Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Polymeric micelles are becoming the method of choice for a nano-drug delivery system, especially in colorectal cancer treatment. These tiny structures have become popular for their amazing qualities that make drug delivery more efficient and therapies better. Colorectal cancer, also known as colon cancer, is one of the most common and deadly cancers in the world. Traditional chemotherapy is good, but it has big downsides, like harming other parts of the body and making people sick all over. Polymeric micelles give a new way to fix these problems by being easier on the body, breaking down naturally, and staying in the blood longer. The polymeric micelles, which are loaded with drugs, are sheltered within the tumor, which leads to a reduction in off-site effects and an increase in the targeting and accumulation of chemotherapeutics at the cancer site. This review paper elaborates on the current status of polymeric micelles as a method for nano-drug delivery for chemotherapy, emphasizing their efficacy in managing cancer. The paper also talks about the various types of copolymers that are used to create polymeric micelles, the different types of micelles, their physicochemical properties, the preparation process, characterization, and their application in cancer diagnostics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306752240726104241
2024-08-01
2025-10-23
Loading full text...

Full text loading...

References

  1. MatosA.I. CarreiraB. PeresC. MouraL.I.F. ConniotJ. FourniolsT. ScomparinA. Martínez-BarriocanalÁ. ArangoD. CondeJ.P. PréatV. Satchi-FainaroR. FlorindoH.F. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer.J. Control. Release201930710813810.1016/j.jconrel.2019.06.01731226355
    [Google Scholar]
  2. FritzW. Who-IARC-annual report 1975. international agency for research on cancer, lyon 1975. 149 seiten.Preis: 12:- Sw. fr, Food/Nahrung1977219810.1002/food.19770210141
    [Google Scholar]
  3. NaeemM. AwanU.A. SubhanF. CaoJ. HlaingS.P. LeeJ. ImE. JungY. YooJ.W. Advances in colon-targeted nano-drug delivery systems: Challenges and solutions.Arch. Pharm. Res.202043115316910.1007/s12272‑020‑01219‑031989477
    [Google Scholar]
  4. LeiX. HeQ. LiZ. ZouQ. XuP. YuH. DingY. ZhuW. Cancer stem cells in colorectal cancer and the association with chemotherapy resistance.Med. Oncol.20213844310.1007/s12032‑021‑01488‑933738588
    [Google Scholar]
  5. RejhováA. OpattováA. ČumováA. SlívaD. VodičkaP. Natural compounds and combination therapy in colorectal cancer treatment.Eur. J. Med. Chem.201814458259410.1016/j.ejmech.2017.12.03929289883
    [Google Scholar]
  6. HammondW.A. SwaikaA. ModyK. Pharmacologic resistance in colorectal cancer: A review.Ther. Adv. Med. Oncol.201681578410.1177/175883401561453026753006
    [Google Scholar]
  7. GinghinăO. HudițăA. ZahariaC. TsatsakisA. MezhuevY. CostacheM. GălățeanuB. Current landscape in organic nanosized materials advances for improved management of colorectal cancer patients.Materials2021149244010.3390/ma1409244034066710
    [Google Scholar]
  8. CabezaL. PerazzoliG. MesasC. Jiménez-LunaC. PradosJ. RamaA.R. MelguizoC. Nanoparticles in colorectal cancer therapy: Latest in vivo assays, clinical trials, and patents.AAPS PharmSciTech202021517810.1208/s12249‑020‑01731‑y32591920
    [Google Scholar]
  9. ArshadU. SuttonP.A. AshfordM.B. TreacherK.E. LiptrottN.J. RannardS.P. GoldringC.E. OwenA. Critical considerations for targeting colorectal liver metastases with nanotechnology.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020122e158810.1002/wnan.158831566913
    [Google Scholar]
  10. GurunathanS. KangM.H. QasimM. KimJ.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer.Int. J. Mol. Sci.20181910326410.3390/ijms1910326430347840
    [Google Scholar]
  11. DeshmukhA.S. ChauhanP.N. NoolviM.N. ChaturvediK. GangulyK. ShuklaS.S. NadagoudaM.N. AminabhaviT.M. Polymeric micelles: Basic research to clinical practice.Int. J. Pharm.2017532124926810.1016/j.ijpharm.2017.09.00528882486
    [Google Scholar]
  12. TawfikS.M. AzizovS. ElmasryM.R. SharipovM. LeeY.I. Recent advances in nanomicelles delivery systems.Nanomaterials20201117010.3390/nano1101007033396938
    [Google Scholar]
  13. BholakantR. DongB. ZhouX. HuangX. ZhaoC. HuangD. ZhongY. QianH. ChenW. FeijenJ. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20219428718873810.1039/D1TB01771C34635905
    [Google Scholar]
  14. JhaveriA.M. TorchilinV.P. Multifunctional polymeric micelles for delivery of drugs and siRNA.Front. Pharmacol.201457710.3389/fphar.2014.0007724795633
    [Google Scholar]
  15. FatfatZ. FatfatM. Gali-MuhtasibH. Micelles as potential drug delivery systems for colorectal cancer treatment.World J. Gastroenterol.202228252867288010.3748/wjg.v28.i25.286735978871
    [Google Scholar]
  16. OerlemansC. BultW. BosM. StormG. NijsenJ.F.W. HenninkW.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release.Pharm. Res.201027122569258910.1007/s11095‑010‑0233‑420725771
    [Google Scholar]
  17. YokoyamaM. Polymeric micelles as drug carriers: Their lights and shadows.J. Drug Target.201422757658310.3109/1061186X.2014.93468825012065
    [Google Scholar]
  18. TorchilinV.P. Targeted polymeric micelles for delivery of poorly soluble drugs.Cell. Mol. Life Sci.20046119-202549255910.1007/s00018‑004‑4153‑515526161
    [Google Scholar]
  19. MorshedR.A. ChengY. AuffingerB. WegscheidM.L. LesniakM.S. The potential of polymeric micelles in the context of glioblastoma therapy.Front. Pharmacol.2013415710.3389/fphar.2013.0015724416018
    [Google Scholar]
  20. Pereira-SilvaM. Alvarez-LorenzoC. ConcheiroA. SantosA.C. VeigaF. FigueirasA. Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies.Eur. J. Pharm. Biopharm.20201488810610.1016/j.ejpb.2019.10.01331958514
    [Google Scholar]
  21. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers20181023810.3390/cancers10070238
    [Google Scholar]
  22. ZhouQ. ZhangL. YangT. WuH. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.Int. J. Nanomedicine2018132921294210.2147/IJN.S15869629849457
    [Google Scholar]
  23. JarakI. VarelaC.L. Tavares da SilvaE. RoleiraF.F.M. VeigaF. FigueirasA. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications.Eur. J. Med. Chem.202020611252610.1016/j.ejmech.2020.11252632971442
    [Google Scholar]
  24. BhattacharyaS. PrajapatiB.G. SinghS. Polymeric nanoparticles in colorectal cancer.Colorectal Cancer.Elsevier202420323110.1016/B978‑0‑443‑13870‑6.00020‑9
    [Google Scholar]
  25. QiuL. ShanX. LongM. AhmedK.S. ZhaoL. MaoJ. ZhangH. SunC. YouC. LvG. ChenJ. Elucidation of cellular uptake and intracellular trafficking of heparosan polysaccharide-based micelles in various cancer cells.Int. J. Biol. Macromol.201913075576410.1016/j.ijbiomac.2019.02.13330851320
    [Google Scholar]
  26. XuW. LingP. ZhangT. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs.J. Drug Deliv.2013201311510.1155/2013/34031523936656
    [Google Scholar]
  27. ImranM. ShahM.R. Shafiullah, Amphiphilic block copolymers-based micelles for drug delivery.Design and Development of New Nanocarriers.Elsevier201836540010.1016/B978‑0‑12‑813627‑0.00010‑7
    [Google Scholar]
  28. El AsmarA. MorandiG. BurelF. Synthesis of dual sensitive lipid-b-poly(dimethylaminoethyl methacrylate) copolymers, self-assemblies and modulation of cloud point temperatures through physical blends with lipid-b-poly(2-isopropyl-2-oxazoline).Macromolecules201952239160916710.1021/acs.macromol.9b01348
    [Google Scholar]
  29. ToscaniniM.A. LimeresM.J. GarridoA.V. CagelM. BernabeuE. MorettonM.A. ChiappettaD.A. CuestasM.L. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases.J. Drug Deliv. Sci. Technol.20216610292710.1016/j.jddst.2021.102927
    [Google Scholar]
  30. BillerL.H. SchragD. Diagnosis and treatment of metastatic colorectal cancer.JAMA202132566910.1001/jama.2021.0106
    [Google Scholar]
  31. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  32. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑031631858
    [Google Scholar]
  33. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  34. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑831455888
    [Google Scholar]
  35. Sánchez-GundínJ. Fernández-CarballidoA.M. Martí- nez-ValdiviesoL. Barreda-HernándezD. Torres-SuárezA.I. New trends in the therapeutic approach to metastatic colorectal cancer.Int. J. Med. Sci.201815765966510.7150/ijms.2445329910669
    [Google Scholar]
  36. WolfA.M.D. FonthamE.T.H. ChurchT.R. FlowersC.R. GuerraC.E. LaMonteS.J. EtzioniR. McKennaM.T. OeffingerK.C. ShihY.C.T. WalterL.C. AndrewsK.S. BrawleyO.W. BrooksD. FedewaS.A. Manassaram-BaptisteD. SiegelR.L. WenderR.C. SmithR.A. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society.CA Cancer J. Clin.201868425028110.3322/caac.2145729846947
    [Google Scholar]
  37. van der StokE.P. SpaanderM.C.W. GrünhagenD.J. VerhoefC. KuipersE.J. Surveillance after curative treatment for colorectal cancer.Nat. Rev. Clin. Oncol.201714529731510.1038/nrclinonc.2016.19927995949
    [Google Scholar]
  38. SouglakosJ. AndroulakisN. SyrigosK. PolyzosA. ZirasN. AthanasiadisA. KakolyrisS. TsousisS. KouroussisC. VamvakasL. KalykakiA. SamonisG. MavroudisD. GeorgouliasV. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs. FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): A multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG).Br. J. Cancer200694679880510.1038/sj.bjc.660301116508637
    [Google Scholar]
  39. BrownK.G.M. SolomonM.J. Progress and future direction in the management of advanced colorectal cancer.Br. J. Surg.2018105661561710.1002/bjs.1075929652083
    [Google Scholar]
  40. LabiancaR. NordlingerB. BerettaG.D. MosconiS. MandalàM. CervantesA. ArnoldD. ESMO Guidelines Working Group Early colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201324Suppl. 6vi64vi7210.1093/annonc/mdt35424078664
    [Google Scholar]
  41. Van CutsemE. CervantesA. NordlingerB. ArnoldD. ESMO Guidelines Working Group Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201425Suppl. 3iii1iii910.1093/annonc/mdu26025190710
    [Google Scholar]
  42. ZhengY. OzY. GuY. AhamadN. ShariatiK. ChevalierJ. KapurD. AnnabiN. Rational design of polymeric micelles for targeted therapeutic delivery.Nano Today20245510214710.1016/j.nantod.2024.102147
    [Google Scholar]
  43. SeymourM.T. MaughanT.S. LedermannJ.A. TophamC. JamesR. GwytherS.J. SmithD.B. ShepherdS. MaraveyasA. FerryD.R. MeadeA.M. ThompsonL. GriffithsG.O. ParmarM.K.B. StephensR.J. FOCUS Trial Investigators National Cancer Research Institute Colorectal Clinical Studies Group Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): A randomised controlled trial.Lancet2007370958214315210.1016/S0140‑6736(07)61087‑317630037
    [Google Scholar]
  44. KoopmanM. AntoniniN.F. DoumaJ. WalsJ. HonkoopA.H. ErdkampF.L.G. de JongR.S. RodenburgC.J. VreugdenhilG. LoosveldO.J.L. van BochoveA. SinnigeH.A.M. CreemersG.J.M. TesselaarM.E.T. SleeP.H.T.J. WerterM.J.B.P. MolL. DalesioO. PuntC.J.A. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): A phase III randomised controlled trial.Lancet2007370958213514210.1016/S0140‑6736(07)61086‑117630036
    [Google Scholar]
  45. TournigandC. AndréT. AchilleE. LledoG. FleshM. Mery-MignardD. QuinauxE. CouteauC. BuyseM. GanemG. LandiB. ColinP. LouvetC. de GramontA. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study.J. Clin. Oncol.200422222923710.1200/JCO.2004.05.11314657227
    [Google Scholar]
  46. VeraR. AlonsoV. GállegoJ. GonzálezE. Guillén-PonceC. PericayC. RiveraF. SafontM.J. Valladares-AyerbesM. Current controversies in the management of metastatic colorectal cancer.Cancer Chemother. Pharmacol.201576465967710.1007/s00280‑015‑2808‑626113053
    [Google Scholar]
  47. ZhangY. HuangY. LiS. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery.AAPS PharmSciTech201415486287110.1208/s12249‑014‑0113‑z24700296
    [Google Scholar]
  48. KapishonV. WhitneyR.A. ChampagneP. CunninghamM.F. NeufeldR.J. Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization.Biomacromolecules20151672040204810.1021/acs.biomac.5b0047026068280
    [Google Scholar]
  49. ZhangW. HuX. ShenQ. XingD. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy.Nat. Commun.2019101170410.1038/s41467‑019‑09566‑330979885
    [Google Scholar]
  50. PhamD.T. ChokamonsirikunA. PhattaravorakarnV. TiyaboonchaiW. Polymeric micelles for pulmonary drug delivery: A comprehensive review.J. Mater. Sci.20215632016203610.1007/s10853‑020‑05361‑4
    [Google Scholar]
  51. ZhangX. NiuJ. ZhouZ. TangG. YanG. LiuY. WangJ. HuG. XiaoJ. YanW. CaoY. Stimuli-responsive polymeric micelles based on cellulose derivative containing imine groups with improved bioavailability and reduced aquatic toxicity of pyraclostrobin.Chem. Eng. J.202347414578910.1016/j.cej.2023.145789
    [Google Scholar]
  52. KesharwaniS.S. KaurS. TummalaH. SangamwarA.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors.Colloids Surf. B Biointerfaces201917358159010.1016/j.colsurfb.2018.10.02230352379
    [Google Scholar]
  53. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑10084722432577
    [Google Scholar]
  54. ChaudhuriA. RameshK. KumarD.N. DehariD. SinghS. KumarD. AgrawalA.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer.J. Drug Deliv. Sci. Technol.20227710388610.1016/j.jddst.2022.103886
    [Google Scholar]
  55. MajumderN. G DasN. DasS.K. Polymeric micelles for anticancer drug delivery.Ther. Deliv.2020111061363510.4155/tde‑2020‑000832933425
    [Google Scholar]
  56. WuX. El GhzaouiA. LiS. Anisotropic self-assembling micelles prepared by the direct dissolution of PLA/PEG block copolymers with a high PEG fraction.Langmuir201127138000800810.1021/la201453921639089
    [Google Scholar]
  57. ZeponK.M. OtsukaI. BouilhacC. MunizE.C. SoldiV. BorsaliR. Glyco-nanoparticles made from self-assembly of maltoheptaose- block -poly(methyl methacrylate): Micelle, reverse micelle, and encapsulation.Biomacromolecules20151672012202410.1021/acs.biomac.5b0044325974198
    [Google Scholar]
  58. BaiS. MaX. ZhangT. GaoY-E. WangY. GaoY. XuZ. Polymeric micelles as delivery systems.Nanoengineered Biomaterials for Advanced Drug Delivery.Elsevier202026127810.1016/B978‑0‑08‑102985‑5.00012‑7
    [Google Scholar]
  59. SenterP.D. BeamK.S. MixanB. WahlA.F. Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug.Bioconjug. Chem.20011261074108010.1021/bc015542011716702
    [Google Scholar]
  60. KimT.H. MountC.W. GombotzW.R. PunS.H. The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles.Biomaterials201031287386739710.1016/j.biomaterials.2010.06.00420598741
    [Google Scholar]
  61. YangT. CuiF.D. ChoiM.K. ChoJ.W. ChungS.J. ShimC.K. KimD.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation.Int. J. Pharm.20073381-231732610.1016/j.ijpharm.2007.02.01117368984
    [Google Scholar]
  62. ReppL. UnterbergerC.J. YeZ. FeltenbergerJ.B. SwansonS.M. MarkerP.C. KwonG.S. Oligo(Lactic Acid)8-docetaxel prodrug-loaded PEG-b-PLA micelles for prostate cancer.Nanomaterials20211110274510.3390/nano1110274534685195
    [Google Scholar]
  63. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y31223315
    [Google Scholar]
  64. ReppL. RasoulianboroujeniM. LeeH.J. KwonG.S. Acyl and oligo(lactic acid) prodrugs for PEG-b-PLA and PEG-b-PCL nano-assemblies for injection.J. Control. Release20213301004101510.1016/j.jconrel.2020.11.00833166607
    [Google Scholar]
  65. ZhuC. ZhangH. LiW. LuoL. GuoX. WangZ. KongF. LiQ. YangJ. DuY. YouJ. Suppress orthotopic colon cancer and its metastasis through exact targeting and highly selective drug release by a smart nanomicelle.Biomaterials201816114415310.1016/j.biomaterials.2018.01.04329421551
    [Google Scholar]
  66. LuY. ZhongL. JiangZ. PanH. ZhangY. ZhuG. BaiL. TongR. ShiJ. DuanX. Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy.Nanoscale Res. Lett.201914119310.1186/s11671‑019‑2985‑z31165329
    [Google Scholar]
  67. MenK. HuangR. ZhangX. ZhangR. ZhangY. PengY. TongR. YangL. WeiY. DuanX. Delivery of interleukin-22 binding protein (IL-22BP) gene by cationic micelle for colon cancer gene therapy.RSC Advances2018830165371654810.1039/C8RA02580K35540501
    [Google Scholar]
  68. LiY. JiaF. DengX. WangX. LuJ. ShaoL. CuiX. PanZ. WuY. Combinatorial miRNA-34a replenishment and irinotecan delivery via auto-fluorescent polymeric hybrid micelles for synchronous colorectal cancer theranostics.Biomater. Sci.20208247132714410.1039/D0BM01579B33150879
    [Google Scholar]
  69. JangY.L. YunU.J. LeeM.S. KimM.G. SonS. LeeK. ChaeS.Y. LimD.W. KimH.T. KimS.H. JeongJ.H. Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression.Int. J. Pharm.20124341-248849310.1016/j.ijpharm.2012.04.08322613208
    [Google Scholar]
  70. SanatiS. TaghaviS. AbnousK. TaghdisiS.M. BabaeiM. RamezaniM. AlibolandiM. Fabrication of anionic dextran-coated micelles for aptamer targeted delivery of camptothecin and survivin-shRNA to colon adenocarcinoma.Gene Ther.2022291-2556810.1038/s41434‑021‑00234‑033633357
    [Google Scholar]
  71. BergerC.M. GaumeX. BouvetP. The roles of nucleolin subcellular localization in cancer.Biochimie2015113788510.1016/j.biochi.2015.03.02325866190
    [Google Scholar]
  72. YangT. LanY. CaoM. MaX. CaoA. SunY. YangJ. LiL. LiuY. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as combination therapy treatment for liver cancer.Colloids Surf. B Biointerfaces201917510611510.1016/j.colsurfb.2018.11.08230529816
    [Google Scholar]
  73. ZhangP. LiJ. GhazwaniM. ZhaoW. HuangY. ZhangX. VenkataramananR. LiS. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy.Biomaterials20156710411410.1016/j.biomaterials.2015.07.02726210177
    [Google Scholar]
  74. ChenD. GeS. ZuoL. WangS. LiuM. LiS. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy.Drug Deliv.20202711094110510.1080/10717544.2020.179724532706289
    [Google Scholar]
  75. AshwanikumarN. KumarN.A. NairS.A. KumarG.S.V. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity.Colloids Surf. B Biointerfaces201412252052810.1016/j.colsurfb.2014.07.02425108479
    [Google Scholar]
  76. YakatiV. VangalaS. MadamsettyV.S. BanerjeeR. MokuG. Enhancing the anticancer effect of paclitaxel by using polymeric nanoparticles decorated with colorectal cancer targeting CPKSNNGVC-peptide.J. Drug Deliv. Sci. Technol.20226810312510.1016/j.jddst.2022.103125
    [Google Scholar]
  77. HamaguchiT. TsujiA. YamaguchiK. TakedaK. UetakeH. EsakiT. AmagaiK. SakaiD. BabaH. KimuraM. MatsumuraY. TsukamotoT. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients.Cancer Chemother. Pharmacol.20188261021102910.1007/s00280‑018‑3693‑630284603
    [Google Scholar]
  78. AndradeF. RafaelD. Vilar-HernándezM. MonteroS. Martínez-TrucharteF. Seras-FranzosoJ. Díaz-RiascosZ.V. BoullosaA. García-ArandaN. Cámara-SánchezP. ArangoD. NestorM. AbasoloI. SarmentoB. SchwartzS.Jr. Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo.J. Control. Release202133119821210.1016/j.jconrel.2021.01.02233482272
    [Google Scholar]
  79. AmjadM.W. KesharwaniP. Mohd AminM.C.I. IyerA.K. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy.Prog. Polym. Sci.20176415418110.1016/j.progpolymsci.2016.09.008
    [Google Scholar]
  80. LeeS.Y. YangC.Y. PengC.L. WeiM.F. ChenK.C. YaoC.J. ShiehM.J. A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy.Biomaterials2016869210510.1016/j.biomaterials.2016.01.06826896610
    [Google Scholar]
  81. CarieA. Rios-DoriaJ. CostichT. BurkeB. SlamaR. SkaffH. SillK. IT-141, a polymer micelle encapsulating SN-38, induces tumor regression in multiple colorectal cancer models.J. Drug Deliv.201120111910.1155/2011/86902722187652
    [Google Scholar]
  82. PaivaI. MattinglyS. WuestM. LeierS. VakiliM.R. WeinfeldM. LavasanifarA. WuestF. Synthesis and analysis of 64 Cu-labeled GE11-modified polymeric micellar nanoparticles for EGFR-targeted molecular imaging in a colorectal cancer model.Mol. Pharm.20201751470148110.1021/acs.molpharmaceut.9b0104332233491
    [Google Scholar]
  83. HuY. HeY. JiJ. ZhengS. ChengY. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy.Int. J. Nanomedicine2020151239125210.2147/IJN.S23277732110020
    [Google Scholar]
  84. ShihY.H. PengC.L. ChiangP.F. ShiehM.J. Dual- functional polymeric micelles co-loaded with antineoplastic drugs and tyrosine kinase inhibitor for combination therapy in colorectal cancer.Pharmaceutics202214476810.3390/pharmaceutics1404076835456602
    [Google Scholar]
  85. van GaalE.V.B. CrommelinD.J.A. Polymeric Micelles. Non-Biological Complex Drugs. Springer.Cham201520117610.1007/978‑3‑319‑16241‑6_2
    [Google Scholar]
  86. TinkleS. McNeilS.E. MühlebachS. BawaR. BorchardG. BarenholzY.C. TamarkinL. DesaiN. Nanomedicines: Addressing the scientific and regulatory gap.Ann. N. Y. Acad. Sci.201413131355610.1111/nyas.1240324673240
    [Google Scholar]
  87. Cypriyana P JJ. SS. Angalene JL.A. SamrotA.V. Kumar SS. PonniahP. ChakravarthiS. Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods – A review.Biocatal. Agric. Biotechnol.20213610211710.1016/j.bcab.2021.102117
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306752240726104241
Loading
/content/journals/cmc/10.2174/0109298673306752240726104241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test