Skip to content
2000
Volume 32, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

It is evident that long non-coding RNAs (lncRNAs) are implicated in the pathogenesis of periodontitis. However, the detailed functional mechanisms remain unknown.

Objective

This study aimed to elucidate the pathogenic mechanisms of lncRNAs in periodontitis by investigating their regulation of protein-coding gene expression.

Methods

Human Gingival Fibroblasts-1 (HGF-1) were stimulated with 5 μg/mL of Lipopolysaccharide (LPS) for 24 hours to construct the periodontitis cell model. qRT-PCR and western blot analyses were carried out to determine mRNA and protein levels of genes induced by LPS or involved in the inflammatory response. Cytokine levels and inflammatory proteins were assayed using ELISA. Transcriptome sequencing and analysis were conducted to reveal the expression signatures of lncRNAs. DESeq2 (v1.4.5) was used to analyze differentially expressed genes. Gene function enrichment was carried out using Phyper. AnimalTFDB v3.0 was used to analyze transcription factors involved in the pathogenesis of periodontitis. Protein domains and families of the target proteins were identified based on the Pfam protein family database.

Results

In LPS-treated HGF-1 cells, we detected the secretion of TNF-α and IL-1β, along with the production of MDA and ROS, indicating that LPS significantly triggered inflammatory responses and oxidative stress in HGF-1 cells. A total of 15,295 lncRNAs were detected in both the control (ConT) and LPS-treated groups. We selected 10 significantly differentially co-expressed lncRNA-coding genes (MIR222HG, SNHG15, SNHG12, URS00005F6AA3, URS00009C153E, URS0000D57D7F, URS00019A4688, URS00019AF240, URS00019C6526, and URS0001A00B79) as potential biomarkers for diagnosing the progression of periodontitis. An interaction network consisting of 2 lncRNA-encoding genes (MIR222HG and SNHG15) and protein-encoding genes (CBX5, NUPR1, CHAC1, and MAB21L3) may be involved in the pathogenesis of periodontitis. The ceRNA network analysis revealed the differentially expressed lncRNAs to be involved in inflammatory response, immune infiltration, collagen fiber synthesis, and bone remodeling in LPS-induced periodontitis.

Conclusion

This study has identified pivotal molecules implicated in the pathogenesis of periodontitis, including those involved in inflammation regulation, collagen fiber synthesis, and bone remodeling. Our findings may contribute to explaining how lncRNAs participate in the pathological process of periodontitis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319020240729072059
2024-08-02
2025-10-23
Loading full text...

Full text loading...

References

  1. Becerra-RuizJ.S. Guerrero-VelázquezC. Martínez-EsquiviasF. Martínez-PérezL.A. Guzmán-FloresJ.M. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss.Oral Dis.20222861441144710.1111/odi.1388433884712
    [Google Scholar]
  2. KwonT. LamsterI.B. LevinL. Current concepts in the management of periodontitis.Int. Dent. J.202171646247610.1111/idj.1263034839889
    [Google Scholar]
  3. OrlandiM. Muñoz AguileraE. MarlettaD. PetrieA. SuvanJ. D’AiutoF. Impact of the treatment of periodontitis on systemic health and quality of life: A systematic review.J. Clin. Periodontol.202249S24Suppl. 2431432710.1111/jcpe.1355434791686
    [Google Scholar]
  4. JiaoJ. JingW. SiY. FengX. TaiB. HuD. LinH. WangB. WangC. ZhengS. LiuX. RongW. WangW. LiW. MengH. WangX. The prevalence and severity of periodontal disease in mainland china: data from the fourth national oral health survey (2015–2016).J. Clin. Periodontol.202148216817910.1111/jcpe.1339633103285
    [Google Scholar]
  5. StöhrJ. BarbareskoJ. NeuenschwanderM. SchlesingerS. Bidirectional association between periodontal disease and diabetes mellitus: a systematic review and meta-analysis of cohort studies.Sci. Rep.20211111368610.1038/s41598‑021‑93062‑634211029
    [Google Scholar]
  6. BartoldP.M. Lopez-OlivaI. Periodontitis and rheumatoid arthritis: An update 2012-2017.Periodontol. 2000202083118921210.1111/prd.1230032385878
    [Google Scholar]
  7. SuhJ.S. KimS. BoströmK.I. WangC.Y. KimR.H. ParkN.H. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial–mesenchymal transition in mice.Int. J. Oral Sci.20191132110.1038/s41368‑019‑0054‑131257363
    [Google Scholar]
  8. Padilla-CáceresT. Arbildo-VegaH.I. Caballero-ApazaL. Cruzado-OlivaF. Mamani-CoriV. Cervantes-AlagónS. Munayco-PantojaE. PandaS. Vásquez-RodrigoH. Castro-MejíaP. Huaita-AchaD. Association between the risk of preterm birth and low birth weight with periodontal disease in pregnant women: An umbrella review.Dent J202311374
    [Google Scholar]
  9. BourgeoisD. InquimbertC. OttolenghiL. CarrouelF. Periodontal pathogens as risk factors of cardiovascular diseases, diabetes, rheumatoid arthritis, cancer, and chronic obstructive pulmonary disease-is there cause for consideration?Microorganisms201971042410.3390/microorganisms710042431600905
    [Google Scholar]
  10. DarveauR.P. CurtisM.A. Oral biofilms revisited: A novel host tissue of bacteriological origin.Periodontol. 2000202186181310.1111/prd.1237433690952
    [Google Scholar]
  11. XuW. ZhouW. WangH. LiangS. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis.Adv. Protein Chem. Struct. Biol.2020120458410.1016/bs.apcsb.2019.12.00132085888
    [Google Scholar]
  12. ByrneS.J. DashperS.G. DarbyI.B. AdamsG.G. HoffmannB. ReynoldsE.C. Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque.Oral Microbiol. Immunol.200924646947710.1111/j.1399‑302X.2009.00544.x19832799
    [Google Scholar]
  13. AndrukhovO. ErtlschweigerS. MoritzA. BantleonH.P. Rausch-FanX. Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts.Acta Odontol. Scand.201472533734510.3109/00016357.2013.83453524255960
    [Google Scholar]
  14. KatoH. TaguchiY. TominagaK. UmedaM. TanakaA. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells.Arch. Oral Biol.201459216717510.1016/j.archoralbio.2013.11.00824370188
    [Google Scholar]
  15. SimonM.J.K. NiehoffP. KimmigB. WiltfangJ. AçilY. Expression profile and synthesis of different collagen types I, II, III, and V of human gingival fibroblasts, osteoblasts, and SaOS-2 cells after bisphosphonate treatment.Clin. Oral Investig.2010141515810.1007/s00784‑009‑0312‑219597852
    [Google Scholar]
  16. TiptonD.A. SeshulB.A. DabbousM.K. Effect of bisphosphonates on human gingival fibroblast production of mediators of osteoclastogenesis: RANKL, osteoprotegerin and interleukin-6.J. Periodontal Res.2011461394710.1111/j.1600‑0765.2010.01306.x20701670
    [Google Scholar]
  17. IndioV. SchipaniA. NanniniM. UrbiniM. RizzoA. De LeoA. AltimariA. Di ScioscioV. MesselodiD. TarantinoG. AstolfiA. PantaleoM. Gene expression landscape of SDH-deficient gastrointestinal stromal tumors.J. Clin. Med.2021105105710.3390/jcm1005105733806389
    [Google Scholar]
  18. FialaO. ButiS. TakeshitaH. OkadaY. MassariF. PalaciosG.A. DioneseM. ScagliariniS. BüttnerT. FornariniG. MyintZ.W. GalliL. SouzaV.C. PichlerR. De GiorgiU. QuirogaM.N.G. GilbertD. PopovicL. GrandeE. MammoneG. BerardiR. CrabbS.J. Molina-CerrilloJ. FreitasM. LuzM. IacovelliR. CalabròF. TuralD. AtzoriF. KüronyaZ. ChiariR. CamposS. CaffoO. FayA.P. KucharzJ. ZucaliP.A. RinckJ.A. ZeppelliniA. BastosD.A. AurilioG. MotaA. TrindadeK. OrtegaC. SadeJ.P. RizzoM. VauN. GiannatempoP. BarillasA. MonteiroF.S.M. DausterB. CattriniC. NogueiraL. de Carvalho FernandesR. SerontE. AceitunoL.G. GrilloneF. CutuliH.J. FernandezM. BassanelliM. RovielloG. AbahssainH. ProcopioG. MilellaM. KopeckyJ. MartignettiA. MessinaC. CaitanoM. InmanE. KanesvaranR. HerchenhornD. SantiniD. MannehR. BisonniR. ZakopoulouR. MoscaA. MorelliF. MalufF. SoaresA. NunesF. PintoA. ZguraA. IncorvaiaL. AnsariJ. ZabalzaI.O. LandmesserJ. RizzoA. MollicaV. SorgentoniG. BattelliN. PortaC. BellmuntJ. SantoniM. Use of concomitant proton pump inhibitors, statins or metformin in patients treated with pembrolizumab for metastatic urothelial carcinoma: data from the ARON-2 retrospective study.Cancer Immunol. Immunother.202372113665368210.1007/s00262‑023‑03518‑z37676282
    [Google Scholar]
  19. RizzoA. BrandiG. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma.Cancer Treat. Res. Commun.20212710032810.1016/j.ctarc.2021.10032833549983
    [Google Scholar]
  20. RizzoA. RicciA.D. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond.Expert Opin. Investig. Drugs202231654955510.1080/13543784.2022.200835434793275
    [Google Scholar]
  21. HuangN. LiC. SunW. WuJ. XiaoF. Long non-coding RNA TUG1 participates in LPS-induced periodontitis by regulating miR-498/RORA pathway.Oral Dis.202127360061010.1111/odi.1359032762066
    [Google Scholar]
  22. LiuY. LiuC. ZhangA. YinS. WangT. WangY. WangM. LiuY. YingQ. SunJ. WeiF. LiuD. WangC. GeS. Down-regulation of long non-coding RNA MEG3 suppresses osteogenic differentiation of periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1 axis in periodontitis.Aging201911155334535010.18632/aging.10210531398715
    [Google Scholar]
  23. HeJ. ZhengZ. LiS. LiaoC. LiY. Identification and assessment of differentially expressed necroptosis long non-coding RNAs associated with periodontitis in human.BMC Oral Health202323163210.1186/s12903‑023‑03308‑037667236
    [Google Scholar]
  24. GuoR. HuangY. LiuH. ZhengY. JiaL. LiW. Long Non-CodingR.N.A. Long non-coding RNA H19 participates in periodontal inflammation via activation of autophagy.J. Inflamm. Res.20201363564610.2147/JIR.S27661933061528
    [Google Scholar]
  25. HuangY. HanY. GuoR. LiuH. LiX. JiaL. ZhengY. LiW. Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A.Stem Cell Res. Ther.2020111510.1186/s13287‑019‑1519‑z31900200
    [Google Scholar]
  26. DingL.B. LiY. LiuG.Y. LiT.H. LiF. GuanJ. WangH.J. Long non-coding RNA PVT1, a molecular sponge of miR-26b, is involved in the progression of hyperglycemia-induced collagen degradation in human chondrocytes by targeting CTGF/TGF-β signal ways.Innate Immun.202026320421410.1177/175342591988177831625803
    [Google Scholar]
  27. LooW.T.Y. WangM. JinL.J. CheungM.N.B. LiG.R. Association of matrix metalloproteinase (MMP-1, MMP-3 and MMP-9) and cyclooxygenase-2 gene polymorphisms and their proteins with chronic periodontitis.Arch. Oral Biol.201156101081109010.1016/j.archoralbio.2011.03.01121481333
    [Google Scholar]
  28. WangP.L. SatoK. OidoM. FujiiT. KowashiY. ShinoharaM. OhuraK. TaniH. KubokiY. Involvement of CD14 on human gingival fibroblasts in Porphyromonas gingivalis lipopolysaccharide-mediated interleukin-6 secretion.Arch. Oral Biol.199843968769410.1016/S0003‑9969(98)00056‑99783822
    [Google Scholar]
  29. ShimazuR. AkashiS. OgataH. NagaiY. FukudomeK. MiyakeK. KimotoM. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4.J. Exp. Med.1999189111777178210.1084/jem.189.11.177710359581
    [Google Scholar]
  30. LiX. WangX. LuanQ.X. Hyperresponsiveness of human gingival fibroblasts from patients with aggressive periodontitis against bacterial lipopolysaccharide.Exp. Ther. Med.202121541710.3892/etm.2021.986133747158
    [Google Scholar]
  31. TakadaH. MiharaJ. MorisakiI. HamadaS. Induction of interleukin-1 and -6 in human gingival fibroblast cultures stimulated with Bacteroides lipopolysaccharides.Infect. Immun.199159129530110.1128/iai.59.1.295‑301.19911702762
    [Google Scholar]
  32. HerathT.D.K. WangY. SeneviratneC.J. LuQ. DarveauR.P. WangC.Y. JinL. Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity differentially modulates the expression of IL-6 and IL-8 in human gingival fibroblasts.J. Clin. Periodontol.201138869470110.1111/j.1600‑051X.2011.01741.x21752043
    [Google Scholar]
  33. LiX. WangX. ZhengM. LuanQ.X. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts.Exp. Cell Res.2016347121222110.1016/j.yexcr.2016.08.00727515000
    [Google Scholar]
  34. MeghilM.M. TawfikO.K. ElashiryM. RajendranM. ArceR.M. FultonD.J. SchoenleinP.V. CutlerC.W. Disruption of immune homeostasis in human dendritic cells via regulation of autophagy and apoptosis by Porphyromonas gingivalis. Front. Immunol.201910228610.3389/fimmu.2019.0228631608069
    [Google Scholar]
  35. ZhengS. YuS. FanX. ZhangY. SunY. LinL. WangH. PanY. LiC. Porphyromonas gingivalis survival skills: Immune evasion.J. Periodontal Res.20215661007101810.1111/jre.1291534254681
    [Google Scholar]
  36. ChopraA. BhatS.G. SivaramanK. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update.J. Oral Microbiol.2020121180109010.1080/20002297.2020.180109032944155
    [Google Scholar]
  37. ZouY. LiC. ShuF. TianZ. XuW. XuH. TianH. ShiR. MaoX. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis.J. Cell. Biochem.2015116464064710.1002/jcb.2501525399840
    [Google Scholar]
  38. LinY. JinL. TongW.M. LeungY.Y. GuM. YangY. Identification and integrated analysis of differentially expressed long non-coding RNAs associated with periodontitis in humans.J. Periodontal Res.202156467968910.1111/jre.1286433751610
    [Google Scholar]
  39. ZhangX. RenL. YanX. ShanY. LiuL. ZhouJ. KuangQ. LiM. LongH. LaiW. Identification of immune-related lncRNAs in periodontitis reveals regulation network of gene-lncRNA-pathway-immunocyte.Int. Immunopharmacol.20208410660010.1016/j.intimp.2020.10660032417654
    [Google Scholar]
  40. SunT. DuS.Y. ArmeniaJ. QuF. FanJ. WangX. FeiT. KomuraK. LiuS.X. LeeG.S.M. KantoffP.W. Expression of lncRNA MIR222HG co-transcribed from the miR-221/222 gene promoter facilitates the development of castration-resistant prostate cancer.Oncogenesis2018733010.1038/s41389‑018‑0039‑529540675
    [Google Scholar]
  41. LiuG. TianR. MaoH. RenY. Effect of lncRNA SNHG15 on LPS-induced vascular endothelial cell apoptosis, inflammatory factor expression and oxidative stress by targeting miR-362-3p.Cell. Mol. Biol.202267622022710.14715/cmb/2021.67.6.2935818193
    [Google Scholar]
  42. YangX. ChenH. ZhengH. ChenK. CaiP. LiL. LiK. DuY. HeX. LncRNA SNHG12 promotes osteoarthritis progression through targeted down-regulation of miR-16-5p.Clin. Lab.20226801/202210.7754/Clin.Lab.2021.21040235023690
    [Google Scholar]
  43. FanR. ZhouY. ChenX. ZhongX. HeF. PengW. LiL. WangX. XuY. Porphyromonas gingivalis Outer Membrane Vesicles Promote Apoptosis via msRNA-Regulated DNA Methylation in Periodontitis.Microbiol. Spectr.2023111e03288-2210.1128/spectrum.03288‑2236629433
    [Google Scholar]
  44. TanL. ArmstrongA.R. RosasS. PatelC.M. Vander WieleS.S. WilleyJ.S. CarlsonC.S. YammaniR.R. Nuclear protein-1 is the common link for pathways activated by aging and obesity in chondrocytes: A potential therapeutic target for osteoarthritis.FASEB J.2023379e2313310.1096/fj.202201700RR37566478
    [Google Scholar]
  45. ZhouZ. ZhangH. CHAC1 exacerbates LPS-induced ferroptosis and apoptosis in HK-2 cells by promoting oxidative stress.Allergol. Immunopathol. (Madr.)20235129911010.15586/aei.v51i2.76036916093
    [Google Scholar]
  46. MungrueI.N. PagnonJ. KohannimO. GargalovicP.S. LusisA.J. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade.J. Immunol.2009182146647610.4049/jimmunol.182.1.46619109178
    [Google Scholar]
  47. YaoH. WangY. ZhouW. XuC. GeX. ZhuJ. Chac1 silencing mitigates hemorrhagic shock-induced intestinal injury by inhibiting oxidative stress and ferroptosis.Signa Vitae2023196184
    [Google Scholar]
  48. YiE. ZhangJ. ZhengM. ZhangY. LiangC. HaoB. HongW. LinB. PuJ. LinZ. HuangP. LiB. ZhouY. RanP. Long noncoding RNA IL6-AS1 is highly expressed in chronic obstructive pulmonary disease and is associated with interleukin 6 by targeting miR-149-5p and early B-cell factor 1.Clin. Transl. Med.2021117e47910.1002/ctm2.47934323408
    [Google Scholar]
  49. ZouW. QinW. The effects of long non-coding RNA linc-01135 on the osteogenic differentiation capability of human inflammatory PDLSCs under static mechanical strain loading.J Pract Stomatol.2018193197
    [Google Scholar]
  50. AlmeidaT. ValverdeT. Martins-JúniorP. RibeiroH. KittenG. CarvalhaesL. Morphological and quantitative study of collagen fibers in healthy and diseased human gingival tissues.Rom. J. Morphol. Embryol.2015561334025826485
    [Google Scholar]
  51. LuoX. WanQ. ChengL. XuR. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis.Front. Cell. Infect. Microbiol.20221290885910.3389/fcimb.2022.90885935937695
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319020240729072059
Loading
/content/journals/cmc/10.2174/0109298673319020240729072059
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): co-expression network; inflammatory proteins; lncRNAs; LPS; pathogenesis; Periodontitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test