Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Paclitaxel is one notable chemotherapy drug that is used to treat a number of cancers, including lung cancer. Nevertheless, it has drawbacks such as toxicity, low solubility in water, and the emergence of multidrug resistance (MDR). This article reviews the use of liposomal formulations to improve paclitaxel administration and efficacy for lung cancer therapy. Paclitaxel's pharmacological characteristics can be improved by liposomes through increased solubility, extended circulation, passive tumor targeting through leaky vasculature, and decreased side effects. Recent developments in paclitaxel liposomal formulations, including as cationic liposomes, conventional liposomes, targeted liposomes with particular ligands, and liposome-loaded microorganisms, are outlined in this article. In comparison to free paclitaxel, these nanoformulations exhibit enhanced cytotoxicity, cellular uptake, apoptosis, tumor growth suppression, and anticancer effects in lung cancer cell lines and animal models. One efficient way to get around the drawbacks of paclitaxel is to alter its size, makeup, and surface characteristics. This will let the medication accumulate and penetrate tumors more easily, avoid multidrug resistance, and cause less systemic toxicity. The article explores clinical studies showcasing the safety and therapeutic efficacy of liposomal paclitaxel for individuals afflicted with lung cancer. In its entirety, the document provides an in-depth examination of the potential enhancement in paclitaxel's dispersion and anti-tumor impacts through the utilization of liposomal technology when addressing diverse manifestations of lung cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673308951240921121345
2024-10-04
2025-09-06
Loading full text...

Full text loading...

References

  1. ChoudhuryH. MaheshwariR. PandeyM. TekadeM. GorainB. TekadeR.K. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’.Mater. Sci. Eng. C202010611027510.1016/j.msec.2019.11027531753398
    [Google Scholar]
  2. Sharifi-RadJ. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy.Oxid Med Cell Longev.20212021368770010.1155/2021/3687700
    [Google Scholar]
  3. Pereira-SilvaM. Alvarez-LorenzoC. ConcheiroA. SantosA.C. VeigaF. FigueirasA. Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies.Eur. J. Pharm. Biopharm.20201488810610.1016/j.ejpb.2019.10.01331958514
    [Google Scholar]
  4. Roma-RodriguesC. Rivas-GarcíaL. BaptistaP.V. FernandesA.R. Gene therapy in cancer treatment: Why go nano?Pharmaceutics202012323310.3390/pharmaceutics1203023332151052
    [Google Scholar]
  5. ParvathaneniV. KulkarniN.S. ShuklaS.K. FarralesP.T. KundaN.K. MuthA. GuptaV. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment.Pharmaceutics202012320610.3390/pharmaceutics1203020632121070
    [Google Scholar]
  6. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  7. GoldstrawP. CrowleyJ. ChanskyK. GirouxD.J. GroomeP.A. Rami-PortaR. PostmusP.E. RuschV. SobinL. The IASLC lung cancer staging project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours.J. Thorac. Oncol.20072870671410.1097/JTO.0b013e31812f3c1a17762336
    [Google Scholar]
  8. MidthunD.E. Early detection of lung cancer.F1000 Res.2016573910.12688/f1000research.7313.127158468
    [Google Scholar]
  9. Jiménez-LópezJ. Bravo-CaparrósI. CabezaL. NietoF.R. OrtizR. PerazzoliG. Fernández-SeguraE. CañizaresF.J. BaeyensJ.M. MelguizoC. PradosJ. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes.Biomed. Pharmacother.202113311105910.1016/j.biopha.2020.11105933378963
    [Google Scholar]
  10. JuR. ChengL. XiaoY. WangX. LiC. PengX. LiX. PTD modified paclitaxel anti-resistant liposomes for treatment of drug-resistant non-small cell lung cancer.J. Liposome Res.201828323624810.1080/08982104.2017.132754228480778
    [Google Scholar]
  11. ZappaC. MousaS.A. Non-small cell lung cancer: Current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.0727413711
    [Google Scholar]
  12. VendrellJ. Mau-ThemF. BégantonB. GodreuilS. CoopmanP. SolassolJ. Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management.Int. J. Mol. Sci.201718226410.3390/ijms1802026428146051
    [Google Scholar]
  13. SharmaP. MehtaM. DhanjalD.S. KaurS. GuptaG. SinghH. ThangaveluL. RajeshkumarS. TambuwalaM. BakshiH.A. ChellappanD.K. DuaK. SatijaS. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem. Biol. Interact.201930910872010.1016/j.cbi.2019.06.03331226287
    [Google Scholar]
  14. BarbosaM.V. MonteiroL.O.F. CarneiroG. MalaguttiA.R. VilelaJ.M.C. AndradeM.S. OliveiraM.C. Carvalho-JuniorA.D. LeiteE.A. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment.Colloids Surf. B Biointerfaces201513655356110.1016/j.colsurfb.2015.09.05526454545
    [Google Scholar]
  15. CouvreurP. VauthierC. Nanotechnology: Intelligent design to treat complex disease.Pharm. Res.20062371417145010.1007/s11095‑006‑0284‑816779701
    [Google Scholar]
  16. FerreiraD.S. LopesS.C.A. FrancoM.S. OliveiraM.C. pH-sensitive liposomes for drug delivery in cancer treatment.Ther. Deliv.2013491099112310.4155/tde.13.8024024511
    [Google Scholar]
  17. ZhouJ. ZhaoW.Y. MaX. JuR.J. LiX.Y. LiN. SunM.G. ShiJ.F. ZhangC.X. LuW.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer.Biomaterials201334143626363810.1016/j.biomaterials.2013.01.07823422592
    [Google Scholar]
  18. HarrisA.L. HochhauserD. Mechanisms of multidrug resistance in cancer treatment.Acta Oncol.199231220521310.3109/028418692090889041352455
    [Google Scholar]
  19. El-TelbanyA. MaP.C. Cancer genes in lung cancer: Racial disparities: Are there any?Genes Cancer201237-846748010.1177/194760191246517723264847
    [Google Scholar]
  20. ThiruvengadamM. Ahmed KhalilA. RaufA. AlhumaydhiF.A. AljohaniA.S.M. JavedM.S. KhanM.A. KhanI.A. El-EsawiM.A. BawazeerS. BouyahyaA. RebezovM. ShariatiM.A. Recent developments and anticancer therapeutics of paclitaxel: An update.Curr. Pharm. Des.202228413363337310.2174/138161282966622110215521236330627
    [Google Scholar]
  21. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑091625213191
    [Google Scholar]
  22. Gallego-JaraJ. Lozano-TerolG. Sola-MartínezR.A. Cánovas-DíazM. de Diego PuenteT. A compressive review about Taxol®: History and future challenges.Molecules20202524598610.3390/molecules2524598633348838
    [Google Scholar]
  23. YanL. ShenJ. WangJ. YangX. DongS. LuS. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology.Dose Response202018310.1177/155932582093616132699536
    [Google Scholar]
  24. ShahidiM. HaghiralsadatB.F. AbazariO. HematiM. DayatiP. JalianiH.Z. MotlaghN.S.H. NaghibS.M. MoradiA. HB5 aptamer-tagged graphene oxide for co-delivery of doxorubicin and silibinin, and highly effective combination therapy in breast cancer.Cancer Nanotechnol.20231415910.1186/s12645‑023‑00212‑8
    [Google Scholar]
  25. Afzal, M.; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; Aslam, M.; Anwar, F. Nanomedicine in treatment of breast cancer–A challenge to conventional therapy. In: Seminars in cancer biology, 2021, 69, pp. 279-292.10.1016/j.semcancer.2019.12.016
  26. ParvanianS. MostafaviS.M. AghashiriM. Multifunctional nanoparticle developments in cancer diagnosis and treatment.Sens. Biosensing Res.201713818710.1016/j.sbsr.2016.08.002
    [Google Scholar]
  27. DorostkarH. HaghiralsadatB.F. HematiM. SafariF. HassanpourA. NaghibS.M. RoozbahaniM.H. MozafariM.R. MoradiA. Reduction of doxorubicin-induced cardiotoxicity by co-administration of smart liposomal doxorubicin and free quercetin: In vitro and in vivo studies.Pharmaceutics2023157192010.3390/pharmaceutics1507192037514106
    [Google Scholar]
  28. de Leeuw van WeenenJ.E. AuvinenH.E. ParlevlietE.T. CoomansC.P. Schröder-van der ElstJ.P. MeijerO.C. PijlH. Blocking dopamine D2 receptors by haloperidol curtails the beneficial impact of calorie restriction on the metabolic phenotype of high-fat diet induced obese mice.J. Neuroendocrinol.201123215816710.1111/j.1365‑2826.2010.02092.x21062378
    [Google Scholar]
  29. SheikhpourM. SadeghizadehM. YazdianF. MansooriA. AsadiH. MovafaghA. ShahraeiniS.S. Co-administration of curcumin and bromocriptine nano-liposomes for induction of apoptosis in lung cancer cells.Iran. Biomed. J.2020241242910.29252/ibj.24.1.2431454860
    [Google Scholar]
  30. MaruyamaK. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.Adv. Drug Deliv. Rev.201163316116910.1016/j.addr.2010.09.00320869415
    [Google Scholar]
  31. TorchilinV. Tumor delivery of macromolecular drugs based on the EPR effect.Adv. Drug Deliv. Rev.201163313113510.1016/j.addr.2010.03.01120304019
    [Google Scholar]
  32. GasparM.M. RadomskaA. GobboO.L. BakowskyU. RadomskiM.W. EhrhardtC. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats.J. Aerosol Med. Pulm. Drug Deliv.201225631031810.1089/jamp.2011.092822857016
    [Google Scholar]
  33. TiwariG. TiwariR. BannerjeeS.K. BhatiL. PandeyS. PandeyP. SriwastawaB. Drug delivery systems: An updated review.Int. J. Pharm. Investig.20122121110.4103/2230‑973X.9692023071954
    [Google Scholar]
  34. Alvarado-LunaG. Morales-EspinosaD. Treatment for small cell lung cancer, where are we now?-a review.Transl. Lung Cancer Res.201651263826958491
    [Google Scholar]
  35. GrossiF. GridelliC. AitaM. De MarinisF. Identifying an optimum treatment strategy for patients with advanced non-small cell lung cancer.Crit. Rev. Oncol. Hematol.2008671162610.1016/j.critrevonc.2007.12.00218243728
    [Google Scholar]
  36. ScagliottiG.V. De MarinisF. RinaldiM. CrinòL. GridelliC. RicciS. MatanoE. BoniC. MarangoloM. FaillaG. AltavillaG. AdamoV. CeribelliA. ClericiM. Di CostanzoF. FrontiniL. TonatoM. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer.J. Clin. Oncol.200220214285429110.1200/JCO.2002.02.06812409326
    [Google Scholar]
  37. HarperP. MarxG.M. Combined modality treatments in early non-small cell lung cancer.Lung Cancer2002381S23S2510.1016/S0169‑5002(02)00248‑912367810
    [Google Scholar]
  38. AlaviM. NokhodchiA. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges.Drug Discov. Today202227257658410.1016/j.drudis.2021.10.00734688912
    [Google Scholar]
  39. HaddadR. AlrabadiN. AltaaniB. LiT. Paclitaxel drug delivery systems: Focus on nanocrystals’ surface modifications.Polymers (Basel)202214465810.3390/polym1404065835215570
    [Google Scholar]
  40. SzebeniJ. AlvingC.R. MuggiaF.M. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: An in vitro study.J. Natl. Cancer Inst.199890430030610.1093/jnci/90.4.3009486816
    [Google Scholar]
  41. WangH. ChengG. DuY. YeL. ChenW. ZhangL. WangT. TianJ. FuF. Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation.Mol. Med. Rep.20137394795210.3892/mmr.2013.126423291923
    [Google Scholar]
  42. ScriptureC. FiggW. SparreboomA. Peripheral neuropathy induced by paclitaxel: Recent insights and future perspectives.Curr. Neuropharmacol.20064216517210.2174/15701590677635956818615126
    [Google Scholar]
  43. LiR. LiangH. LiJ. ShaoZ. YangD. BaoJ. WangK. XiW. GaoZ. GuoR. MuX. Paclitaxel liposome (Lipusu) based chemotherapy combined with immunotherapy for advanced non-small cell lung cancer: A multicenter, retrospective real-world study.BMC Cancer202424110710.1186/s12885‑024‑11860‑338238648
    [Google Scholar]
  44. OkamotoY. TaguchiK. SakuragiM. ImotoS. YamasakiK. OtagiriM. Preparation, characterization, and in vitro/in vivo evaluation of paclitaxel-bound albumin-encapsulated liposomes for the treatment of pancreatic cancer.ACS Omega2019458693870010.1021/acsomega.9b0053731459959
    [Google Scholar]
  45. YeL. HeJ. HuZ. DongQ. WangH. FuF. TianJ. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts.Food Chem. Toxicol.20135220020610.1016/j.fct.2012.11.00423149094
    [Google Scholar]
  46. HasanbeglooK. BanihashemS. Faraji DizajiB. BybordiS. Farrokh-EslamlouN. AbadiP.G. JaziF.S. IraniM. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer.Int. J. Biol. Macromol.202323012338010.1016/j.ijbiomac.2023.12338036706885
    [Google Scholar]
  47. ZhangQ. HuangX.E. GaoL.L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors.Biomed. Pharmacother.200963860360710.1016/j.biopha.2008.10.00119019625
    [Google Scholar]
  48. HuL. LiangG. YuliangW. BingjingZ. XiangdongZ. RufuX. Assessing the effectiveness and safety of liposomal paclitaxel in combination with cisplatin as first-line chemotherapy for patients with advanced NSCLC with regional lymph-node metastasis: Study protocol for a randomized controlled trial (PLC-GC trial).Trials20131414510.1186/1745‑6215‑14‑4523413951
    [Google Scholar]
  49. CaoJ. WangR. GaoN. LiM. TianX. YangW. RuanY. ZhouC. WangG. LiuX. TangS. YuY. LiuY. SunG. PengH. WangQ. A7RC peptide modified paclitaxel liposomes dually target breast cancer.Biomater. Sci.20153121545155410.1039/C5BM00161G26291480
    [Google Scholar]
  50. StraubingerR.M. BalasubramanianS.V. Preparation and characterization of taxane-containing liposomes.Methods in enzymology.AmsterdamElsevier200597117
    [Google Scholar]
  51. ZhangZ. MeiL. FengS.S. Paclitaxel drug delivery systems.Expert Opin. Drug Deliv.201310332534010.1517/17425247.2013.75235423289542
    [Google Scholar]
  52. LiF. LuJ. LiuJ. LiangC. WangM. WangL. LiD. YaoH. ZhangQ. WenJ. ZhangZ.K. LiJ. LvQ. HeX. GuoB. GuanD. YuY. DangL. WuX. LiY. ChenG. JiangF. SunS. ZhangB.T. LuA. ZhangG. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer.Nat. Commun.201781139010.1038/s41467‑017‑01565‑629123088
    [Google Scholar]
  53. KoudelkaŠ. TuránekJ. Liposomal paclitaxel formulations.J. Control. Release2012163332233410.1016/j.jconrel.2012.09.00622989535
    [Google Scholar]
  54. TanX. LiS. ShengR. ZhangQ. LiC. LiuL. ZhangY. GeL. Biointerfacial giant capsules with high paclitaxel loading and magnetic targeting for breast tumor therapy.J. Colloid Interface Sci.20236331055106810.1016/j.jcis.2022.11.15136516681
    [Google Scholar]
  55. ChenZ. FillmoreC.M. HammermanP.S. KimC.F. WongK.K. Non-small-cell lung cancers: A heterogeneous set of diseases.Nat. Rev. Cancer201414853554610.1038/nrc377525056707
    [Google Scholar]
  56. MaQ. LiuD. GuoY. ShiB. SongZ. TianY. Surgical therapeutic strategy for non-small cell lung cancer with mediastinal lymph node metastasis (N2).Zhongguo Fei Ai Za Zhi201013434234820677562
    [Google Scholar]
  57. Carnio, S.; Novello, S.; Mele, T.; Levra, M.G.; Scagliotti, G.V. Extending survival of stage IV non-small cell lung cancer. In: Seminars in Oncology, 2014, 41(1), pp. 69-92.10.1053/j.seminoncol.2013.12.013
  58. HussainS. Nanomedicine for treatment of lung cancer.Adv. Exp. Med. Biol.20168901374710.1007/978‑3‑319‑24932‑2_8
    [Google Scholar]
  59. BedardP.L. Di LeoA. Piccart-GebhartM.J. Taxanes: Optimizing adjuvant chemotherapy for early-stage breast cancer.Nat. Rev. Clin. Oncol.201071223610.1038/nrclinonc.2009.18619997076
    [Google Scholar]
  60. A RazakS.A. Mohd GazzaliA. FisolF.A. M AbdulbaqiI. ParumasivamT. MohtarN. A WahabH. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview.Cancers (Basel)202113340010.3390/cancers1303040033499040
    [Google Scholar]
  61. HardinC. ShumE. SinghA.P. Perez-SolerR. ChengH. Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer.Expert Opin. Pharmacother.201718770171610.1080/14656566.2017.131637428388240
    [Google Scholar]
  62. JordanM.A. WilsonL. Microtubules as a target for anticancer drugs.Nat. Rev. Cancer20044425326510.1038/nrc131715057285
    [Google Scholar]
  63. ProtaA.E. BargstenK. ZurwerraD. FieldJ.J. DíazJ.F. AltmannK.H. SteinmetzM.O. Molecular mechanism of action of microtubule-stabilizing anticancer agents.Science2013339611958759010.1126/science.123058223287720
    [Google Scholar]
  64. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  65. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  66. FengL. GaiS. DaiY. HeF. SunC. YangP. LvR. NiuN. AnG. LinJ. Controllable generation of free radicals from multifunctional heat-responsive nanoplatform for targeted cancer therapy.Chem. Mater.201830252653910.1021/acs.chemmater.7b04841
    [Google Scholar]
  67. SunQ. HeF. BiH. WangZ. SunC. LiC. XuJ. YangD. WangX. GaiS. YangP. An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light.Chem. Eng. J.201936267969110.1016/j.cej.2019.01.095
    [Google Scholar]
  68. ParkY.I. KwonS.H. LeeG. MotoyamaK. KimM.W. LinM. NiidomeT. ChoiJ.H. LeeR. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer.J. Control. Release202133011410.1016/j.jconrel.2020.12.01133321157
    [Google Scholar]
  69. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.03025545217
    [Google Scholar]
  70. PillaiG. Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of development.Seman. Sch.20141.
    [Google Scholar]
  71. WangW. HaoY. LiuY. LiR. HuangD.B. PanY.Y. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021131e165410.1002/wnan.165432700465
    [Google Scholar]
  72. GarbuzenkoO.B. KuzmovA. TaratulaO. PineS.R. MinkoT. Strategy to enhance lung cancer treatment by five essential elements: Inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy.Theranostics20199268362837610.7150/thno.3981631754402
    [Google Scholar]
  73. ZhenY. EwertK.K. FisherW.S. SteffesV.M. LiY. SafinyaC.R. Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes.Sci. Rep.2021111731110.1038/s41598‑021‑86484‑933790325
    [Google Scholar]
  74. Skupin-MrugalskaP. MinkoT. Development of liposomal vesicles for osimertinib delivery to egfr mutation-Positive lung cancer cells.Pharmaceutics2020121093910.3390/pharmaceutics1210093933008019
    [Google Scholar]
  75. YangZ. GaoD. CaoZ. ZhangC. ChengD. LiuJ. ShuaiX. Drug and gene co-delivery systems for cancer treatment.Biomater. Sci.2015371035104910.1039/C4BM00369A26221938
    [Google Scholar]
  76. ZhangC. ZhangS. ZhiD. ZhaoY. CuiS. CuiJ. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy.Colloids Surf. A Physicochem. Eng. Asp.202058512405410.1016/j.colsurfa.2019.124054
    [Google Scholar]
  77. MitaA.C. MitaM.M. NawrockiS.T. GilesF.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics.Clin. Cancer Res.200814165000500510.1158/1078‑0432.CCR‑08‑074618698017
    [Google Scholar]
  78. WangJ. LuZ. YeungB.Z. WientjesM.G. ColeD.J. AuJ.L.S. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors.J. Control. Release2014178798510.1016/j.jconrel.2014.01.01224462901
    [Google Scholar]
  79. TrabuloS. CardosoA.M. Santos-FerreiraT. CardosoA.L. SimõesS. Pedroso de LimaM.C. Survivin silencing as a promising strategy to enhance the sensitivity of cancer cells to chemotherapeutic agents.Mol. Pharm.2011841120113110.1021/mp100426e21619051
    [Google Scholar]
  80. ChenX. ZhangY. TangC. TianC. SunQ. SuZ. XueL. YinY. JuC. ZhangC. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis.Int. J. Pharm.20175291-210211510.1016/j.ijpharm.2017.06.07128642204
    [Google Scholar]
  81. BogaertB. SauvageF. GuagliardoR. MunteanC. NguyenV.P. PottieE. WelsM. MinnaertA.K. De RyckeR. YangQ. PeerD. SandersN. RemautK. PaulusY.M. StoveC. De SmedtS.C. RaemdonckK. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs.J. Control. Release202235025627010.1016/j.jconrel.2022.08.00935963467
    [Google Scholar]
  82. YubaE. KadoY. KashoN. HaradaA. Cationic lipid potentiated the adjuvanticity of polysaccharide derivative-modified liposome vaccines.J. Control. Release202336276777610.1016/j.jconrel.2022.10.01636244508
    [Google Scholar]
  83. SunW. HanC. GeR. JiangX. WangY. HanY. WangN. SongY. YangM. ChenG. DengY. Sialic acid conjugate-modified cationic liposomal paclitaxel for targeted therapy of lung metastasis in breast xancer: What a difference the cation content makes.Mol. Pharm.20242141625163810.1021/acs.molpharmaceut.3c0076738403951
    [Google Scholar]
  84. EichhornM.E. IschenkoI. LuedemannS. StriethS. PapyanA. WernerA. BohnenkampH. GuenziE. PreisslerG. MichaelisU. JauchK.W. BrunsC.J. DellianM. Vascular targeting by EndoTAG™-1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer.Int. J. Cancer201012651235124510.1002/ijc.2484619697323
    [Google Scholar]
  85. PeiY. BaoY. SacchettiC. BradyJ. GillardK. YuH. RobertsS. RajappanK. TanisS.P. Perez-GarciaC.G. ChivukulaP. KarmaliP.P. Synthesis and bioactivity of readily hydrolysable novel cationic lipids for potential lung delivery application of mRNAs.Chem. Phys. Lipids202224310517810.1016/j.chemphyslip.2022.10517835122738
    [Google Scholar]
  86. WangX. LiuS. SunY. YuX. LeeS.M. ChengQ. WeiT. GongJ. RobinsonJ. ZhangD. LianX. BasakP. SiegwartD.J. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery.Nat. Protoc.202318126529110.1038/s41596‑022‑00755‑x36316378
    [Google Scholar]
  87. FasolU. FrostA. BüchertM. ArendsJ. FiedlerU. ScharrD. ScheuenpflugJ. MrossK. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis.Ann. Oncol.20122341030103610.1093/annonc/mdr30021693769
    [Google Scholar]
  88. IgnatiadisM. ZardavasD. LemortM. WilkeC. VanderbeekenM.C. D’HondtV. De AzambujaE. GombosA. LebrunF. Dal LagoL. BustinF. MaetensM. AmeyeL. VeysI. MichielsS. PaesmansM. LarsimontD. SotiriouC. NogaretJ.M. PiccartM. AwadaA. Feasibility study of EndoTAG-1, a tumor endothelial targeting agent, in combination with paclitaxel followed by FEC as induction therapy in HER2-negative breast cancer.PLoS One2016117e015400910.1371/journal.pone.015400927454930
    [Google Scholar]
  89. BodeC. TrojanL. WeissC. KraenzlinB. MichaelisU. TeifelM. AlkenP. MichelM.S. Paclitaxel encapsulated in cationic liposomes: A new option for neovascular targeting for the treatment of prostate cancer.Oncol. Rep.200922232132619578772
    [Google Scholar]
  90. StriethS. DunauC. MichaelisU. JägerL. GellrichD. WollenbergB. DellianM. Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer.Head Neck201436797698410.1002/hed.2339723733258
    [Google Scholar]
  91. AwadaA. BondarenkoI.N. BonneterreJ. NowaraE. FerreroJ.M. BakshiA.V. WilkeC. PiccartM. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC).Ann. Oncol.201425482483110.1093/annonc/mdu02524667715
    [Google Scholar]
  92. BoehmT. FolkmanJ. BrowderT. O’ReillyM.S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.Nature1997390665840440710.1038/371269389480
    [Google Scholar]
  93. DenekampJ. Endothelial cell proliferation as a novel approach to targeting tumour therapy.Br. J. Cancer198245113613910.1038/bjc.1982.167059456
    [Google Scholar]
  94. DenekampJ. The tumour microcirculation as a target in cancer therapy: A clearer perspective.Eur. J. Clin. Invest.199929973373610.1046/j.1365‑2362.1999.00558.x10469160
    [Google Scholar]
  95. ThurstonG. McLeanJ.W. RizenM. BalukP. HaskellA. MurphyT.J. HanahanD. McDonaldD.M. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice.J. Clin. Invest.199810171401141310.1172/JCI9659525983
    [Google Scholar]
  96. KnightV. KoshkinaN.V. WaldrepJ.C. GiovanellaB.C. GilbertB.E. Anticancer exffect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice.Cancer Chemother. Pharmacol.199944317718610.1007/s00280005096510453718
    [Google Scholar]
  97. KoshkinaN.V. KleinermanE.S. WaidrepC. JiaS.F. WorthL.L. GilbertB.E. KnightV. 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice.Clin. Cancer Res.2000672876288010914737
    [Google Scholar]
  98. KoshkinaN.V. WaldrepJ.C. RobertsL.E. GolunskiE. MeltonS. KnightV. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model.Clin. Cancer Res.20017103258326211595722
    [Google Scholar]
  99. HerrI. DebatinK.M. Cellular stress response and apoptosis in cancer therapy.Blood20019892603261410.1182/blood.V98.9.260311675328
    [Google Scholar]
  100. GreenD.R. Apoptotic pathways.Cell199894669569810.1016/S0092‑8674(00)81728‑69753316
    [Google Scholar]
  101. MartinouJ.C. DesagherS. AntonssonB. Cytochrome c release from mitochondria: All or nothing.Nat. Cell Biol.200023E41E4310.1038/3500406910707095
    [Google Scholar]
  102. ZimmermannK.C. BonzonC. GreenD.R. The machinery of programmed cell death.Pharmacol. Ther.2001921577010.1016/S0163‑7258(01)00159‑011750036
    [Google Scholar]
  103. NevozhayD. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases.Postepy Hig. Med. Dosw (Online)20076135060
    [Google Scholar]
  104. YaoH.J. JuR.J. WangX.X. ZhangY. LiR.J. YuY. ZhangL. LuW.L. The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery.Biomaterials201132123285330210.1016/j.biomaterials.2011.01.03821306774
    [Google Scholar]
  105. PanJ. FengS.S. Targeted delivery of paclitaxel using folate-decorated poly(lactide)–vitamin E TPGS nanoparticles.Biomaterials200829172663267210.1016/j.biomaterials.2008.02.02018396333
    [Google Scholar]
  106. GanC.W. FengS.S. Transferrin-conjugated nanoparticles of Poly(lactide)-d-α-Tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier.Biomaterials201031307748775710.1016/j.biomaterials.2010.06.05320673685
    [Google Scholar]
  107. MurphyM.P. Selective targeting of bioactive compounds to mitochondria.Trends Biotechnol.199715832633010.1016/S0167‑7799(97)01068‑89263481
    [Google Scholar]
  108. MurphyM.P. Targeting lipophilic cations to mitochondria.Biochim. Biophys. Acta Bioenerg.200817777-81028103110.1016/j.bbabio.2008.03.029
    [Google Scholar]
  109. MillardM. PathaniaD. ShabaikY. TaheriL. DengJ. NeamatiN. Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity.PLoS One2010510e1313110.1371/journal.pone.001313120957228
    [Google Scholar]
  110. YamadaY. HarashimaH. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases.Adv. Drug Deliv. Rev.20086013-141439146210.1016/j.addr.2008.04.01618655816
    [Google Scholar]
  111. AndréN. BraguerD. BrasseurG. GonçalvesA. Lemesle-MeunierD. GuiseS. JordanM.A. BriandC. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells’.Cancer Res.200060195349535311034069
    [Google Scholar]
  112. VarbiroG. VeresB. GallyasF.Jr SumegiB. Direct effect of Taxol on free radical formation and mitochondrial permeability transition.Free Radic. Biol. Med.200131454855810.1016/S0891‑5849(01)00616‑511498288
    [Google Scholar]
  113. AndréN. CarréM. BrasseurG. PourroyB. KovacicH. BriandC. BraguerD. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells.FEBS Lett.20025321-225626010.1016/S0014‑5793(02)03691‑812459501
    [Google Scholar]
  114. SurapaneniM.S. DasS.K. DasN.G. Designing paclitaxel drug delivery systems aimed at improved patient outcomes: Current status and challenges.ISRN Pharmacol.20122012201262313910.5402/2012/623139
    [Google Scholar]
  115. SinglaA.K. GargA. AggarwalD. Paclitaxel and its formulations.Int. J. Pharm.20022351-217919210.1016/S0378‑5173(01)00986‑311879753
    [Google Scholar]
  116. LiuW. LiuW. YeA. PengS. WeiF. LiuC. HanJ. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate.Food Chem.201619639640410.1016/j.foodchem.2015.09.05026593507
    [Google Scholar]
  117. SaifullahM. ShishirM.R.I. FerdowsiR. Tanver RahmanM.R. Van VuongQ. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review.Trends Food Sci. Technol.20198623025110.1016/j.tifs.2019.02.030
    [Google Scholar]
  118. ShishirM.R.I. KarimN. GowdV. XieJ. ZhengX. ChenW. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property.Food Hydrocoll.20199543244410.1016/j.foodhyd.2019.04.059
    [Google Scholar]
  119. MiaoY. ChenM. ZhouX. GuoL. ZhuJ. WangR. ZhangX. GanY. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel.Acta Pharmacol. Sin.202142101714172210.1038/s41401‑020‑00594‑033469196
    [Google Scholar]
  120. AgnolettiM. Rodríguez-RodríguezC. KłodzińskaS.N. EspositoT.V.F. SaatchiK. Mørck NielsenH. HäfeliU.O. Monosized polymeric microspheres designed for passive lung targeting: Biodistribution and pharmacokinetics after intravenous administration.ACS Nano20201466693670610.1021/acsnano.9b0977332392034
    [Google Scholar]
  121. AuK.M. MinY. TianX. ZhangL. PerelloV. CasterJ.M. WangA.Z. Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles.ACS Nano2015998976899610.1021/acsnano.5b0291326267360
    [Google Scholar]
  122. PackD.W. HoffmanA.S. PunS. StaytonP.S. Design and development of polymers for gene delivery.Nat. Rev. Drug Discov.20054758159310.1038/nrd177516052241
    [Google Scholar]
  123. MerkelO.M. BeyerleA. LibrizziD. PfestroffA. BehrT.M. SproatB. BarthP.J. KisselT. Nonviral siRNA delivery to the lung: Investigation of PEG-PEI polyplexes and their in vivo performance.Mol. Pharm.2009641246126010.1021/mp900107v19606864
    [Google Scholar]
  124. JinH. XuC-X. KimH-W. ChungY-S. ShinJ-Y. ChangS-H. ParkS-J. LeeE-S. HwangS-K. KwonJ-T. Minai-TehraniA. WooM. NohM-S. YounH-J. KimD-Y. YoonB-I. LeeK-H. KimT-H. ChoC-S. ChoM-H. Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-rasLA1 mice.Cancer Gene Ther.200815527528310.1038/sj.cgt.770111618292798
    [Google Scholar]
  125. NascimentoA.V. SinghA. BousbaaH. FerreiraD. SarmentoB. AmijiM.M. Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non-small cell lung cancer model.Mol. Pharm.201411103515352710.1021/mp500289425256346
    [Google Scholar]
  126. MuzzarelliR. BaldassarreV. ContiF. FerraraP. BiaginiG. GazzanelliG. VasiV. Biological activity of chitosan: Ultrastructural study.Biomaterials19889324725210.1016/0142‑9612(88)90092‑03408796
    [Google Scholar]
  127. MuzzarelliR.A.A. Human enzymatic activities related to the therapeutic administration of chitin derivatives.Cell. Mol. Life Sci.199753213114010.1007/PL000005849118001
    [Google Scholar]
  128. GeorgeM. AbrahamT.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review.J. Control. Release2006114111410.1016/j.jconrel.2006.04.01716828914
    [Google Scholar]
  129. SinhaV.R. SinglaA.K. WadhawanS. KaushikR. KumriaR. BansalK. DhawanS. Chitosan microspheres as a potential carrier for drugs.Int. J. Pharm.20042741-213310.1016/j.ijpharm.2003.12.02615072779
    [Google Scholar]
  130. MohammedM. SyedaJ. WasanK. WasanE. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery.Pharmaceutics2017945310.3390/pharmaceutics904005329156634
    [Google Scholar]
  131. PavinattoF.J. PavinattoA. CaseliL. dos SantosD.S. NobreT.M. ZaniquelliM.E.D. OliveiraO.N.Jr. Interaction of chitosan with cell membrane models at the air-water interface.Biomacromolecules2007851633164010.1021/bm070155017419586
    [Google Scholar]
  132. HuangM. MaZ. KhorE. LimL.Y. Uptake of FITC-chitosan nanoparticles by A549 cells.Pharm. Res.200219101488149410.1023/A:102040461589812425466
    [Google Scholar]
  133. MuanprasatC. ChatsudthipongV. Chitosan oligosaccharide: Biological activities and potential therapeutic applications.Pharmacol. Ther.2017170809710.1016/j.pharmthera.2016.10.01327773783
    [Google Scholar]
  134. Abrica-GonzálezP. Zamora-JustoJ.A. Sotelo-LópezA. Vázquez-MartínezG.R. Balderas-LópezJ.A. Muñoz-DiosdadoA. Ibáñez-HernándezM. Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers.Nanoscale Res. Lett.201914125810.1186/s11671‑019‑3083‑y31363863
    [Google Scholar]
  135. HuF-Q. ChenW-W. ZhaoM-D. YuanH. DuY-Z. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles.Gene Ther.201320659760610.1038/gt.2012.7222951455
    [Google Scholar]
  136. LeeY. ThompsonD.H. Stimuli-responsive liposomes for drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201795e145010.1002/wnan.145028198148
    [Google Scholar]
  137. MonteiroL.O.F. MalachiasÂ. Pound-LanaG. Magalhães-PaniagoR. MosqueiraV.C.F. OliveiraM.C. de BarrosA.L.B. LeiteE.A. Paclitaxel-loaded pH-sensitive liposome: New insights on structural and physicochemical characterization.Langmuir201834205728573710.1021/acs.langmuir.8b0041129676924
    [Google Scholar]
  138. GabizonA.A. ShmeedaH. ZalipskyS. Pros and cons of the liposome platform in cancer drug targeting.J. Liposome Res.200616317518310.1080/0898210060084876916952872
    [Google Scholar]
  139. AndriyanovA.V. KorenE. BarenholzY. GoldbergS.N. Therapeutic efficacy of combining pegylated liposomal doxorubicin and radiofrequency (RF) ablation: Comparison between slow-drug-releasing, non-thermosensitive and fast-drug-releasing, thermosensitive nano-liposomes.PLoS One201495e9255510.1371/journal.pone.009255524786533
    [Google Scholar]
  140. DuY. WangZ. WangT. HeW. ZhouW. LiM. YaoC. LiX. Improved antitumor activity of novel redox-responsive paclitaxel-encapsulated liposomes based on disulfide phosphatidylcholine.Mol. Pharm.202017126227310.1021/acs.molpharmaceut.9b0098831747284
    [Google Scholar]
  141. JiangL. LiL. HeX. YiQ. HeB. CaoJ. PanW. GuZ. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response.Biomaterials20155212613910.1016/j.biomaterials.2015.02.00425818419
    [Google Scholar]
  142. LiL. GeislerI. ChmielewskiJ. ChengJ.X. Cationic amphiphilic polyproline helix P11LRR targets intracellular mitochondria.J. Control. Release2010142225926610.1016/j.jconrel.2009.10.01219840824
    [Google Scholar]
  143. MoR. SunQ. XueJ. LiN. LiW. ZhangC. PingQ. Multistage pH-responsive liposomes for mitochondrial- targeted anticancer drug delivery.Adv. Mater.201224273659366510.1002/adma.20120149822678851
    [Google Scholar]
  144. BiswasS. DodwadkarN.S. DeshpandeP.P. TorchilinV.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo.J. Control. Release2012159339340210.1016/j.jconrel.2012.01.00922286008
    [Google Scholar]
  145. YamadaY. AkitaH. KogureK. KamiyaH. HarashimaH. Mitochondrial drug delivery and mitochondrial disease therapy – an approach to liposome-based delivery targeted to mitochondria.Mitochondrion200771-2637110.1016/j.mito.2006.12.00317296332
    [Google Scholar]
  146. WangX.X. LiY.B. YaoH.J. JuR.J. ZhangY. LiR.J. YuY. ZhangL. LuW.L. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells.Biomaterials201132245673568710.1016/j.biomaterials.2011.04.02921550109
    [Google Scholar]
  147. JavadpourM.M. JubanM.M. LoW.C.J. BishopS.M. AlbertyJ.B. CowellS.M. BeckerC.L. McLaughlinM.L. De novo antimicrobial peptides with low mammalian cell toxicity.J. Med. Chem.199639163107311310.1021/jm95094108759631
    [Google Scholar]
  148. AgemyL. Friedmann-MorvinskiD. KotamrajuV.R. RothL. SugaharaK.N. GirardO.M. MattreyR.F. VermaI.M. RuoslahtiE. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma.Proc. Natl. Acad. Sci. USA201110842174501745510.1073/pnas.111451810821969599
    [Google Scholar]
  149. LawB. QuintiL. ChoiY. WeisslederR. TungC.H. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity.Mol. Cancer Ther.2006581944194910.1158/1535‑7163.MCT‑05‑050916928814
    [Google Scholar]
  150. EllerbyH.M. ArapW. EllerbyL.M. KainR. AndrusiakR. RioG.D. KrajewskiS. LombardoC.R. RaoR. RuoslahtiE. BredesenD.E. PasqualiniR. Anti-cancer activity of targeted pro-apoptotic peptides.Nat. Med.1999591032103810.1038/1246910470080
    [Google Scholar]
  151. ChangJ. XuX. LiH. JianY. WangG. HeB. GuZ. Components simulation of viral envelope via amino acid modified chitosans for efficient nucleic acid delivery: In vitro and in vivo study.Adv. Funct. Mater.201323212691269910.1002/adfm.201202503
    [Google Scholar]
  152. LiL. SongH. LuoK. HeB. NieY. YangY. WuY. GuZ. Gene transfer efficacies of serum-resistant amino acids-based cationic lipids: Dependence on headgroup, lipoplex stability and cellular uptake.Int. J. Pharm.20114081-218319010.1016/j.ijpharm.2011.01.05121291972
    [Google Scholar]
  153. LaiY. LeiY. XuX. LiY. HeB. GuZ. Polymeric micelles with π–π conjugated cinnamic acid as lipophilic moieties for doxorubicin delivery.J. Mater. Chem. B Mater. Biol. Med.20131344289429610.1039/c3tb20392a32261025
    [Google Scholar]
  154. FerliniC. CicchillittiL. RaspaglioG. BartollinoS. CimitanS. BertucciC. MozzettiS. GalloD. PersicoM. FattorussoC. CampianiG. ScambiaG. Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77.Cancer Res.200969176906691410.1158/0008‑5472.CAN‑09‑054019671798
    [Google Scholar]
  155. MironovS.L. IvannikovM.V. JohanssonM. [Ca2+] signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release.J. Biol. Chem.2005280171572110.1074/jbc.M40981920015516333
    [Google Scholar]
  156. WangR.-H. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer.Oncol. Rep.201533278391
    [Google Scholar]
  157. FelgnerS. KocijancicD. FrahmM. CurtissR.III ErhardtM. WeissS. Optimizing Salmonella enterica serovar Typhimurium for bacteria-mediated tumor therapy.Gut Microbes20167217117710.1080/19490976.2016.115502126939530
    [Google Scholar]
  158. ZhangM. LiM. DuL. ZengJ. YaoT. JinY. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer.Int. J. Pharm.202057811917710.1016/j.ijpharm.2020.11917732105724
    [Google Scholar]
  159. LimD. Soo KimK. KimH.J. KoK.C. SongJ.J. Hyun ChoiJ. ShinM. MinJ.J. JeongJ.H. ChoyH.E. Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium.Oncotarget2017823375503756010.18632/oncotarget.1719728473665
    [Google Scholar]
  160. WangX. ZhouJ. WangY. ZhuZ. LuY. WeiY. ChenL. A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions.Eur. J. Cancer20104681474148010.1016/j.ejca.2010.02.00220207133
    [Google Scholar]
  161. ChenG. ShengL. DuX. Efficacy and safety of liposome-paclitaxel and carboplatin based concurrent chemoradiotherapy for locally advanced lung squamous cell carcinoma.Cancer Chemother. Pharmacol.201882350551010.1007/s00280‑018‑3640‑629987370
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673308951240921121345
Loading
/content/journals/cmc/10.2174/0109298673308951240921121345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test