Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Alzheimer's Disease (AD) is the most common cause of dementia, afflicting over 5 million people in the United States. There remains a lack of effective disease- modifying treatments for AD beyond a few approved drugs that provide temporary symptomatic relief. Melatonin is an endogenous hormone mainly produced by the pineal gland that regulates circadian rhythms and possesses antioxidant and anti-inflammatory properties. An expansive body of research over the past few decades has investigated melatonin as a promising therapeutic agent for AD based on its ability to target multiple pathophysiological processes implicated in AD progression. In this comprehensive review, we summarize extensive evidence from cellular and animal models that has uncovered the diverse mechanisms underpinning melatonin's neuroprotective efficacy against AD pathology. We also synthesize clinical studies examining melatonin's effects on AD progression and symptoms. Additionally, we discuss how melatonin's multimodal mechanisms, favorable safety profile, and ability to synergize with conventional therapies heighten its potential as an effective therapeutic strategy for AD. Rigorously designed clinical trials incorporating physiological biomarkers are warranted to definitively establish melatonin's disease-modifying effects. Nevertheless, the considerable preclinical data support further exploration of melatonin as a therapeutic agent for AD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286807240326085736
2024-03-28
2025-10-22
Loading full text...

Full text loading...

References

  1. VeitchD.P. WeinerM.W. MillerM. AisenP.S. AshfordM.A. BeckettL.A. GreenR.C. HarveyD. JackC.R.Jr JagustW. The Alzheimer’s disease neuroimaging initiative in the era of Alzheimer’s disease treatment: A review of ADNI studies from 2021 to 2022.Alzheimers Dement.202337698424
    [Google Scholar]
  2. PauwelsE.K.J. BoerG.J. Friends and foes in Alzheimer’s disease.Med. Princ. Pract.202332631332210.1159/00053440037788649
    [Google Scholar]
  3. LiuW. LiY. ZhaoT. GongM. WangX. ZhangY. XuL. LiW. LiY. JiaJ. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer’s disease: From pathophysiology to therapeutic approaches.Prog. Neurobiol.202323110253410.1016/j.pneurobio.2023.10253437783430
    [Google Scholar]
  4. CummingsJ. ApostolovaL. RabinoviciG.D. AtriA. AisenP. GreenbergS. HendrixS. SelkoeD. WeinerM. PetersenR.C. SallowayS. Lecanemab: Appropriate use recommendations.J. Prev. Alzheimers Dis.202310336237737357276
    [Google Scholar]
  5. SumsuzzmanD.M. ChoiJ. JinY. HongY. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials.Neurosci. Biobehav. Rev.202112745947310.1016/j.neubiorev.2021.04.03433957167
    [Google Scholar]
  6. GolmohammadiM. MahmoudianM. HasanE.K. AlshahraniS.H. Romero-ParraR.M. MalviyaJ. HjaziA. NajmM.A.A. AlmullaA.F. ZamanianM.Y. KadkhodaeiM. Neuroprotective effects of riluzole in Alzheimer’s disease: A comprehensive review.Fundam. Clin. Pharmacol.202438222523710.1111/fcp.1295537753585
    [Google Scholar]
  7. DaveB.P. ShahY.B. MaheshwariK.G. MansuriK.A. PrajapatiB.S. PostwalaH.I. ChorawalaM.R. Pathophysiological aspects and therapeutic armamentarium of Alzheimer’s disease: Recent trends and future development.Cell. Mol. Neurobiol.20234383847388410.1007/s10571‑023‑01408‑737725199
    [Google Scholar]
  8. ZhangM. QianX.H. HuJ. ZhangY. LinX. HaiW. ShiK. JiangX. LiY. TangH.D. Integrating TSPO PET imaging and transcriptomics to unveil the role of neuroinflammation and amyloid-beta deposition in Alzheimer’s disease.Eur. J. Nucl. Med. Mol. Imag.202337801139
    [Google Scholar]
  9. ManivI. SarjiM. BdarnehA. FeldmanA. AnkawaR. KorenE. Magid-GoldI. ReisN. SoteriouD. Salomon-ZimriS. LavyT. KesselmanE. KoifmanN. KurzT. KleifeldO. MichaelsonD. van LeeuwenF.W. VerheijenB.M. FuchsY. GlickmanM.H. Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model.Nat. Commun.2023141592210.1038/s41467‑023‑41545‑737739965
    [Google Scholar]
  10. PengG. LiM. MengZ. Polysaccharides: Potential bioactive macromolecules for Alzheimer’s disease.Front. Nutr.202310124901810.3389/fnut.2023.124901837781122
    [Google Scholar]
  11. HeP. ShenY. Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer’s disease.J. Neurosci.200929206545655710.1523/JNEUROSCI.0421‑09.200919458225
    [Google Scholar]
  12. ZhangL. YangX. YangS. ZhangJ. The Wnt /β- catenin signaling pathway in the adult neurogenesis.Eur. J. Neurosci.20113311810.1111/j.1460‑9568.2010.7483.x21073552
    [Google Scholar]
  13. AliT. KimM.O. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI 3/Akt/ GS k3β pathway in the mouse hippocampus.J. Pineal Res.2015591475910.1111/jpi.1223825858697
    [Google Scholar]
  14. LardelliM. An alternative view of familial Alzheimer’s disease genetics.J. Alzheimers Dis.2023961133910.3233/JAD‑23031337718800
    [Google Scholar]
  15. MohammadiI. AdibparsaM. NajafiA. SehatM.S. SadeghiM. A systematic review with meta-analysis to assess Alzheimer’s disease biomarkers in adults with or without obstructive sleep apnoea.Int. Orthod.202321410081410.1016/j.ortho.2023.10081437776696
    [Google Scholar]
  16. YuH. MoriharaR. Ota-ElliottR. BianZ. BianY. HuX. SunH. FukuiY. AbeK. IshiuraH. YamashitaT. Injection of exogenous amyloid-β oligomers aggravated cognitive deficits, and activated necroptosis, in APP23 transgenic mice.Brain Res.2023182114856510.1016/j.brainres.2023.14856537683777
    [Google Scholar]
  17. BiJ. ShenJ. ChenC. LiZ. TanH. SunP. LinY. Role of melatonin in the dynamics of acute spinal cord injury in rats.J. Cell. Mol. Med.20212562909291710.1111/jcmm.1632533497543
    [Google Scholar]
  18. BernardM. GuerlottéJ. GrèveP. Gréchez-CassiauA. IuvoneM.P. ZatzM. ChongN.W. KleinD.C. VoisinP. Melatonin synthesis pathway: Circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina.Reprod. Nutr. Dev.199939332533410.1051/rnd:1999030510420435
    [Google Scholar]
  19. ShiX. LiH. DanZ. ShuC. ZhuR. YangQ. WangY. ZhuH. Melatonin potentiates sensitivity to 5-fluorouracil in gastric cancer cells by upregulating autophagy and downregulating myosin light-chain kinase.J. Cancer202314142608261810.7150/jca.8535337779875
    [Google Scholar]
  20. ZlotosD.P. JockersR. CeconE. RivaraS. Witt-EnderbyP.A. MT1 and MT2 melatonin receptors: Ligands, models, oligomers, and therapeutic potential.J. Med. Chem.20145783161318510.1021/jm401343c24228714
    [Google Scholar]
  21. SohailS. ShahF.A. ZamanS. AlmariA.H. MalikI. KhanS.A. AlamroA.A. ZebA. DinF. Melatonin delivered in solid lipid nanoparticles ameliorated its neuroprotective effects in cerebral ischemia.Heliyon202399e1977910.1016/j.heliyon.2023.e1977937809765
    [Google Scholar]
  22. MariaS. SamsonrajR.M. MunmunF. GlasJ. SilvestrosM. KotlarczykM.P. RylandsR. DudakovicA. van WijnenA.J. EnderbyL.T. LassilaH. DoddaB. DavisV.L. BalkJ. BurowM. BunnellB.A. Witt-EnderbyP.A. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT 2 melatonin receptors, MEK 1/2, and MEK 5 in melatonin-mediated osteoblastogenesis.J. Pineal Res.2018643e1246510.1111/jpi.1246529285799
    [Google Scholar]
  23. LiuR. ShangF. NiuB. WuW. HanY. ChenH. GaoH. Melatonin treatment delays the softening of blueberry fruit by modulating cuticular wax metabolism and reducing cell wall degradation.Food Res. Int.2023173Pt 211335710.1016/j.foodres.2023.11335737803698
    [Google Scholar]
  24. TrivediA.K. KumarV. Melatonin: An internal signal for daily and seasonal timing.Indian J. Exp. Biol.201452542543724851405
    [Google Scholar]
  25. WangQ. LuQ. GuoQ. TengM. GongQ. LiX. DuY. LiuZ. TaoY. Structural basis of the ligand binding and signaling mechanism of melatonin receptors.Nat. Commun.202213145410.1038/s41467‑022‑28111‑335075127
    [Google Scholar]
  26. Farfán-GarcíaE.D. Márquez-GómezR. Barrón- GonzálezM. Pérez-CapistranT. Rosales-HernándezM.C. Pinto-AlmazánR. Soriano-UrsúaM.A. Monoamines and their derivatives on GPCRs: Potential therapy for Alzheimer’s disease.Curr. Alzheimer Res.2019161087189410.2174/1570159X1766619040914455830963972
    [Google Scholar]
  27. SuofuY. LiW. Jean-AlphonseF.G. JiaJ. KhattarN.K. LiJ. BaranovS.V. LeronniD. MihalikA.C. HeY. CeconE. WehbiV.L. KimJ. HeathB.E. BaranovaO.V. WangX. GableM.J. KretzE.S. Di BenedettoG. LezonT.R. FerrandoL.M. LarkinT.M. SullivanM. YablonskaS. WangJ. MinnighM.B. GuillaumetG. SuzenetF. RichardsonR.M. PoloyacS.M. StolzD.B. JockersR. Witt-EnderbyP.A. CarlisleD.L. VilardagaJ.P. FriedlanderR.M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release.Proc. Natl. Acad. Sci. USA201711438E7997E800610.1073/pnas.170576811428874589
    [Google Scholar]
  28. GobbiG. ComaiS. Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep.Front. Endocrinol. (Lausanne)2019108710.3389/fendo.2019.0008730881340
    [Google Scholar]
  29. ComaiS. Ochoa-SanchezR. GobbiG. Sleep-wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice.Behav. Brain Res.201324323123810.1016/j.bbr.2013.01.00823333399
    [Google Scholar]
  30. CoxR.C. BlumensteinA.B. BurkeT.M. DepnerC.M. GuerinM.K. Hay-ArthurE. HigginsJ. KnauerO.A. LanzaS.M. MarkwaldR.R. MelansonE.L. McHillA.W. MortonS.J. RitchieH.K. SmithM.R. SmitsA.N. SprecherK.E. StothardE.R. WithrowD. WrightK.P.Jr. Distribution of dim light melatonin offset (DLMOff) and phase relationship to waketime in healthy adults and associations with chronotype.Sleep Health2023S235210.1016/j.sleh.2023.08.01737777359
    [Google Scholar]
  31. MelloniE.M.T. PaoliniM. DallaspeziaS. LorenziC. PolettiS. d’OrsiG. YoshiikeT. ZanardiR. ColomboC. BenedettiF. Melatonin secretion patterns are associated with cognitive vulnerability and brain structure in bipolar depression.Chronobiol. Int.20234091279129010.1080/07420528.2023.226257237781880
    [Google Scholar]
  32. MoriK. KomatsuT. FujiwaraY. FujitaY. Comparison of the effects of desflurane and sevoflurane on variations in salivary melatonin and sleep disturbance after total knee arthroplasty: A single-center, prospective, randomized, controlled, open-label study.J. Perianesth. Nurs.202439110110837791946
    [Google Scholar]
  33. Kobayashi-SunJ. SuzukiN. HattoriA. YamaguchiM. KobayashiI. Melatonin suppresses both osteoblast and osteoclast differentiation through repression of epidermal Erk signaling in the zebrafish scale.Biochem. Biophys. Res. Commun.2020530464465010.1016/j.bbrc.2020.07.07532768192
    [Google Scholar]
  34. KlafkiH.W. WirthsO. JahnO. MorgadoB. EsselmannH. WiltfangJ. Blood plasma biomarkers for Alzheimer’s disease: Aβ1-42/1-40 vs. AβX-42/X-40.Clin. Chem. Lab. Med.2024622e56e5710.1515/cclm‑2023‑099037775501
    [Google Scholar]
  35. WangJ. ZhouF. XiongC.E. WangG.P. ChenL.W. ZhangY.T. QiS.G. WangZ.H. MeiC. XuY.J. ZhanJ.B. ChengJ. Serum sirtuin1: A potential blood biomarker for early diagnosis of Alzheimer’s disease.Aging (Albany NY)202315189464947810.18632/aging.20501537742223
    [Google Scholar]
  36. ValeroT. Mitochondrial biogenesis: Pharmacological approaches.Curr. Pharm. Des.201420355507550910.2174/13816128203514091114211824606795
    [Google Scholar]
  37. HuangH. ZhuY. LiaoL. GaoS. TaoY. FangX. LianY. GaoC. The long-term effects of intermittent theta burst stimulation on Alzheimer’s disease-type pathologies in APP/PS1 mice.Brain Res. Bull.202320211073510.1016/j.brainresbull.2023.11073537586425
    [Google Scholar]
  38. ShuklaM. GovitrapongP. BoontemP. ReiterR.J. SatayavivadJ. Mechanisms of melatonin in alleviating alzheimer’s disease.Curr. Neuropharmacol.20171571010103128294066
    [Google Scholar]
  39. O’Neal-MoffittG. DelicV. BradshawP.C. OlceseJ. Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPPswe/PS1 mice.Mol. Neurodegener.20151012710.1186/s13024‑015‑0027‑626159703
    [Google Scholar]
  40. TangH. MaM. WuY. DengM.F. HuF. AlmansoubH. HuangH.Z. WangD.Q. ZhouL.T. WeiN. ManH. LuY. LiuD. ZhuL.Q. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer’s disease via C/EBPα/miR-125b pathway.Aging Cell2019182e1290210.1111/acel.1290230706990
    [Google Scholar]
  41. ZhangS. LiuF. LiJ. JingC. LuJ. ChenX. WangD. CaoD. ZhaoD. SunL. A 4.7-kDa polysaccharide from Panax ginseng suppresses Aβ pathology via mitophagy activation in cross-species Alzheimer’s disease models.Biomed. Pharmacother.202316711544210.1016/j.biopha.2023.11544237699318
    [Google Scholar]
  42. SinghY.P. KumarN. ChauhanB.S. GargP. Carbamate as a potential anti-Alzheimer’s pharmacophore: A review.Drug Dev. Res.20238481624165110.1002/ddr.2211337694498
    [Google Scholar]
  43. PangL.W. HamzahS. TanS.L.J. MahS.H. YowH.Y. The effects and mechanisms of xanthones in Alzheimer’s disease: A systematic review.Neurochem. Res.202348123485351110.1007/s11064‑023‑04005‑837578655
    [Google Scholar]
  44. AngelaniC.R. CarameloJ.J. CurtoL.M. DelfinoJ.M. Structural coalescence underlies the aggregation propensity of a β-barrel protein motif.PLoS One2017122e017060710.1371/journal.pone.017060728187186
    [Google Scholar]
  45. MuñozV. GhirlandoR. BlancoF.J. JasG.S. HofrichterJ. EatonW.A. Folding and aggregation kinetics of a beta-hairpin.Biochemistry200645237023703510.1021/bi052556a16752893
    [Google Scholar]
  46. ZhengY. WangP. LiS. GengX. ZouL. JinM. ZouQ. WangQ. YangX. WangK. Development of DNA aptamer as a β-Amyloid aggregation inhibitor.ACS Appl. Bio Mater.20203128611861810.1021/acsabm.0c0099635019631
    [Google Scholar]
  47. IgnatovaZ. KrishnanB. BombardierJ.P. MarcelinoA.M.C. HongJ. GieraschL.M. From the test tube to the cell: Exploring the folding and aggregation of a β-clam protein.Biopolymers200788215716310.1002/bip.2066517206628
    [Google Scholar]
  48. MittalS. SinghL.R. Macromolecular crowding decelerates aggregation of a β-rich protein, bovine carbonic anhydrase: A case study.J. Biochem.2014156527328210.1093/jb/mvu03924917682
    [Google Scholar]
  49. PappollaM.A. MatsubaraE. VidalR. Pacheco-QuintoJ. PoeggelerB. ZagorskiM. SambamurtiK. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis.Curr. Alzheimer Res.201815763764210.2174/156720501566618041109255129637859
    [Google Scholar]
  50. HuJ. IgarashiA. KamataM. NakagawaH. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta ); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity.J. Biol. Chem.200127651478634786810.1074/jbc.M10406820011604391
    [Google Scholar]
  51. ParkinsonE.L. DickinsonE. Inhibition of heat-induced aggregation of a β-lactoglobulin-stabilized emulsion by very small additions of casein.Colloids Surf. B Biointerfaces2004391-2233010.1016/j.colsurfb.2004.08.01115542336
    [Google Scholar]
  52. MageeA.S. LangeslayR.R. WillP.M. DanielsonM.E. WurstL.R. IiamsV.A. Modification of the degree of branching of a beta-(1,3)-glucan affects aggregation behavior and activity in an oxidative burst assay.Biopolymers20151031266567410.1002/bip.2268526015027
    [Google Scholar]
  53. SzegőÉ.M. BoßF. KomnigD. GärtnerC. HöfsL. ShaykhalishahiH. WördehoffM.M. SaridakiT. SchulzJ.B. HoyerW. FalkenburgerB.H. A β-wrapin targeting the N-terminus of α-synuclein monomers reduces fibril-induced aggregation in neurons.Front. Neurosci.20211569644010.3389/fnins.2021.69644034326719
    [Google Scholar]
  54. FengJ. SheY. LiC. ShenL. Metal ion mediated aggregation of Alzheimer’s disease peptides and proteins in solutions and at surfaces.Adv. Colloid Interface Sci.202332010300910.1016/j.cis.2023.10300937776735
    [Google Scholar]
  55. JiaY. GuoZ. GuoQ. WangX. Glycogen synthase kinase-3β, NLRP3 inflammasome, and Alzheimer’s disease.Curr. Med. Sci.202343584785410.1007/s11596‑023‑2788‑437721665
    [Google Scholar]
  56. KhatoonS. Grundke-IqbalI. IqbalK. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains.FEBS Lett.19943511808410.1016/0014‑5793(94)00829‑98076698
    [Google Scholar]
  57. HangerD.P. BettsJ.C. LovinyT.L.F. BlackstockW.P. AndertonB.H. New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry.J. Neurochem.19987162465247610.1046/j.1471‑4159.1998.71062465.x9832145
    [Google Scholar]
  58. TianS. YeT. ChengX. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer’s disease (3 × Tg-AD) mouse model strain.Exp. Neurol.202336811450510.1016/j.expneurol.2023.11450537597764
    [Google Scholar]
  59. ChidambaramH. ChinnathambiS. G-Protein Coupled receptors and tau-different roles in Alzheimer’s disease.Neuroscience202043819821410.1016/j.neuroscience.2020.04.01932335218
    [Google Scholar]
  60. ShenS. LiaoQ. WongY.K. ChenX. YangC. XuC. SunJ. WangJ. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer’s disease.Int. J. Biol. Sci.202218398399410.7150/ijbs.6687135173531
    [Google Scholar]
  61. DasR. BalmikA.A. ChinnathambiS. Melatonin reduces GSK3β-Mediated Tau Phosphorylation, enhances Nrf2 nuclear translocation and anti-inflammation.ASN Neuro20201210.1177/175909142098120433342257
    [Google Scholar]
  62. HouS.J. ZhangS.X. LiY. XuS.Y. Rapamycin responds to alzheimer’s disease: A potential translational therapy.Clin. Interv. Aging2023181629163910.2147/CIA.S42944037810956
    [Google Scholar]
  63. HuC.C. ChangC.H. HsiaoY. ChangY. WuY.Y. UengS.W.N. ChenM.F. Lipoteichoic acid accelerates bone healing by enhancing osteoblast differentiation and inhibiting osteoclast activation in a mouse model of femoral defects.Int. J. Mol. Sci.20202115555010.3390/ijms2115555032756396
    [Google Scholar]
  64. Carvajal-AgudeloJ.D. McNeilA. Franz-OdendaalT.A. Effects of simulated microgravity and vibration on osteoblast and osteoclast activity in cultured zebrafish scales.Life Sci. Space Res. (Amst.)202338394510.1016/j.lssr.2023.05.00237481306
    [Google Scholar]
  65. HoppeJ.B. FrozzaR.L. HornA.P. ComiranR.A. BernardiA. CamposM.M. BattastiniA.M.O. SalbegoC. Amyloid-β neurotoxicity in organotypic culture is attenuated by melatonin: Involvement of GSK-3β, tau and neuroinflammation.J. Pineal Res.201048323023810.1111/j.1600‑079X.2010.00747.x20136701
    [Google Scholar]
  66. HaoJ. ChenH. MadiganM.C. CozziP.J. BeretovJ. XiaoW. DelpradoW.J. RussellP.J. LiY. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression.Br. J. Cancer201010371008101810.1038/sj.bjc.660583920736947
    [Google Scholar]
  67. BobanI. JacquinC. PriorK. Barisic-DujmovicT. MayeP. ClarkS.H. AguilaH.L. The 3.6 kb DNA fragment from the rat Col1a1 gene promoter drives the expression of genes in both osteoblast and osteoclast lineage cells.Bone20063961302131210.1016/j.bone.2006.06.02516938497
    [Google Scholar]
  68. OhY.I. KimJ.H. KangC.W. Protective effect of short-term treatment with parathyroid hormone 1-34 on oxidative stress is involved in insulin-like growth factor-I and nuclear factor erythroid 2-related factor 2 in rat bone marrow derived mesenchymal stem cells.Regul. Pept.201418911010.1016/j.regpep.2013.12.00824412273
    [Google Scholar]
  69. XiongL. ZhongL. YuL. DanW. YeJ. LiJ. LiuD. YuanZ. YaoJ. ZhongP. LiuJ. LiuB. NLS-RARα contributes to differentiation block and increased leukemogenic potential in vivo.Cell. Signal.20206510943110.1016/j.cellsig.2019.10943131654721
    [Google Scholar]
  70. KamalakarA. McKinneyJ.M. Salinas DuronD. AmansoA.M. BallestasS.A. DrissiH. WillettN.J. BhattaramP. GarcíaA.J. WoodL.B. GoudyS.L. JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling.Bone202114311565710.1016/j.bone.2020.11565732980561
    [Google Scholar]
  71. D’SouzaS.M. IbbotsonK.J. MundyG.R. Failure of parathyroid hormone antagonists to inhibit in vitro bone resorbing activity produced by two animal models of the humoral hypercalcemia of malignancy.J. Clin. Invest.19847431104110710.1172/JCI1114786470137
    [Google Scholar]
  72. Bonnefont-RousselotD. CollinF. Melatonin: Action as antioxidant and potential applications in human disease and aging.Toxicology20102781556710.1016/j.tox.2010.04.00820417677
    [Google Scholar]
  73. MaglioneA.V. do NascimentoB.P.P. RibeiroM.O. de SouzaT.J.L. da SilvaR.E.C. SatoM.A. PenattiC.A.A. BrittoL.R.G. de SouzaJ.S. MacielR.M.B. da ConceiçãoR.R. Laureano-MeloR. GiannoccoG. Triiodothyronine treatment reverses depression-like behavior in a triple-transgenic animal model of Alzheimer’s disease.Metab. Brain Dis.20223782735275010.1007/s11011‑022‑01055‑935951206
    [Google Scholar]
  74. KimM.Y. KimM.J. LeeC. LeeJ. KimS.S. HongS. KimH.T. SeoJ. YoonK.J. HanS. Trametinib activates endogenous neurogenesis and recovers neuropathology in a model of Alzheimer’s disease.Exp. Mol. Med.202355102177218910.1038/s12276‑023‑01073‑237779138
    [Google Scholar]
  75. BlauwendraatC. ReedX. KiaD.A. Gan-OrZ. LesageS. PihlstrømL. GuerreiroR. GibbsJ.R. SabirM. AhmedS. DingJ. AlcalayR.N. Hassin-BaerS. PittmanA.M. BrooksJ. EdsallC. HernandezD.G. ChungS.J. GoldwurmS. ToftM. SchulteC. BrasJ. WoodN.W. BriceA. MorrisH.R. ScholzS.W. NallsM.A. SingletonA.B. CooksonM.R. Frequency of loss of function variants in LRRK2 in Parkinson disease.JAMA Neurol.201875111416142210.1001/jamaneurol.2018.188530039155
    [Google Scholar]
  76. WahlströmA. CukalevskiR. DanielssonJ. JarvetJ. OnagiH. RebekJ.Jr LinseS. GräslundA. Specific binding of a β-cyclodextrin dimer to the amyloid β peptide modulates the peptide aggregation process.Biochemistry201251214280428910.1021/bi300341j22554145
    [Google Scholar]
  77. JangM.H. JungS.B. LeeM.H. KimC.J. OhY.T. KangI. KimJ. KimE.H. Melatonin attenuates amyloid beta25–35-induced apoptosis in mouse microglial BV2 cells.Neurosci. Lett.20053801-2263110.1016/j.neulet.2005.01.00315854745
    [Google Scholar]
  78. ZhouJ. ZhangS. ZhaoX. WeiT. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-β 1–42.J. Pineal Res.200845215716510.1111/j.1600‑079X.2008.00570.x18298462
    [Google Scholar]
  79. CookB. WalkerN. ZhangQ. ChenS. EvansT. The small molecule DIPQUO promotes osteogenic differentiation via inhibition of glycogen synthase kinase 3-beta signaling.J. Biol. Chem.202129610069610.1016/j.jbc.2021.10069633895139
    [Google Scholar]
  80. WangY. WuX. YangK. LiuQ. JiangB. YangR. XiaoP. HeC. Integrating network pharmacology analysis and pharmacodynamic evaluation for exploring the active components and molecular mechanism of moutan seed coat extract to improve cognitive impairment.Front. Pharmacol.20221395287610.3389/fphar.2022.95287636034803
    [Google Scholar]
  81. IrvineG.B. El-AgnafO.M.A. BodlesA.M. GuthrieD.J.S. HarriottP. 46 Studies on the aggregation and secondary structure of peptides derived from non-Aβ component of Alzheimer’s disease amyloid.Biochem. Soc. Trans.1998261S3610.1042/bst026s03610909794
    [Google Scholar]
  82. LiX.Y. QinH.Y. LiT.T. Advances in the study of the relationship between Alzheimer’s disease and the gastrointestinal microbiome.Ibrain20228446547510.1002/ibra.1206537786585
    [Google Scholar]
  83. HoC.C.Y. RideoutH.J. RibeE. TroyC.M. DauerW.T. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration.J. Neurosci.20092941011101610.1523/JNEUROSCI.5175‑08.200919176810
    [Google Scholar]
  84. NamE. LeeS.M. KohS.E. JooW.S. MaengS. ImH.I. KimY.S. Melatonin protects against neuronal damage induced by 3-nitropropionic acid in rat striatum.Brain Res.200510461-2909610.1016/j.brainres.2005.03.05315882841
    [Google Scholar]
  85. ZhuY. DingX. SheZ. BaiX. NieZ. WangF. WangF. GengX. Exploring shared pathogenesis of Alzheimer’s disease and type 2 diabetes mellitus via co-expression networks analysis.Curr. Alzheimer Res.202017656657510.2174/156720501766620081016493232781959
    [Google Scholar]
  86. KomlaoP. KraiwattanapiromN. PromyoK. HeinZ.M. ChetsawangB. Melatonin enhances the restoration of neurological impairments and cognitive deficits during drug withdrawal in methamphetamine-induced toxicity and endoplasmic reticulum stress in rats.Neurotoxicology20239930531210.1016/j.neuro.2023.11.00637979660
    [Google Scholar]
  87. ButunI. EkmekciH. CiftciO. SonmezH. CanerM. AltugT. KokogluE. The effects of different doses of melatonin on lipid peroxidation in diet-induced hypercholesterolemic rats.Bratisl. Med. J.2013114312913210.4149/BLL_2013_02823406178
    [Google Scholar]
  88. VillaV ThellungS BajettoA GattaE RobelloM NovelliF TassoB TonelliM FlorioT. Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide.Pharmacol. Res.2016113500514
    [Google Scholar]
  89. LiuS.T. HowlettG. BarrowC.J. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer’s disease.Biochemistry199938299373937810.1021/bi990205o10413512
    [Google Scholar]
  90. WoltjerR.L. MaezawaI. OuJ.J. MontineK.S. MontineT.J. Advanced glycation endproduct precursor alters intracellular amyloid- β/AβPP carboxy-terminal fragment aggregation and cytotoxicity.J. Alzheimers Dis.20045646747610.3233/JAD‑2003‑560714757937
    [Google Scholar]
  91. ChoiJ.S. BraymerJ.J. NangaR.P.R. RamamoorthyA. LimM.H. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity.Proc. Natl. Acad. Sci. USA201010751219902199510.1073/pnas.100609110721131570
    [Google Scholar]
  92. CarusoG.I. SpampinatoS.F. CostantinoG. MerloS. SortinoM.A. SIRT1-dependent upregulation of BDNF in human microglia challenged with Aβ: An early but transient response rescued by melatonin.Biomedicines20219546610.3390/biomedicines905046633923297
    [Google Scholar]
  93. LuchettiF. BettiM. CanonicoB. ArcangelettiM. FerriP. GalliF. PapaS. ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells.Free Radic. Biol. Med.200946333935110.1016/j.freeradbiomed.2008.09.01718930812
    [Google Scholar]
  94. CrookH. RamirezA. HosseiniA. VavougyiosG. LehmannC. BruchfeldJ. SchneiderA. D’AvossaG. Lo ReV. SalmoiraghiA. Mukaetova-LadinskaE. KatshuM. BoneschiF.M. HåkanssonK. GeerlingsM. PrachtE. RuizA. JansenJ.F.A. SnyderH. KivipeltoM. EdisonP. European working group on SARS-CoV-2: Current understanding, unknowns, and recommendations on the neurological complications of COVID-19.Brain Connect.202313417821010.1089/brain.2022.005836719785
    [Google Scholar]
  95. KoldamovaR.P. LefterovI.M. LefterovaM.I. LazoJ.S. Apolipoprotein A-I directly interacts with amyloid precursor protein and inhibits A beta aggregation and toxicity.Biochemistry200140123553356010.1021/bi002186k11297421
    [Google Scholar]
  96. AddaiE. ZhangL. PrekoA.K. AsamoahJ.K.K. Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer’s disease.Healthcare Analytics2022210011410.1016/j.health.2022.10011437520617
    [Google Scholar]
  97. JeongJ.K. LeeJ.H. MoonJ.H. LeeY.J. ParkS.Y. Melatonin-mediated β -catenin activation protects neuron cells against prion protein-induced neurotoxicity.J. Pineal Res.201457442743410.1111/jpi.1218225251028
    [Google Scholar]
  98. JiangY. ZhouX. WongH.Y. OuyangL. IpF.C.F. ChauV.M.N. LauS.F. WuW. WongD.Y.K. SeoH. FuW.Y. LaiN.C.H. ChenY. ChenY. TongE.P.S. WeinerM.W. AisenP. PetersenR. JackC.R. JagustW. TrojanowskiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. ShawL.M. KhachaturianZ. SorensenG. KullerL. RaichleM. PaulS. DaviesP. FillitH. HeftiF. HoltzmanD. MesulamM.M. PotterW. SnyderP. SchwartzA. MontineT. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. JiminezG. HarveyD. BernsteinM. ThompsonP. SchuffN. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. CairnsN.J. HouseholderE. Taylor-ReinwaldL. LeeV. KoreckaM. FigurskiM. CrawfordK. NeuS. ForoudT.M. PotkinS.G. ShenL. FaberK. KimS. NhoK. ThalL. BuckholtzN. AlbertM. FrankR. HsiaoJ. KayeJ. QuinnJ. LindB. CarterR. DolenS. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. SpannB.M. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ.L. LordJ.L. MasonS.S. AlbersC.S. KnopmanD. JohnsonK. DoodyR.S. Villanueva-MeyerJ. ChowdhuryM. RountreeS. DangM. SternY. HonigL.S. BellK.L. AncesB. CarrollM. LeonS. MintunM.A. SchneiderS. OliverA. MarsonD. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. GrossmanH. MitsisE. de Toledo-MorrellL. ShahR.C. DuaraR. VaronD. GreigM.T. RobertsP. OnyikeC. D’AgostinoD. KielbS. GalvinJ.E. CerboneB. MichelC.A. RusinekH. de LeonM.J. GlodzikL. De SantiS. DoraiswamyP.M. PetrellaJ.R. WongT.Z. ArnoldS.E. KarlawishJ.H. WolkD. SmithC.D. JichaG. HardyP. SinhaP. OatesE. ConradG. LopezO.L. OakleyM.A. SimpsonD.M. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. IsmailM.S. BrandC. MulnardR.A. ThaiG. McAdams-OrtizC. WomackK. MathewsD. QuicenoM. Diaz-ArrastiaR. KingR. WeinerM. Martin-CookK. DeVousM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. AndersonH.S. SwerdlowR.H. ApostolovaL. TingusK. WooE. SilvermanD.H.S. LuP.H. BartzokisG. Graff-RadfordN.R. ParfittF. KendallT. JohnsonH. FarlowM.R. HakeA.M. MatthewsB.R. HerringS. HuntC. van DyckC.H. CarsonR.E. MacAvoyM.G. ChertkowH. BergmanH. HoseinC. HsiungG-Y.R. FeldmanH. MudgeB. AssalyM. BernickC. MunicD. KerteszA. RogersJ. TrostD. KerwinD. LipowskiK. WuC-K. JohnsonN. SadowskyC. MartinezW. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. FreyM. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. AllardJ. LernerA. OgrockiP. HudsonL. FletcherE. CarmichaelO. OlichneyJ. DeCarliC. KitturS. BorrieM. LeeT-Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PredaA. NguyenD. TariotP. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. SantulliR.B. KitzmillerT.J. SchwartzE.S. SinkK.M. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. MintzerJ. SpicerK. BachmanD. PasternakS. RachinskyI. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. PontoL.L.B. ShimH. SmithK.E. RelkinN. ChaingG. RaudinL. SmithA. FargherK. RajB.A. NeylanT. GrafmanJ. DavisM. MorrisonR. HayesJ. FinleyS. FriedlK. FleischmanD. ArfanakisK. JamesO. MassogliaD. FruehlingJ.J. HardingS. PeskindE.R. PetrieE.C. LiG. YesavageJ.A. TaylorJ.L. FurstA.J. MokV.C.T. KwokT.C.Y. MokK.Y. ShoaiM. LehallierB. LosadaP.M. O’BrienE. PorterT. LawsS.M. HardyJ. Wyss-CorayT. MastersC.L. FuA.K.Y. IpN.Y. An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-ε4 in female patients with Alzheimer’s disease.Nature Aging20222761663410.1038/s43587‑022‑00241‑937117777
    [Google Scholar]
  99. ShanmugavadivelK. SathishkumarV.E. ChoJ. SubramanianM. Advancements in computer-assisted diagnosis of Alzheimer’s disease: A comprehensive survey of neuroimaging methods and AI techniques for early detection.Ageing Res. Rev.20239110207210.1016/j.arr.2023.10207237709055
    [Google Scholar]
  100. GéraudieA. RicheM. LestraT. TrotierA. DupuisL. MathonB. CarpentierA. DelatourB. Effects of low-intensity pulsed ultrasound-induced blood–brain barrier opening in P301S mice modeling Alzheimer’s disease tauopathies.Int. J. Mol. Sci.202324151241110.3390/ijms24151241137569786
    [Google Scholar]
  101. WuY.H. SwaabD.F. The human pineal gland and melatonin in aging and Alzheimer’s disease.J. Pineal Res.200538314515210.1111/j.1600‑079X.2004.00196.x15725334
    [Google Scholar]
  102. ZhouJ.N. LiuR.Y. KamphorstW. HofmanM.A. SwaabD.F. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels.J. Pineal Res.200335212513010.1034/j.1600‑079X.2003.00065.x12887656
    [Google Scholar]
  103. ZhangY.H. MannD. RaymickJ. SarkarS. PauleM. LahiriD. DumasM. CohenA.B. SchmuedL. K114 inhibits A-beta aggregation and inflammation in vitro and in vivo in AD/Tg mice.Curr. Alzheimer Res.201411329930810.2174/156720501166614022012532424552157
    [Google Scholar]
  104. YangY. BagyinszkyE. AnS.S.A. KimS. PSEN2 Thr421Met mutation in a patient with early onset Alzheimer’s disease.Int. J. Mol. Sci.202223211333110.3390/ijms23211333136362122
    [Google Scholar]
  105. VecchieriniM.F. Kilic-HuckU. Quera-SalvaM.A. Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS).Rev. Neurol. (Paris)2021177324525910.1016/j.neurol.2020.06.00932921425
    [Google Scholar]
  106. MishimaK. OkawaM. HozumiS. HishikawaY. Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons.Chronobiol. Int.200017341943210.1081/CBI‑10010105510841214
    [Google Scholar]
  107. DowlingG.A. BurrR.L. Van SomerenE.J.W. HubbardE.M. LuxenbergJ.S. MastickJ. CooperB.A. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease.J. Am. Geriatr. Soc.200856223924610.1111/j.1532‑5415.2007.01543.x18070004
    [Google Scholar]
  108. FurioA.M. BruscoL.I. CardinaliD.P. Possible therapeutic value of melatonin in mild cognitive impairment: A retrospective study.J. Pineal Res.200743440440910.1111/j.1600‑079X.2007.00491.x17910609
    [Google Scholar]
  109. CardinaliD.P. VigoD.E. OlivarN. VidalM.F. FurioA.M. BruscoL.I. Therapeutic application of melatonin in mild cognitive impairment.Am. J. Neurodegener. Dis.20121328029123383398
    [Google Scholar]
  110. Cruz-AguilarM.A. Ramírez-SaladoI. GuevaraM.A. Hernández-GonzálezM. Benitez-KingG. Melatonin effects on EEG activity during sleep onset in mild-to-moderate Alzheimer’s disease: A pilot study.J. Alzheimers Dis. Rep.201821556510.3233/ADR‑17001930480249
    [Google Scholar]
  111. YinY. LiuY. ZhuangJ. PanX. LiP. YangY. LiY.P. ZhaoZ.Q. HuangL.Q. ZhaoZ.X. Low-dose atypical antipsychotic risperidone improves the 5-Year outcome in Alzheimer’s disease patients with sleep disturbances.Pharmacology2015963-415516210.1159/00043588926279176
    [Google Scholar]
  112. WarfieldA.E. GuptaP. RuhmannM.M. JeffsQ.L. GuidoneG.C. RhymesH.W. ThompsonM.I. ToddW.D. A brainstem to circadian system circuit links Tau pathology to sundowning-related disturbances in an Alzheimer’s disease mouse model.Nat. Commun.2023141502710.1038/s41467‑023‑40546‑w37596279
    [Google Scholar]
  113. LammersM. AhmedA.I.A. Melatonin for sundown syndrome and delirium in dementia: Is it effective?J. Am. Geriatr. Soc.20136161045104610.1111/jgs.1229623772740
    [Google Scholar]
  114. BruscoL. FainsteinI. MárquezM. CardinaliD. Effect of melatonin in selected populations of sleep-disturbed patients.Neurosignals199981-212613110.1159/00001458010085474
    [Google Scholar]
  115. PereiraJ.B. JanelidzeS. StrandbergO. WhelanC.D. ZetterbergH. BlennowK. PalmqvistS. StomrudE. Mattsson-CarlgrenN. HanssonO. Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer’s disease pathology.Nature Aging20222121138114410.1038/s43587‑022‑00310‑z37118533
    [Google Scholar]
  116. AlvesS.R. da Cruz e SilvaC. RosaI.M. HenriquesA.G. da Cruz e SilvaO.A.B. A bioinformatics approach toward unravelling the synaptic molecular crosstalk between Alzheimer’s disease and diabetes.J. Alzheimers Dis.20228641917193310.3233/JAD‑21505935253743
    [Google Scholar]
  117. WadeA.G. FarmerM. HarariG. FundN. LaudonM. NirT. Frydman-MaromA. ZisapelN. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: A 6-month, randomized, placebo-controlled, multicenter trial.Clin. Interv. Aging2014994796124971004
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286807240326085736
Loading
/content/journals/cmc/10.2174/0109298673286807240326085736
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's disease; amyloid-beta peptide; hormones; melatonin; pineal gland; therapeutic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test