuM. LiY. DouK. SongW. LuB. LiuL. HuS. NieY. Versican promotes cardiomyocyte proliferation and cardiac repair.Circulation202310.1161/CIRCULATIONAHA.123.06629837886839
    [Google Scholar]
  57. HanC.Y. KangI. HartenI.A. GebeJ.A. ChanC.K. OmerM. AlongeK.M. den HartighL.J. Gomes KjerulfD. GoodspeedL. SubramanianS. WangS. KimF. BirkD.E. WightT.N. ChaitA. Adipocyte-derived versican and macrophage-derived biglycan control adipose tissue inflammation in obesity.Cell Rep.2020311310781810.1016/j.celrep.2020.10781832610121
    [Google Scholar]
  58. BukongT.N. MauriceS.B. ChahalB. SchaefferD.F. WinwoodP.J. Versican: A novel modulator of hepatic fibrosis.Lab. Invest.201696336137410.1038/labinvest.2015.15226752747
    [Google Scholar]
  59. WilliamsK.J. TabasI. The response-to-retention hypothesis of atherogenesis reinforced.Curr. Opin. Lipidol.19989547147410.1097/00041433‑199810000‑000129812202
    [Google Scholar]
  60. Llorente-CortésV. Otero-ViñasM. Hurt-CamejoE. Martínez-GonzálezJ. BadimonL. Human coronary smooth muscle cells internalize versican-modified LDL through LDL receptor-related protein and LDL receptors.Arterioscler. Thromb. Vasc. Biol.200222338739310.1161/hq0302.10536711884279
    [Google Scholar]
  61. IslamS. WatanabeH. Versican: A dynamic regulator of the extracellular matrix.J. Histochem. Cytochem.2020681176377510.1369/002215542095392233131383
    [Google Scholar]
  62. YuanM. HuX. YaoL. LiuP. JiangY. LiL. Comprehensive bioinformatics and machine learning analysis identify VCAN as a novel biomarker of hepatitis B virus-related liver fibrosis.Front. Mol. Biosci.20229101016010.3389/fmolb.2022.101016036275632
    [Google Scholar]
  63. BakiriL. HamacherR. GrañaO. Guío-CarriónA. Campos-OlivasR. MartinezL. DienesH.P. ThomsenM.K. HasenfussS.C. WagnerE.F. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.J. Exp. Med.201721451387140910.1084/jem.2016093528356389
    [Google Scholar]
  64. CaiC. ChenD.Z. TuH.X. ChenW.K. GeL.C. FuT.T. TaoY. YeS.S. LiJ. LinZ. WangX.D. XuL.M. ChenY.P. MicroRNA-29c acting on FOS plays a significant role in nonalcoholic steatohepatitis through the interleukin-17 signaling pathway.Front. Physiol.20211259744910.3389/fphys.2021.59744933927635
    [Google Scholar]
  65. ShangT. JiangT. LuT. WangH. CuiX. PanY. XuM. PeiM. DingZ. FengX. LinY. LiX. TanY. FengF. DongH. WangH. DongL. Tertiary lymphoid structures predict the prognosis and immunotherapy response of cholangiocarcinoma.Front. Immunol.202314116649710.3389/fimmu.2023.116649737234171
    [Google Scholar]
  66. HofJ. VisserL. HöppenerD.J. NieropP.M.H. TerpstraM.M. GouwA.S.H. GrünhagenD.J. VerhoefC. SijmonsR.H. de JongK.P. KokK. B cells as prognostic biomarker after surgery for colorectal liver metastases.Front. Oncol.20201024910.3389/fonc.2020.0024932195184
    [Google Scholar]
  67. SubudhiS. DrescherH.K. DichtelL.E. BartschL.M. ChungR.T. HutterM.M. GeeD.W. MeirelesO.R. WitkowskiE.R. GelrudL. MasiaR. OsganianS.A. GustafsonJ.L. RwemaS. BredellaM.A. BhatiaS.N. WarrenA. MillerK.K. LauerG.M. CoreyK.E. Distinct hepatic gene-expression patterns of NAFLD in patients with obesity.Hepatol. Commun.202261778910.1002/hep4.178934558849
    [Google Scholar]
  68. YoshioS. ManoY. DoiH. ShojiH. ShimagakiT. SakamotoY. KawaiH. MatsudaM. MoriT. OsawaY. KorenagaM. SugiyamaM. MizokamiM. MitaE. KatayamaK. TanakaJ. KantoT. Cytokine and chemokine signatures associated with hepatitis B surface antigen loss in hepatitis B patients.JCI Insight2018320e12226810.1172/jci.insight.12226830333304
    [Google Scholar]
  69. Jiménez-SousaM.Á. Gómez-MorenoA.Z. Pineda-TenorD. MedranoL.M. Sánchez-RuanoJ.J. Fernández-RodríguezA. Artaza-VarasaT. Saura-MontalbanJ. Vázquez-MorónS. RyanP. ResinoS. CXCL9 - 11 polymorphisms are associated with liver fibrosis in patients with chronic hepatitis C: a cross-sectional study.Clin. Transl. Med.20176111010.1186/s40169‑017‑0156‑328755163
    [Google Scholar]
  70. MarcovecchioP.M. ThomasG. Salek-ArdakaniS. CXCL9-expressing tumor-associated macrophages: new players in the fight against cancer.J. Immunother. Cancer202192e00204510.1136/jitc‑2020‑00204533637602
    [Google Scholar]
  71. TheilmeierG. MichielsC. SpaepenE. VreysI. CollenD. VermylenJ. HoylaertsM.F. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia.Blood200299124486449310.1182/blood.V99.12.448612036879
    [Google Scholar]
  72. ChauhanA. AdamsD.H. WatsonS.P. LalorP.F. Platelets: No longer bystanders in liver disease.Hepatology20166451774178410.1002/hep.2852626934463
    [Google Scholar]
  73. YangJ. LuY. LouX. WangJ. YuH. BaoZ. WangH. Von willebrand factor deficiency improves hepatic steatosis, insulin resistance, and inflammation in mice fed high-fat diet.Obesity202028475676410.1002/oby.2274432144880
    [Google Scholar]
  74. MalehmirM. PfisterD. GallageS. SzydlowskaM. InversoD. KotsilitiE. LeoneV. PeiselerM. SurewaardB.G.J. RathD. AliA. WolfM.J. DrescherH. HealyM.E. DauchD. KroyD. KrenkelO. KohlheppM. EngleitnerT. OlkusA. SijmonsmaT. VolzJ. DeppermannC. StegnerD. HelblingP. Nombela-ArrietaC. RafieiA. HinterleitnerM. RallM. BakuF. BorstO. WilsonC.L. LeslieJ. O’ConnorT. WestonC.J. ChauhanA. AdamsD.H. SheriffL. TeijeiroA. PrinzM. BogeskaR. AnsteeN. BongersM.N. NotohamiprodjoM. GeislerT. WithersD.J. WareJ. MannD.A. AugustinH.G. VegiopoulosA. MilsomM.D. RoseA.J. LalorP.F. LlovetJ.M. PinyolR. TackeF. RadR. MatterM. DjouderN. KubesP. KnolleP.A. UngerK. ZenderL. NieswandtB. GawazM. WeberA. HeikenwalderM. Platelet GPIb alpha is a mediator and potential interventional target for NASH and subsequent liver cancer (vol 25, pg 641, 2019).Nat. Med.202228360060010.1038/s41591‑022‑01693‑735181768
    [Google Scholar]
  75. WongS.W.K. TeyS.K. MaoX. FungH.L. XiaoZ.J. WongD.K.H. MakL.Y. YuenM.F. NgI.O.L. YunJ.P. GaoY. YamJ.W.P. Small extracellular vesicle-derived vwf induces a positive feedback loop between tumor and endothelial cells to promote angiogenesis and metastasis in hepatocellular carcinoma.Adv. Sci.20231026230267710.1002/advs.20230267737387563
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673288887240212065116
Loading
/content/journals/cmc/10.2174/0109298673288887240212065116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test