Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The tumour microenvironment is a complex ecosystem comprising tumour cells, cancer stem cells, and support cells that facilitate cancer growth and escape from treatment. Cancer immunotherapy focuses on immunological pathways such as PD-1/PD-L1 and CTLA-4 to target cancer stem cells immune cells. Small molecules and immune checkpoint inhibitors are employed to impede tumour growth by targeting cellular mediators in the cell cycle and tumour microenvironment. Long non-coding RNAs (lncRNAs) affect the growth, development, motility, and differentiation of cancer cells by regulating gene expression and are therefore considered important biomarkers. Small molecules demonstrate their effects on gene expression and behaviour of cancer cells by inducing lncRNAs. This relationship between lncRNAs and small molecules is of great importance in terms of their impact on cancer and the tumour microenvironment. The evaluation of this communication in clinical trials is of critical importance for the development of therapeutic strategies. This review provides a detailed description of the role of lncRNAs and small molecules in the tumour microenvironment and their relationship with cancer stem cells. Thus, the potential of controlling lncRNAs and using anti-cancer small molecules in TME to improve the efficacy of cancer therapy was evaluated.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673318929240829065611
2024-09-09
2025-10-22
Loading full text...

Full text loading...

References

  1. YinW. WangJ. JiangL. James KangY. Cancer and stem cells.Exp. Biol. Med. (Maywood)2021246161791180110.1177/1535370221100539033820469
    [Google Scholar]
  2. BinnewiesM. RobertsE.W. KerstenK. ChanV. FearonD.F. MeradM. CoussensL.M. GabrilovichD.I. Ostrand-RosenbergS. HedrickC.C. VonderheideR.H. PittetM.J. JainR.K. ZouW. HowcroftT.K. WoodhouseE.C. WeinbergR.A. KrummelM.F. Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat. Med.201824554155010.1038/s41591‑018‑0014‑x29686425
    [Google Scholar]
  3. ArnethB. Tumor microenvironment.Medicina (Kaunas)20195611510.3390/medicina5601001531906017
    [Google Scholar]
  4. AbbottM. UstoyevY. Cancer and the immune system: The history and background of immunotherapy.Semin. Oncol. Nurs.201935515092310.1016/j.soncn.2019.08.002.
    [Google Scholar]
  5. PanX. LiC. FengJ. The role of LncRNAs in tumor immunotherapy.Cancer Cell Int.20232313010.1186/s12935‑023‑02872‑336810034
    [Google Scholar]
  6. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer.Biochimica et Biophysica Acta Rev. Can.20211875118849110.1016/j.bbcan.2020.188491.
    [Google Scholar]
  7. JiangW. XiaJ. XieS. ZouR. PanS. WangZ. AssarafY.G. ZhuX. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs.Drug Resist. Updat.20205010068310.1016/j.drup.2020.10068332146422
    [Google Scholar]
  8. ZhangH. JiangL. ZhongS. LiJ. SunD. HouJ. WangD. ZhouS. TangJ. The role of long non-coding RNAs in drug resistance of cancer.Clin. Genet.2021991849210.1111/cge.1380032583420
    [Google Scholar]
  9. Sanchez CalleA. KawamuraY. YamamotoY. TakeshitaF. OchiyaT. Emerging roles of long non-coding RNA in cancer.Cancer Sci.201810972093210010.1111/cas.1364229774630
    [Google Scholar]
  10. MallaR.R. PadmarajuV. MarniR. KamalM.A. Natural products: Potential targets of TME related long non-coding RNAs in lung cancer.Phytomedicine20219315378210.1016/j.phymed.2021.15378234627097
    [Google Scholar]
  11. SungW.J. HongJ. Targeting lncRNAs of colorectal cancers with natural products.Front. Pharmacol.202313105003210.3389/fphar.2022.105003236699052
    [Google Scholar]
  12. BorlonganM.C. SahaD. WangH. Tumor microenvironment: A niche for cancer stem cell immunotherapy.Stem Cell Rev. Rep.202420132410.1007/s12015‑023‑10639‑637861969
    [Google Scholar]
  13. SinghS. BarikD. ArukhaA.P. PrasadS. MohapatraI. SinghA. SinghG. Small molecule targeting immune cells: A novel approach for cancer treatment.Biomedicines20231110262110.3390/biomedicines1110262137892995
    [Google Scholar]
  14. MaucortC. Di GiorgioA. AzoulayS. DucaM. Differentiation of cancer stem cells by using synthetic small molecules: Toward new therapeutic strategies against therapy resistance.ChemMedChem2021161142910.1002/cmdc.20200025132803855
    [Google Scholar]
  15. WuB. ShiX. JiangM. LiuH. Cross-talk between cancer stem cells and immune cells: Potential therapeutic targets in the tumor immune microenvironment.Mol. Cancer20232213810.1186/s12943‑023‑01748‑436810098
    [Google Scholar]
  16. YangF. YangY. QiuY. TangL. XieL. GuanX. Long non-coding RNAs as regulators for targeting breast cancer stem cells and tumor immune microenvironment: Biological properties and therapeutic potential.Cancers (Basel)202416229010.3390/cancers1602029038254782
    [Google Scholar]
  17. SchwerdtfegerM. DesiderioV. KoboldS. RegadT. ZappavignaS. CaragliaM. Long non-coding RNAs in cancer stem cells.Transl. Oncol.202114810113410.1016/j.tranon.2021.10113434051619
    [Google Scholar]
  18. LamouilleS. XuJ. DerynckR. Molecular mechanisms of epithelial–mesenchymal transition.Nat. Rev. Mol. Cell Biol.201415317819610.1038/nrm375824556840
    [Google Scholar]
  19. PaduaD. MassaguéJ. Roles of TGFβ in metastasis.Cell Res.20091918910210.1038/cr.2008.31619050696
    [Google Scholar]
  20. CabarcasS.M. MathewsL.A. FarrarW.L. The cancer stem cell niche—there goes the neighborhood?Int. J. Cancer2011129102315232710.1002/ijc.2631221792897
    [Google Scholar]
  21. BuczekM.E. MilesA.K. GreenW. JohnsonC. BoocockD.J. PockleyA.G. ReesR.C. HulmanG. van SchalkwykG. ParkinsonR. HulmanJ. PoweD.G. RegadT. Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer.Oncogene201635263465347510.1038/onc.2015.40926549027
    [Google Scholar]
  22. KatsunoY. LamouilleS. DerynckR. TGF-β signaling and epithelial–mesenchymal transition in cancer progression.Curr. Opin. Oncol.2013251768410.1097/CCO.0b013e32835b637123197193
    [Google Scholar]
  23. RidgeS.M. SullivanF.J. GlynnS.A. Mesenchymal stem cells: Key players in cancer progression.Mol. Cancer20171613110.1186/s12943‑017‑0597‑828148268
    [Google Scholar]
  24. KeirM.E. ButteM.J. FreemanG.J. SharpeA.H. PD-1 and its ligands in tolerance and immunity.Annu. Rev. Immunol.200826167770410.1146/annurev.immunol.26.021607.09033118173375
    [Google Scholar]
  25. BarberD.L. WherryE.J. MasopustD. ZhuB. AllisonJ.P. SharpeA.H. FreemanG.J. AhmedR. Restoring function in exhausted CD8 T cells during chronic viral infection.Nature2006439707768268710.1038/nature0444416382236
    [Google Scholar]
  26. GordonS.R. MauteR.L. DulkenB.W. HutterG. GeorgeB.M. McCrackenM.N. GuptaR. TsaiJ.M. SinhaR. CoreyD. RingA.M. ConnollyA.J. WeissmanI.L. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity.Nature2017545765549549910.1038/nature2239628514441
    [Google Scholar]
  27. HudsonK. CrossN. Jordan-MahyN. LeylandR. The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: Implications for immunotherapy treatment.Front. Immunol.20201156893110.3389/fimmu.2020.56893133193345
    [Google Scholar]
  28. JiangW. PanS. ChenX. WangZ. ZhuX. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy.Mol. Cancer202120111610.1186/s12943‑021‑01406‑734496886
    [Google Scholar]
  29. LinX. LuX. LuoG. XiangH. Progress in PD-1/PD-L1 pathway inhibitors: From biomacromolecules to small molecules.Eur. J. Med. Chem.202018611187610.1016/j.ejmech.2019.11187631761384
    [Google Scholar]
  30. RotteA. Combination of CTLA-4 and PD-1 blockers for treatment of cancer.J. Exp. Clin. Cancer Res.201938125510.1186/s13046‑019‑1259‑z31196207
    [Google Scholar]
  31. DiasA.S. HelgueroL. AlmeidaC.R. DuarteI.F. Natural compounds as metabolic modulators of the tumor microenvironment.Molecules20212612349410.3390/molecules2612349434201298
    [Google Scholar]
  32. van der ZandenS.Y. LuimstraJ.J. NeefjesJ. BorstJ. OvaaH. Opportunities for small molecules in cancer immunotherapy.Trends Immunol.202041649351110.1016/j.it.2020.04.00432381382
    [Google Scholar]
  33. VaddepallyR.K. KharelP. PandeyR. GarjeR. ChandraA.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence.Cancers (Basel)202012373810.3390/cancers1203073832245016
    [Google Scholar]
  34. LeeJ. HanY. WangW. JoH. KimH. KimS. YangK.M. KimS.J. DhanasekaranD.N. SongY.S. Phytochemicals in cancer immune checkpoint inhibitor therapy.Biomolecules2021118110710.3390/biom1108110734439774
    [Google Scholar]
  35. LooK. GauvinG. SolimanI. RenzettiM. DengM. RossE. LuoB. WuH. ReddyS. OlszanskiA.J. FarmaJ.M. Primary tumor characteristics and next-generation sequencing mutations as biomarkers for melanoma immunotherapy response.Pigment Cell Melanoma Res.202033687888810.1111/pcmr.1290932564504
    [Google Scholar]
  36. GrabowskiM.M. SankeyE.W. RyanK.J. ChongsathidkietP. LorreyS.J. WilkinsonD.S. FecciP.E. Immune suppression in gliomas.J. Neurooncol.2021151131210.1007/s11060‑020‑03483‑y32542437
    [Google Scholar]
  37. Redondo-BlancoS. FernándezJ. López-IbáñezS. MiguélezE.M. VillarC.J. LombóF. Plant phytochemicals in food preservation: Antifungal bioactivity: A review.J. Food Prot.202083116317110.4315/0362‑028X.JFP‑19‑16331860394
    [Google Scholar]
  38. KumarR. de MooijT. PetersonT.E. KaptzanT. JohnsonA.J. DanielsD.J. ParneyI.F. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane.PLoS One2017126e017901210.1371/journal.pone.017901228666020
    [Google Scholar]
  39. JiangX. WuH. ZhaoW. DingX. YouQ. ZhuF. QianM. YuP. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells.Cancer Cell Int.20191916810.1186/s12935‑019‑0789‑y30948928
    [Google Scholar]
  40. LangcakeP. PryceR.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury.Physiol. Plant Pathol.197691778610.1016/0048‑4059(76)90077‑1
    [Google Scholar]
  41. SteelmanL.S. ChappellW.H. AbramsS.L. KempfC.R. LongJ. LaidlerP. MijatovicS. Maksimovic-IvanicD. StivalaF. MazzarinoM.C. DoniaM. FagoneP. MalaponteG. NicolettiF. LibraM. MilellaM. TafuriA. BonatiA. BäseckeJ. CoccoL. EvangelistiC. MartelliA.M. MontaltoG. CervelloM. McCubreyJ.A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging.Aging (Albany NY)20113319222210.18632/aging.10029621422497
    [Google Scholar]
  42. BhaskaraV.K. MittalB. MysorekarV.V. AmareshN. Simal-GandaraJ. Resveratrol, cancer and cancer stem cells: A review on past to future.Curr. Res. Food Sci.2020328429510.1016/j.crfs.2020.10.00433305295
    [Google Scholar]
  43. NardoneV. BarbarinoM. AngrisaniA. CorrealeP. PastinaP. CappabiancaS. ReginelliA. MuttiL. MiraccoC. GiannicolaR. GiordanoA. PirtoliL. CDK4, CDK6/cyclin-D1 complex inhibition and radiotherapy for cancer control: A role for autophagy.Int. J. Mol. Sci.20212216839110.3390/ijms2216839134445095
    [Google Scholar]
  44. SinghS.K. BanerjeeS. AcostaE.P. LillardJ.W. SinghR. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway.Oncotarget2017810172161722810.18632/oncotarget.1530328212547
    [Google Scholar]
  45. LinC.C. ChinY.T. ShihY.J. ChenY.R. ChungY.Y. LinC.Y. HsiungC.N. Whang-PengJ. LeeS.Y. LinH.Y. DavisP.J. WangK. Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells.J. Dent. Sci.201914325526210.1016/j.jds.2019.01.01331528253
    [Google Scholar]
  46. HatcherH. PlanalpR. ChoJ. TortiF.M. TortiS.V. Curcumin: From ancient medicine to current clinical trials.Cell. Mol. Life Sci.200865111631165210.1007/s00018‑008‑7452‑418324353
    [Google Scholar]
  47. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms2005103330818786
    [Google Scholar]
  48. ShehzadA. WahidF. LeeY.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials.Arch. Pharm. (Weinheim)2010343948949910.1002/ardp.20090031920726007
    [Google Scholar]
  49. FugleC.W. ZhangY. HongF. SunS. WestwaterC. RachidiS. YuH. Garret-MayerE. KirkwoodK. LiuB. LiZ. CD24 blunts oral squamous cancer development and dampens the functional expansion of myeloid-derived suppressor cells.OncoImmunology2016510e122671910.1080/2162402X.2016.122671927853649
    [Google Scholar]
  50. WeedD.T. VellaJ.L. ReisI.M. De la fuenteA.C. GomezC. SargiZ. NazarianR. CalifanoJ. BorrelloI. SerafiniP. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma.Clin. Cancer Res.2015211394810.1158/1078‑0432.CCR‑14‑171125320361
    [Google Scholar]
  51. ZandbergD.P. StromeS.E. The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck.Oral Oncol.201450762763210.1016/j.oraloncology.2014.04.00324819861
    [Google Scholar]
  52. JohnsonD.E. O’KeefeR.A. GrandisJ.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer.Nat. Rev. Clin. Oncol.201815423424810.1038/nrclinonc.2018.829405201
    [Google Scholar]
  53. LiaoF. LiuL. LuoE. HuJ. Curcumin enhances anti- tumor immune response in tongue squamous cell carcinoma.Arch. Oral Biol.201892323710.1016/j.archoralbio.2018.04.01529751146
    [Google Scholar]
  54. ShuklaS. GuptaS. Apigenin: A promising molecule for cancer prevention.Pharm. Res.201027696297810.1007/s11095‑010‑0089‑720306120
    [Google Scholar]
  55. PápayZ.E. KósaA. BöddiB. MerchantZ. SaleemI.Y. ZariwalaM.G. KlebovichI. SomavarapuS. AntalI. Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity.J. Aerosol Med. Pulm. Drug Deliv.201730427428810.1089/jamp.2016.131628282259
    [Google Scholar]
  56. WangY.C. HuangK.M. In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells.Food Chem. Toxicol.20135337638310.1016/j.fct.2012.12.01823266501
    [Google Scholar]
  57. XuL. ZhangY. TianK. ChenX. ZhangR. MuX. WuY. WangD. WangS. LiuF. WangT. ZhangJ. LiuS. ZhangY. TuC. LiuH. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects.J. Exp. Clin. Cancer Res.201837126110.1186/s13046‑018‑0929‑630373602
    [Google Scholar]
  58. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.20209249181919210.1002/cam4.141131568659
    [Google Scholar]
  59. FanP.C. ZhangY. WangY. WeiW. ZhouY.X. XieY. WangX. QiY.Z. ChangL. JiaZ.P. ZhouZ. GuanH. ZhangH. XuP. ZhouP.K. Quantitative proteomics reveals mitochondrial respiratory chain as a dominant target for carbon ion radiation: Delayed reactive oxygen species generation caused DNA damage.Free Radic. Biol. Med.201913043644510.1016/j.freeradbiomed.2018.10.44930395972
    [Google Scholar]
  60. ZulatoE. CiccareseF. AgnusdeiV. PinazzaM. NardoG. IorioE. CurtarelloM. Silic-BenussiM. RossiE. VenturoliC. PanieriE. SantoroM.M. Di PaoloV. QuintieriL. CiminaleV. IndraccoloS. LKB1 loss is associated with glutathione deficiency under oxidative stress and sensitivity of cancer cells to cytotoxic drugs and γ-irradiation.Biochem. Pharmacol.201815647949010.1016/j.bcp.2018.09.01930222967
    [Google Scholar]
  61. MaY. ChapmanJ. LevineM. PolireddyK. DriskoJ. ChenQ. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy.Sci. Transl. Med.20146222222ra1810.1126/scitranslmed.3007154
    [Google Scholar]
  62. GonzálezM.J. Miranda-MassariJ.R. MoraE.M. GuzmánA. RiordanN.H. RiordanH.D. CasciariJ.J. JacksonJ.A. Román-FrancoA. Orthomolecular oncology review: Ascorbic acid and cancer 25 years later.Integr. Cancer Ther.200541324410.1177/153473540427386115695476
    [Google Scholar]
  63. GranatoM. RizzelloC. Gilardini MontaniM.S. CuomoL. VitilloM. SantarelliR. GonnellaR. D’OraziG. FaggioniA. CironeM. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways.J. Nutr. Biochem.20174112413610.1016/j.jnutbio.2016.12.01128092744
    [Google Scholar]
  64. MukundV. MukundD. SharmaV. MannarapuM. AlamA. Genistein: Its role in metabolic diseases and cancer.Crit. Rev. Oncol. Hematol.2017119132210.1016/j.critrevonc.2017.09.00429065980
    [Google Scholar]
  65. GanaiA.A. FarooqiH. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed. Pharmacother.201576303810.1016/j.biopha.2015.10.02626653547
    [Google Scholar]
  66. ChenX. WuY. GuJ. LiangP. ShenM. XiJ. QinJ. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer.Biofactors202046462062810.1002/biof.162732078221
    [Google Scholar]
  67. SunJ. SiS. RuJ. WangX. DeepdlncU.D. DeepdlncUD: Predicting regulation types of small molecule inhibitors on modulating lncRNA expression by deep learning.Comput. Biol. Med.202316310.1016/j.compbiomed.2023.10722637450966
    [Google Scholar]
  68. XuJ. ShiA. LongZ. XuL. LiaoG. DengC. YanM. XieA. LuoT. HuangJ. XiaoY. LiX. Capturing functional long non-coding RNAs through integrating large-scale causal relations from gene perturbation experiments.EBioMedicine20183536938010.1016/j.ebiom.2018.08.05030177244
    [Google Scholar]
  69. HomayoonfalM. AsemiZ. YousefiB. Targeting long non coding RNA by natural products: Implications for cancer therapy.Crit. Rev. Food Sci. Nutr.202363204389441710.1080/10408398.2021.200178534783279
    [Google Scholar]
  70. ZhangX. WangW. ZhuW. DongJ. ChengY. YinZ. ShenF. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels.Int. J. Mol. Sci.20192022557310.3390/ijms2022557331717266
    [Google Scholar]
  71. FaticaA. BozzoniI. Long non-coding RNAs: New players in cell differentiation and development.Nat. Rev. Genet.201415172110.1038/nrg360624296535
    [Google Scholar]
  72. IyerM.K. NiknafsY.S. MalikR. SinghalU. SahuA. HosonoY. BarretteT.R. PrensnerJ.R. EvansJ.R. ZhaoS. PoliakovA. CaoX. DhanasekaranS.M. WuY.M. RobinsonD.R. BeerD.G. FengF.Y. IyerH.K. ChinnaiyanA.M. The landscape of long noncoding RNAs in the human transcriptome.Nat. Genet.201547319920810.1038/ng.319225599403
    [Google Scholar]
  73. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  74. WangG. Lee-YowY. ChangH.Y. Approaches to probe and perturb long noncoding RNA functions in diseases.Curr. Opin. Genet. Dev.20248510215810.1016/j.gde.2024.10215838412563
    [Google Scholar]
  75. PickardM. WilliamsG. Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA.Genes (Basel)20156348449910.3390/genes603048426198250
    [Google Scholar]
  76. HermanA.B. TsitsipatisD. GorospeM. Integrated lncRNA function upon genomic and epigenomic regulation.Mol. Cell202282122252226610.1016/j.molcel.2022.05.02735714586
    [Google Scholar]
  77. RinnJ.L. KerteszM. WangJ.K. SquazzoS.L. XuX. BrugmannS.A. GoodnoughL.H. HelmsJ.A. FarnhamP.J. SegalE. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.Cell2007129713112310.1016/j.cell.2007.05.022.
    [Google Scholar]
  78. TsaiM.C. ManorO. WanY. MosammaparastN. WangJ.K. LanF. ShiY. SegalE. ChangH.Y. Long noncoding RNA as modular scaffold of histone modification complexes.Science2010329599268969310.1126/science.119200220616235
    [Google Scholar]
  79. WuX.L. LuR.Y. WangL.K. WangY.Y. DaiY.J. WangC.Y. YangY.J. GuoF. XueJ. YangD.D. Long noncoding RNA HOTAIR silencing inhibits invasion and proliferation of human colon cancer LoVo cells via regulating IGF2BP2.J. Cell. Biochem.201912021221123110.1002/jcb.2707930335892
    [Google Scholar]
  80. ZhangY.F. LiC.S. ZhouY. LuX.H. Effects of propofol on colon cancer metastasis through STAT3/HOTAIR axis by activating WIF-1 and suppressing Wnt pathway.Cancer Med.2020951842185410.1002/cam4.284031953926
    [Google Scholar]
  81. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun. (Lond.)202141210912010.1002/cac2.1210833119215
    [Google Scholar]
  82. SegalD. DostieJ. The talented LncRNAs: Meshing into transcriptional regulatory networks in cancer.Cancers (Basel)20231513343310.3390/cancers1513343337444543
    [Google Scholar]
  83. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics - Challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z34145432
    [Google Scholar]
  84. LiuG. XiangT. WuQ.F. WangW.X. Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19.Oncol. Lett.20161265156516210.3892/ol.2016.535428105222
    [Google Scholar]
  85. BeaverL.M. KuintzleR. BuchananA. WileyM.W. GlasserS.T. WongC.P. JohnsonG.S. ChangJ.H. LöhrC.V. WilliamsD.E. DashwoodR.H. HendrixD.A. HoE. Long noncoding RNAs and sulforaphane: A target for chemoprevention and suppression of prostate cancer.J. Nutr. Biochem.201742728310.1016/j.jnutbio.2017.01.00128131897
    [Google Scholar]
  86. YangZ. XieQ. ChenZ. NiH. XiaL. ZhaoQ. ChenZ. ChenP. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition.Exp. Ther. Med.20191731569157830783423
    [Google Scholar]
  87. ParkE.G. PyoS.J. CuiY. YoonS.H. NamJ.W. Tumor immune microenvironment lncRNAs.Brief. Bioinform.2022231bbab50410.1093/bib/bbab50434891154
    [Google Scholar]
  88. SalamaE.A. AdbeltawabR.E. El TayebiH.M. XIST and TSIX: Novel cancer immune biomarkers in PD-L1-overexpressing breast cancer patients.Front. Oncol.20209145910.3389/fonc.2019.0145931998636
    [Google Scholar]
  89. MoY. LuY. WangP. HuangS. HeL. LiD. LiF. HuangJ. LinX. LiX. CheS. ChenQ. Long non-coding RNA XIST promotes cell growth by regulating miR-139-5p/PDK1/AKT axis in hepatocellular carcinoma.Tumour Biol.2017392101042831769099910.1177/101042831769099928231734
    [Google Scholar]
  90. WeiS. WangK. HuangX. ZhaoZ. ZhaoZ. LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis.Int. J. Immunopathol. Pharmacol.201933205873841985969910.1177/205873841985969931240979
    [Google Scholar]
  91. DangS. MalikA. ChenJ. QuJ. YinK. CuiL. GuM. LncRNA SNHG15 contributes to immuno-escape of gastric cancer through targeting miR141/PD-L1.OncoTargets Ther.2020138547855610.2147/OTT.S25162532943878
    [Google Scholar]
  92. YeJ. TanL. FuY. XuH. WenL. DengY. LiuK. LncRNA SNHG15 promotes hepatocellular carcinoma progression by sponging miR-141-3p.J. Cell. Biochem.201912012197751978310.1002/jcb.2928331310393
    [Google Scholar]
  93. LiuK. HouY. LiuY. ZhengJ. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141.J. Biomed. Sci.20172414610.1186/s12929‑017‑0353‑928720111
    [Google Scholar]
  94. XuJ. MengQ. LiX. YangH. XuJ. GaoN. SunH. WuS. FamiliariG. RelucentiM. ZhuH. WuJ. ChenR. Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p.Cancer Res.201979194882489510.1158/0008‑5472.CAN‑18‑388031409641
    [Google Scholar]
  95. ChenS. ZhuJ. WangF. GuanZ. GeY. YangX. CaiJ. LncRNAs and their role in cancer stem cells.Oncotarget201786611068511069210.18632/oncotarget.2216129299179
    [Google Scholar]
  96. DengJ. YangM. JiangR. AnN. WangX. LiuB. Long non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells.PLoS One2017121e017086010.1371/journal.pone.017086028122024
    [Google Scholar]
  97. GaoY. ZhangZ. LiK. GongL. YangQ. HuangX. HongC. DingM. YangH. Linc-DYNC2H1-4 promotes EMT and CSC phenotypes by acting as a sponge of miR-145 in pancreatic cancer cells.Cell Death Dis.201787e2924e292410.1038/cddis.2017.31128703793
    [Google Scholar]
  98. LiangW.C. FuW.M. WongC.W. WangY. WangW.M. HuG.X. ZhangL. XiaoL.J. WanD.C.C. ZhangJ.F. WayeM.M.Y. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer.Oncotarget2015626225132252510.18632/oncotarget.415426068968
    [Google Scholar]
  99. ZhouB. YuY. YuL. QueB. QiuR. Sipi soup inhibits cancer-associated fibroblast activation and the inflammatory process by downregulating long non-coding RNA HIPK1-AS.Mol. Med. Rep.20181821361136810.3892/mmr.2018.914429901171
    [Google Scholar]
  100. WangY. ChenS. ChenL. WangY. Associating lncRNAs with small molecules via bilevel optimization reveals cancer-related lncRNAs.PLOS Comput. Biol.20191512e100754010.1371/journal.pcbi.100754031877126
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673318929240829065611
Loading
/content/journals/cmc/10.2174/0109298673318929240829065611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test