Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Influenza is an acute respiratory disease caused by influenza viruses. It has the characteristics of fast transmission and strong infectivity, and it does great harm to human health and survival. It is estimated that the seasonal influenza epidemics every year will cause about one billion cases of infections and hundreds of thousands of deaths worldwide, while influenza A virus is the leading cause of infection and death. Currently, the main drugs used in clinics to treat influenza viruses are neuraminidase inhibitors, and these drugs have shown excellent efficacy in treating influenza viruses. However, various mutant strains have developed resistance to these effective drugs in clinics (such as the subtype mutant strains of H274Y in H1N1 or H5N1 and E119V in HN have developed resistance to Oseltamivir). Influenza viruses mutate frequently, and new viral strains are constantly discovered, and the pandemics will break out at any time. Therefore, it is urgent to develop efficient and broad-spectrum drugs to prevent and treat the influenza pandemic caused by the emerging new subtypes. This review focuses on describing the pandemic history, the structure, function and prevention methods of influenza viruses and the progress of the development of anti-influenza drugs, to provide the reference for prevention and treatment of influenza viruses and development of influenza virus inhibitors.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673268314231204061224
2024-02-15
2025-10-23
Loading full text...

Full text loading...

References

  1. SmithW. AndrewesC.H. LaidlawP.P. A virus obtained from influenza patients.Lancet19332225732666810.1016/S0140‑6736(00)78541‑2
    [Google Scholar]
  2. WilsonI.A. SkehelJ.J. WileyD.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution.Nature1981289579636637310.1038/289366a07464906
    [Google Scholar]
  3. ColmanP.M. VargheseJ.N. LaverW.G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase.Nature19833035912414410.1038/303041a06188957
    [Google Scholar]
  4. History of influenza Pandemics [EB/OL].Available from: http://www.euro.who.int/influenza/20080702-9,2010-09-01 2010
  5. KilbourneE.D. Influenza pandemics of the 20th century.Emerg. Infect. Dis.200612191410.3201/eid1201.05125416494710
    [Google Scholar]
  6. Pandemic(H1N1)2009-update112[EB/OL].2009Available from: http://www.who.int/csr/don/2010-08 06/en/index.html
  7. WebsterR.G. BeanW.J. GormanO.T. ChambersT.M. KawaokaY. Evolution and ecology of influenza A viruses.Microbiol. Rev.199256115217910.1128/mr.56.1.152‑179.19921579108
    [Google Scholar]
  8. UrbaniakK. Markowska-DanielI. In vivo reassortment of influenza viruses.Acta Biochim. Pol.201461342743110.18388/abp.2014_186025180223
    [Google Scholar]
  9. McGeochD. FellnerP. NewtonC. Influenza virus genome consists of eight distinct RNA species.Proc. Natl. Acad. Sci.19767393045304910.1073/pnas.73.9.30451067600
    [Google Scholar]
  10. LambR.A. KrugR.M. Orthomyxoviridase: The viruses and their replication.Fields virology.4th ed KnipeD.M. HowleyP.M. PhiladelphiaLippincott Williams & Wilkins20011532
    [Google Scholar]
  11. MaedaT. KawasakiK. OhnishiS. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2.Proc. Natl. Acad. Sci.19817874133413710.1073/pnas.78.7.41336945575
    [Google Scholar]
  12. HuangR.T.C. RottR. KlenkH.D. Influenza viruses cause hemolysis and fusion of cells.Virology1981110124324710.1016/0042‑6822(81)90030‑17210509
    [Google Scholar]
  13. WhiteJ. KielianM. HeleniusA. Membrane fusion proteins of enveloped animal viruses.Q. Rev. Biophys.198316215119510.1017/S00335835000050726359230
    [Google Scholar]
  14. TongS. LiY. RivaillerP. ConrardyC. CastilloD.A.A. ChenL.M. RecuencoS. EllisonJ.A. DavisC.T. YorkI.A. TurmelleA.S. MoranD. RogersS. ShiM. TaoY. WeilM.R. TangK. RoweL.A. SammonsS. XuX. FraceM. LindbladeK.A. CoxN.J. AndersonL.J. RupprechtC.E. DonisR.O. A distinct lineage of influenza A virus from bats.Proc. Natl. Acad. Sci.2012109114269427410.1073/pnas.111620010922371588
    [Google Scholar]
  15. García-SastreA. The neuraminidase of bat influenza viruses is not a neuraminidase.Proc. Natl. Acad. Sci.201210946186351863610.1073/pnas.121585710923100536
    [Google Scholar]
  16. CaiY.C. HuangC. KuZ.Q. HuangZ. Influenza virus VS influenza vaccine --a Nonstop over the last one hundred years.Chin. J. Nat2009314213222
    [Google Scholar]
  17. HerfstS. SchrauwenE.J.A. LinsterM. ChutinimitkulS. de WitE. MunsterV.J. SorrellE.M. BestebroerT.M. BurkeD.F. SmithD.J. RimmelzwaanG.F. OsterhausA.D.M.E. FouchierR.A.M. Airborne transmission of influenza A/H5N1 virus between ferrets.Science201233660881534154110.1126/science.121336222723413
    [Google Scholar]
  18. ScholtissekC. The genes coding for the surface glycoproteins of influenza A viruses contain a small conserved and a large variable region.Virology197993259459710.1016/0042‑6822(79)90264‑2452416
    [Google Scholar]
  19. ShihA.C.C. HsiaoT.C. HoM.S. LiW.H. Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution.Proc. Natl. Acad. Sci.2007104156283628810.1073/pnas.070139610417395716
    [Google Scholar]
  20. ScholtissekC. Source for influenza pandemics.Eur. J. Epidemiol.199410445545810.1007/BF017196747843354
    [Google Scholar]
  21. ScholtissekC. The genome of the influenza virus.Curr. Top. Microbiol. Immunol.197880139169668407
    [Google Scholar]
  22. ScholtissekC. Pigs as ‘Mixing Vessels’ for the creation of new pandemic influenza a viruses.Med. Princ. Pract.199022657110.1159/000157337
    [Google Scholar]
  23. KawaokaY. KraussS. WebsterR.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics.J. Virol.198963114603460810.1128/jvi.63.11.4603‑4608.19892795713
    [Google Scholar]
  24. LakeyD.L. TreanorJ.J. BettsR.F. SmithG.E. ThompsonJ. SannellaE. ReedG. WilkinsonB.E. WrightP.F. Recombinant baculovirus influenza A hemagglutinin vaccines are well tolerated and immunogenic in healthy adults.J. Infect. Dis.1996174483884110.1093/infdis/174.4.8388843225
    [Google Scholar]
  25. BelongiaE.A. KiekeB.A. DonahueJ.G. GreenleeR.T. BalishA. FoustA. LindstromS. ShayD.K. Effectiveness of inactivated influenza vaccines varied substantially with antigenic match from the 2004-2005 season to the 2006-2007 season.J. Infect. Dis.2009199215916710.1086/59586119086915
    [Google Scholar]
  26. JonesJ.C. YenH.L. AdamsP. ArmstrongK. GovorkovaE.A. Influenza antivirals and their role in pandemic preparedness.Antiviral Res.202321010549910.1016/j.antiviral.2022.10549936567025
    [Google Scholar]
  27. HuY. LiH. WuM. ZhangH. DingY. PengY. LiX. YuZ. Single and multiple dose pharmacokinetics and safety of ZSP1273, an RNA polymerase PB2 protein inhibitor of the influenza A virus: A phase 1 double-blind study in healthy subjects.Expert Opin. Investig. Drugs202130111159116710.1080/13543784.2021.199494434654349
    [Google Scholar]
  28. IvachtchenkoA.V. IvanenkovY.A. MitkinO.D. YamanushkinP.M. BichkoV.V. ShevkunN.A. KarapetianR.N. LenevaI.A. BorisovaO.V. VeselovM.S. VeselovM.S. Novel oral anti-influenza drug candidate AV5080.J. Antimicrob. Chemother.20146971892190210.1093/jac/dku07424729605
    [Google Scholar]
  29. DaviesW.L. GrunertR.R. HaffR.F. McGahenJ.W. NeumayerE.M. PaulshockM. WattsJ.C. WoodT.R. HermannE.C. HoffmannC.E. Antiviral activity of 1-adamantanamine (amantadine).Science1964144362086286310.1126/science.144.3620.86214151624
    [Google Scholar]
  30. PintoL.H. HolsingerL.J. LambR.A. Influenza virus M2 protein has ion channel activity.Cell199269351752810.1016/0092‑8674(92)90452‑I1374685
    [Google Scholar]
  31. BrightR.A. MedinaM. XuX. Perez-OronozG. WallisT.R. DavisX.M. PovinelliL. CoxN.J. KlimovA.I. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern.Lancet200536694921175118110.1016/S0140‑6736(05)67338‑216198766
    [Google Scholar]
  32. LanY. LiZ. DongL.B. ZhangY. WenL.Y. ZhangY.M. WangM. GuoY.J. ShuY.L. [Adamantane resistance among influenza A (H3N2) viruses isolated from the mainland of China].Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi2006202212316816855
    [Google Scholar]
  33. SooW. Adverse effects of rimantadine: summary from clinical trials.J. Respir. Dis.1989102631
    [Google Scholar]
  34. BelsheR.B. BurkB. NewmanF. CerrutiR.L. SimI.S. Resistance of influenza A virus to amantadine and rimantadine: Results of one decade of surveillance.J. Infect. Dis.1989159343043510.1093/infdis/159.3.4302915166
    [Google Scholar]
  35. PaleseP. CompansR.W. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): Mechanism of action.J. Gen. Virol.197633115916310.1099/0022‑1317‑33‑1‑159978183
    [Google Scholar]
  36. VargheseJ.N. LaverW.G. ColmanP.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution.Nature19833035912354010.1038/303035a06843658
    [Google Scholar]
  37. BlixG. Über die Kohlenhydratgruppen des Submaxillarismucins.Hoppe Seylers Z. Physiol. Chem.19362401-2435410.1515/bchm2.1936.240.1‑2.43
    [Google Scholar]
  38. MeindlP. TuppyH. 2-deoxy-2.3-dehydro-sialic acids, I: Synthesis and properties of 2-deoxy-2.3-dehydro-N-acyl-neuraminic acids and their methyl esters.Monatsh. Chem.196910041295130610.1007/BF00903465
    [Google Scholar]
  39. MeindlP. TuppyH. [2-Deoxy-2,3-dehydrosialic acids. II. Competitive inhibition of Vibrio cholerae neuraminidase by 2-deoxy-2,3-dehydro-N-acylneuraminic acids].Hoppe Seylers Z. Physiol. Chem.196935091088109210.1515/bchm2.1969.350.2.10885349377
    [Google Scholar]
  40. von ItzsteinM. DyasonJ.C. OliverS.W. WhiteH.F. WuW.Y. KokG.B. PeggM.S. A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs.J. Med. Chem.199639238839110.1021/jm950294c8558506
    [Google Scholar]
  41. GoodfordP.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules.J. Med. Chem.198528784985710.1021/jm00145a0023892003
    [Google Scholar]
  42. StollV. StewartK.D. MaringC.J. MuchmoreS. GirandaV. GuY. WangG. ChenY. Influenza neuraminidase inhibitors: Structure-based design of a novel inhibitors series.Biochemistry200342371872710.1021/bi020544912534284
    [Google Scholar]
  43. Bossart-WhitakerP. CarsonM. BabuY.S. SmithC.D. LaverW.G. AirG.M. Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid.J. Mol. Biol.199323241069108310.1006/jmbi.1993.14618371267
    [Google Scholar]
  44. TaylorN.R. von ItzsteinM. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis.J. Med. Chem.199437561662410.1021/jm00031a0118126701
    [Google Scholar]
  45. LiC.Y. Inhaled Zanamivir to prevent influenza transmission in families.Epidemiology Lemology Foreign Medical Science20013141142
    [Google Scholar]
  46. CassL.M.R. BrownJ. PickfordM. FayinkaS. NewmanS.P. JohanssonC.J. ByeA. Pharmacoscintigraphic evaluation of lung deposition of inhaled zanamivir in healthy volunteers.Clin. Pharmacokinet.199936S1213110.2165/00003088‑199936001‑0000310429837
    [Google Scholar]
  47. CassL.M.R. EfthymiopoulosC. ByeA. Pharmacokinetics of zanamivir after intravenous, oral, inhaled or intranasal administration to healthy volunteers.Clin. Pharmacokinet.199936S111110.2165/00003088‑199936001‑0000110429835
    [Google Scholar]
  48. DanielM.J. BarnettJ.M. PearsonB.A. The low potential for drug interactions with zanamivir.Clin. Pharmacokinet.199936S1415010.2165/00003088‑199936001‑0000510429839
    [Google Scholar]
  49. KangH.L. Clinical observation and nursing of patients with influenza using inhaled Zanamivir.Clin. Nurs. Res.2011253532523253
    [Google Scholar]
  50. LiZ.R. Zanamivir, a new broad-spectrum and highly effective anti-influenza virus drug.World Notes on Antibiotics200104183187
    [Google Scholar]
  51. GubarevaL.V. MatrosovichM.N. BrennerM.K. BethellR.C. WebsterR.G. Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus.J. Infect. Dis.199817851257126210.1086/3144409780244
    [Google Scholar]
  52. HurtA.C. HolienJ.K. ParkerM. KelsoA. BarrI.G. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation.J. Virol.20098320103661037310.1128/JVI.01200‑0919641000
    [Google Scholar]
  53. MendelD.B. TaiC.Y. EscarpeP.A. LiW. SidwellR.W. HuffmanJ.H. SweetC. JakemanK.J. MersonJ. LacyS.A. LewW. WilliamsM.A. ZhangL. ChenM.S. BischofbergerN. KimC.U. Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection.Antimicrob. Agents Chemother.199842364064610.1128/AAC.42.3.6409517945
    [Google Scholar]
  54. LewW. ChenX. KimC.U. Discovery and development of GS 4104 (oseltamivir): An orally active influenza neuraminidase inhibitor.Curr. Med. Chem.20007666367210.2174/092986700337488610702632
    [Google Scholar]
  55. HeG. MassarellaJ. WardP. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802.Clin. Pharmacokinet.199937647148410.2165/00003088‑199937060‑0000310628898
    [Google Scholar]
  56. YuJ. DaiD.Y. WangX.Y. Clinical application of two anti-influenza A (H1N1) virus drugs.China Pharmaceuticals200918166869
    [Google Scholar]
  57. HamaR. JonesM. OkushimaH. KitaoM. NodaN. HayashiK. SakaguchiK. Oseltamivir and early deterioration leading to death: A proportional mortality study for 2009A/H1N1 influenza.Int. J. Risk Saf. Med.201123420121510.3233/JRS‑2011‑054522156085
    [Google Scholar]
  58. GooskensJ. JongesM. ClaasE.C.J. MeijerA. van den BroekP.J. KroesA.M. Morbidity and mortality associated with nosocomial transmission of oseltamivir-resistant influenza A(H1N1) virus.JAMA2009301101042104610.1001/jama.2009.29719255111
    [Google Scholar]
  59. LeQ.M. KisoM. SomeyaK. SakaiY.T. NguyenT.H. NguyenK.H.L. PhamN.D. NgyenH.H. YamadaS. MuramotoY. HorimotoT. TakadaA. GotoH. SuzukiT. SuzukiY. KawaokaY. Isolation of drug-resistant H5N1 virus.Nature20054377062110810.1038/4371108a16228009
    [Google Scholar]
  60. TreanorJ.J. HaydenF.G. VroomanP.S. BarbarashR. BettisR. RiffD. SinghS. KinnersleyN. WardP. MillsR.G. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: A randomized controlled trial.JAMA200028381016102410.1001/jama.283.8.101610697061
    [Google Scholar]
  61. BabuY.S. ChandP. BantiaS. KotianP. DehghaniA. El-KattanY. LinT.H. HutchisonT.L. ElliottA.J. ParkerC.D. AnanthS.L. HornL.L. LaverG.W. MontgomeryJ.A. BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design.J. Med. Chem.200043193482348610.1021/jm000267911000002
    [Google Scholar]
  62. BantiaS. ParkerC.D. AnanthS.L. HornL.L. AndriesK. ChandP. KotianP.L. DehghaniA. El-KattanY. LinT. HutchisonT.L. MontgomeryJ.A. KellogD.L. BabuY.S. Comparison of the anti-influenza virus activity of RWJ-270201 with those of oseltamivir and zanamivir.Antimicrob. Agents Chemother.20014541162116710.1128/AAC.45.4.1162‑1167.200111257030
    [Google Scholar]
  63. BantiaS. ArnoldC.S. ParkerC.D. UpshawR. ChandP. Anti-influenza virus activity of peramivir in mice with single intramuscular injection.Antiviral Res.2006691394510.1016/j.antiviral.2005.10.00216325932
    [Google Scholar]
  64. LeangS.K. KwokS. SullivanS.G. Maurer-StrohS. KelsoA. BarrI.G. HurtA.C. Peramivir and laninamivir susceptibility of circulating influenza A and B viruses.Influenza Other Respir. Viruses20148213513910.1111/irv.1218724734292
    [Google Scholar]
  65. ZhaoX. ZhouY. LuM. WangL.L. LiS. ZhangH.L. CuiY.M. Study on the tolerance of paramivir trihydrate chloride injection in healthy volunteers.Chin. J. New Drug2010192119641966
    [Google Scholar]
  66. ZhaoX. LuM. ZhangY.H. WangL.L. LiS. ZhangH.L. GuJ.K. CuiY.M. Pharmacokinetics of paramivir trihydrate sodium chloride in healthy volunteers.Chin. J. Clin. Pgarmaclo.20132910751754
    [Google Scholar]
  67. YamashitaM. TomozawaT. KakutaM. TokumitsuA. NasuH. KuboS. CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity.Antimicrob. Agents Chemother.200953118619210.1128/AAC.00333‑0818955520
    [Google Scholar]
  68. IkematsuH. KawaiN. Laninamivir octanoate: A new long-acting neuraminidase inhibitor for the treatment of influenza.Expert Rev. Anti Infect. Ther.201191085185710.1586/eri.11.11221973296
    [Google Scholar]
  69. YamashitaM. Unique characteristics of long-acting neuraminidase inhibitor laninamivir octanoate (CS-8958) that explains its long-lasting activity.Influenza Other Respir. Viruses201159395
    [Google Scholar]
  70. WatanabeA. ChangS.C. KimM.J. ChuD.W. OhashiY. Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: A double-blind, randomized, noninferiority clinical trial.Clin. Infect. Dis.201051101167117510.1086/65680220936975
    [Google Scholar]
  71. SugayaN. OhashiY. Long-acting neuraminidase inhibitor laninamivir octanoate (CS-8958) versus oseltamivir as treatment for children with influenza virus infection.Antimicrob. Agents Chemother.20105462575258210.1128/AAC.01755‑0920368393
    [Google Scholar]
  72. KisoM. KuboS. OzawaM. LeQ.M. NidomC.A. YamashitaM. KawaokaY. Efficacy of the new neuraminidase inhibitor CS-8958 against H5N1 influenza viruses.PLoS Pathog.201062e100078610.1371/journal.ppat.100078620195462
    [Google Scholar]
  73. SamsonM. AbedY. DesrochersF.M. HamiltonS. LuttickA. TuckerS.P. PryorM.J. BoivinG. Characterization of drug-resistant influenza virus A(H1N1) and A(H3N2) variants selected in vitro with laninamivir.Antimicrob. Agents Chemother.20145895220522810.1128/AAC.03313‑1424957832
    [Google Scholar]
  74. SamsonM. PizzornoA. AbedY. BoivinG. Influenza virus resistance to neuraminidase inhibitors.Antiviral Res.201398217418510.1016/j.antiviral.2013.03.01423523943
    [Google Scholar]
  75. YamashitaM. Laninamivir and its prodrug, CS-8958: Long-acting neuraminidase inhibitors for the treatment of influenza.Antivir. Chem. Chemother.2010212718410.3851/IMP168821107016
    [Google Scholar]
  76. te VelthuisA.J.W. RobbN.C. KapanidisA.N. FodorE. The role of the priming loop in influenza A virus RNA synthesis.Nat. Microbiol.2016151602910.1038/nmicrobiol.2016.2927274864
    [Google Scholar]
  77. ReichS. GuilligayD. PflugA. MaletH. BergerI. CrépinT. HartD. LunardiT. NanaoM. RuigrokR.W.H. CusackS. Structural insight into cap-snatching and RNA synthesis by influenza polymerase.Nature2014516753136136610.1038/nature1400925409151
    [Google Scholar]
  78. NoshiT. KitanoM. TaniguchiK. YamamotoA. OmotoS. BabaK. HashimotoT. IshidaK. KushimaY. HattoriK. KawaiM. YoshidaR. KobayashiM. YoshinagaT. SatoA. OkamatsuM. SakodaY. KidaH. ShishidoT. NaitoA. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit.Antiviral Res.201816010911710.1016/j.antiviral.2018.10.00830316915
    [Google Scholar]
  79. GubarevaL.V. WebsterR.G. HaydenF.G. Detection of influenza virus resistance to neuraminidase inhibitors by an enzyme inhibition assay.Antiviral Res.2002531476110.1016/S0166‑3542(01)00192‑911684315
    [Google Scholar]
  80. McKimm-BreschkinJ.L. BlickT.J. SahasrabudheA. TiongT. MarshallD. HartG.J. BethellR.C. PennC.R. Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en.Antimicrob. Agents Chemother.1996401404610.1128/AAC.40.1.408787876
    [Google Scholar]
  81. McKimmbreschkinJ. Resistance of influenza viruses to neuraminidase inhibitors — a review.Antiviral Res.200047111710.1016/S0166‑3542(00)00103‑010930642
    [Google Scholar]
  82. DuJ. CrossT.A. ZhouH.X. Recent progress in structure-based anti-influenza drug design.Drug Discov. Today20121719-201111112010.1016/j.drudis.2012.06.00222704956
    [Google Scholar]
  83. LinX. LiX. LinX. A review on applications of computational methods in drug screening and design.Molecules2020256137510.3390/molecules2506137532197324
    [Google Scholar]
  84. von ItzsteinM. WuW.Y. KokG.B. PeggM.S. DyasonJ.C. JinB. Van PhanT. SmytheM.L. WhiteH.F. OliverS.W. ColmanP.M. VargheseJ.N. RyanD.M. WoodsJ.M. BethellR.C. HothamV.J. CameronJ.M. PennC.R. Rational design of potent sialidase-based inhibitors of influenza virus replication.Nature1993363642841842310.1038/363418a08502295
    [Google Scholar]
  85. WillemsH. De CescoS. SvenssonF. Computational chemistry on a budget: Supporting drug discovery with limited resources.J. Med. Chem.20206318101581016910.1021/acs.jmedchem.9b0212632298123
    [Google Scholar]
  86. GanesanA. CooteM.L. BarakatK. Molecular dynamics-driven drug discovery: Leaping forward with confidence.Drug Discov. Today201722224926910.1016/j.drudis.2016.11.00127890821
    [Google Scholar]
  87. IvachtchenkoA.V. IvanenkovY.A. MitkinO.D. YamanushkinP.M. BichkoV.V. LenevaI.A. BorisovaO.V. A novel influenza virus neuraminidase inhibitor AV5027.Antiviral Res.2013100369870810.1016/j.antiviral.2013.10.00824416774
    [Google Scholar]
  88. IvachtchenkoA.V. IvanenkovY.A. MitkinO.D. YamanushkinP.M. BichkoV.V. ShevkunN.A. MokrushinaO.V. NevolinaO.O. KarapetianR.N. LenevaI.A. FedyakinaI.T. VeselovM.S. Novel oral anti-influenza prodrug candidate AV5075S.J. Antimicrob. Chemother.20146951311132410.1093/jac/dkt50724428978
    [Google Scholar]
  89. FoxL.M. SaravolatzL.D. Nitazoxanide: A new thiazolide antiparasitic agent.Clin. Infect. Dis.20054081173118010.1086/42883915791519
    [Google Scholar]
  90. BelardoG. CenciarelliO. La FraziaS. RossignolJ.F. SantoroM.G. Synergistic effect of nitazoxanide with neuraminidase inhibitors against influenza A viruses in vitro.Antimicrob. Agents Chemother.20155921061106910.1128/AAC.03947‑1425451059
    [Google Scholar]
  91. GuskovaT.A. GlushkovR.G. Efficacy and safety of arbidol in treating and Prophylaxis of influenza: Clinical trials.Arbidol—A New Antiviral, Immunomodulator, Interferon Inducer (Russian).Timotek, Moscow19996376
    [Google Scholar]
  92. ShiL. XiongH. HeJ. DengH. LiQ. ZhongQ. HouW. ChengL. XiaoH. YangZ. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo.Arch. Virol.200715281447145510.1007/s00705‑007‑0974‑517497238
    [Google Scholar]
  93. ByrnR.A. JonesS.M. BennettH.B. BralC. ClarkM.P. JacobsM.D. KwongA.D. LedeboerM.W. LeemanJ.R. McNeilC.F. MurckoM.A. NezamiA. PerolaE. RijnbrandR. SaxenaK. TsaiA.W. ZhouY. CharifsonP.S. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit.Antimicrob. Agents Chemother.20155931569158210.1128/AAC.04623‑1425547360
    [Google Scholar]
  94. LejalN. TarusB. BouguyonE. ChenavasS. BerthoN. DelmasB. RuigrokR.W.H. Di PrimoC. Slama-SchwokA. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus.Antimicrob. Agents Chemother.20135752231224210.1128/AAC.02335‑1223459490
    [Google Scholar]
  95. TarusB. BertrandH. ZeddaG. Di PrimoC. QuideauS. Slama-SchwokA. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus.J. Biomol. Struct. Dyn.20153391899191210.1080/07391102.2014.97923025333630
    [Google Scholar]
  96. HungI.F.N. ToK.K.W. ChanJ.F.W. ChengV.C.C. LiuK.S.H. TamA. ChanT.C. ZhangA.J. LiP. WongT.L. ZhangR. CheungM.K.S. LeungW. LauJ.Y.N. FokM. ChenH. ChanK.H. YuenK.Y. Efficacy of clarithromycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A(H3N2) infection: An open-label randomized, controlled, phase IIb/III trial.Chest201715151069108010.1016/j.chest.2016.11.01227884765
    [Google Scholar]
  97. YangF. PangB. LaiK.K. CheungN.N. DaiJ. ZhangW. ZhangJ. ChanK.H. ChenH. SzeK.H. ZhangH. HaoQ. YangD. YuenK.Y. KaoR.Y. Discovery of a novel specific inhibitor targeting influenza a virus nucleoprotein with pleiotropic inhibitory effects on various steps of the viral life cycle.J. Virol.2021959e01432-2010.1128/JVI.01432‑2033627391
    [Google Scholar]
  98. WhiteK.M. AbreuP.Jr WangH. De JesusP.D. ManicassamyB. García-SastreA. ChandaS.K. DeVitaR.J. ShawM.L. Broad spectrum inhibitor of influenza a and b viruses targeting the viral nucleoprotein.ACS Infect. Dis.20184214615710.1021/acsinfecdis.7b0012029268608
    [Google Scholar]
  99. KakisakaM. SasakiY. YamadaK. KondohY. HikonoH. OsadaH. TomiiK. SaitoT. AidaY. A novel antiviral target structure involved in the RNA binding, dimerization, and nuclear export functions of the influenza a virus nucleoprotein.PLoS Pathog.2015117e100506210.1371/journal.ppat.100506226222066
    [Google Scholar]
  100. LiuC.L. HungH.C. LoS.C. ChiangC.H. ChenI.J. HsuJ.T.A. HouM.H. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development.Sci. Rep.2016612166210.1038/srep2166226916998
    [Google Scholar]
  101. ZhangZ.Y. ZhangH.M. ZhouZ. WangS.Q. Protective effect of Yinqiaosan on H1N1 viral infection in the mice.World J. Integr. Trad. West Med.2015106771773
    [Google Scholar]
  102. LeeB.W. HaT.K.Q. ChoH.M. AnJ.P. KimS.K. KimC.S. KimE. OhW.K. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2.J. Ethnopharmacol.202025911294510.1016/j.jep.2020.11294532389854
    [Google Scholar]
  103. LiP. DuR. ChenZ. WangY. ZhanP. LiuX. KangD. ChenZ. ZhaoX. WangL. RongL. CuiQ. Punicalagin is a neuraminidase inhibitor of influenza viruses.J. Med. Virol.20219363465347210.1002/jmv.2644932827314
    [Google Scholar]
  104. LiR. LiuT. LiuM. ChenF. LiuS. YangJ. Anti-influenza a virus activity of dendrobine and its mechanism of action.J. Agric. Food Chem.201765183665367410.1021/acs.jafc.7b0027628417634
    [Google Scholar]
  105. ZhangT. LoC.Y. XiaoM. ChengL. Pun MokC.K. ShawP.C. Anti-influenza virus phytochemicals from radix paeoniae alba and characterization of their neuraminidase inhibitory activities.J. Ethnopharmacol.202025311267110.1016/j.jep.2020.11267132081739
    [Google Scholar]
  106. XiaoM. ZhangT. CaoF. LiangW. YangY. HuangT. TangY.S. LiuB. ZhaoX. ShawP.C. Anti-influenza properties of tiliroside isolated from Hibiscus mutabilis L.J. Ethnopharmacol.202330311591810.1016/j.jep.2022.11591836436715
    [Google Scholar]
  107. HuangX.J. WeiG. ZhangG. HuangK.L. Research progress on pharmacological action and clinical application of Maxingshigan decoction.Guangdong Yaoxueyuan Xuebao2014301110114
    [Google Scholar]
  108. ZhangW. LuF.Y. HeY.C. Experimental study on the effect of Maxingshigan decoction on influenza A virus in vitro.Pract. Prev. Med.200714513511353
    [Google Scholar]
  109. LuF.Y. HeY.C. XiaoZ.Z. WuS.R. ZhangW. LiS. ZhouX. ZhouY.X. The action target of Maxingshigan decoction against influenza A virus in vitro.J. TCM Univer. Hunan.200828259
    [Google Scholar]
  110. HeZ.H. ZhangJ.T. SunY.F. Therapeutic effect of Qingre decoction on 90 cases of influenza A in children.Shandong. J. Tradit. Chin. Med.20102910677678
    [Google Scholar]
  111. NanS.L. XuS.F. ChenX. LiF. LvM.A. LiL. Protective effect of Shengjiang San on the mice infected with influenza virus FM1.PCMM2016323812
    [Google Scholar]
  112. LiJ.Q. ZhangF.X. FuL.C. HuX.L. ZhuY.T. Anti-influenza A virus activity and effect on hemagglutination titer of Shengjiangsan (SJS) in vitro.Study. J. Tradit. Chin. Med.2003212217218
    [Google Scholar]
  113. LiJ.Q. ZhangF.X. HuX.L. FuC.L. ZhuY.T. Experimental study on anti-influenza virus pneumonia of mice by Shengjiangsan (SJS).Pract. J. Tradit. Chin. Med.20041812829
    [Google Scholar]
  114. LiJ.H. FuM. LiY.L. Observation and nursing of Lianhua Qingwen Capsule in relieving clinical symptoms of influenza A (H1N1).J. Chin. Clin. Med.2010253839
    [Google Scholar]
  115. ZhangY.D. ShiS.H. PanQ.H. YangR.P. ZhaoQ. To study the in vitro test of Radix Pseudostellariae extract against duck influenza virus.J. Fujian Husbandy and Vet. Med.2021432910
    [Google Scholar]
  116. Tuorong radix pseudostellariae was selected as a prescription for influenza A.Fujian Agriculture2009738
    [Google Scholar]
  117. WangW. SongL.L. SongD.G. LiQ. MengQ.G. Experimental study on the effects of extracts and active components of Scutellaria baicalensis Georgi on Asian influenza A virus.Zhonghua Zhongyiyao Xuekan2011294710712
    [Google Scholar]
  118. WangJ.J. LiW.P. YaoH.L. QianL. OuD.Y. Therapeutic effect of baicalin on H6N6 avian influenza in mice. Guiyang.J. Guizhou Univer.202081118
    [Google Scholar]
  119. LiuC. CaoH.Y. LiuG.X. ChengM. XuH.R. LiM. QinX.X. GuoY.F. ZhouH.W. LiY.L. YuH.Y. WangC.X. Effect of non-toxic dried toad on inflammatory response of mice infected with influenza virus H1N1.J. Emerg. Tradit. Chin. Med2021305757761
    [Google Scholar]
  120. CaoY.Q. SunF. ZhangS.Q. LiuZ.Y. LiuJ.W. Experimental study on anti-influenza virus of bufotalin extract.Jilin J. Tradit. Chin. Med.2003094748
    [Google Scholar]
  121. ZhangZ.B. WangY.Y. Research on tcm syndrome nomenclature and classification review and hypothesis.Journal of Beijing University of TCM200326215
    [Google Scholar]
  122. YangH.X. LiX.M. Effect of extraction of Radix Isatidis on influenza virus.J. Tianjin Med. Univ20071311922
    [Google Scholar]
  123. SunK.F. YuY. ZhangZ. DengL. LiC.X. YangG.L. LiL.J. The antiviral research of water and alcohol extracts of Rhizoma Dryopteris Crassirhizomae.Chinese Pediat. Integrat. Tradit. Western Med.2010204319321
    [Google Scholar]
  124. ChenK.T. ZhouW.L. LiuJ.W. ZuM. HeZ.N. DuG.H. ChenW.W. LiuA.L. [Active neuraminidase constituents of Polygonum cuspidatum against influenza A(H1N1) influenza virus].Zhongguo Zhongyao Zazhi201237203068307323311155
    [Google Scholar]
  125. LiW.J. WangS.J. YanM. Observation of the inhibitory effect of extracts from Houttuynia cordata Thunb. on IFVA, IFVB, MPV.Lit. & Inf. Prev. Med.19994347348
    [Google Scholar]
  126. GuoH. YaoC. HeS.Q. Study on resistance of Houttuynia cordata Thunb. to cell apoptosis induced by influenza virus.GMUAJ20036615616
    [Google Scholar]
  127. BaoX.T. GuoC.J. WangF. Preliminary research of the flos Lonicerae japonicae on protective effect against mouse’s lung injury induced by influenza virus.Lishizhen Medicine and Materia Medica Research2013243583584
    [Google Scholar]
  128. PanZ.Z. WangX.F. YanL.J. NanC.H. YueZ.J. Inhibitory effect of extracts from flos lonicerae on influenza A virus FM1 strain in vitro.Zhongguo Zhongyiyao Xinxi Zazhi200763738
    [Google Scholar]
  129. YangZ.F. BaiL.P. HuangW. LiX.Z. ZhaoS.S. ZhongN.S. JiangZ.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis.Fitoterapia20149393475310.1016/j.fitote.2013.12.01124370660
    [Google Scholar]
  130. LiuC. YanY.T. WangJ. BaoL. GaoZ.P. Screening on phloroglucinols of anti-influenza virus activity from Dryopteris crassirhizoma.Chin. Tradit. Herbal Drugs2018492305312
    [Google Scholar]
  131. IwaiY. MurakamiK. GomiY. HashimotoT. AsakawaY. OkunoY. IshikawaT. HatakeyamaD. EchigoN. KuzuharaT. Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts.PLoS One201165e1982510.1371/journal.pone.001982521625478
    [Google Scholar]
  132. CarcelliM. RogolinoD. GattiA. De LucaL. SechiM. KumarG. WhiteS.W. StevaertA. NaesensL. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes.Sci. Rep.2016613150010.1038/srep3150027510745
    [Google Scholar]
  133. NguyenP.H. NaM. DaoT.T. NdintehD.T. MbaforJ.T. ParkJ. CheongH. OhW.K. New stilbenoid with inhibitory activity on viral neuraminidases from Erythrina addisoniae.Bioorg. Med. Chem. Lett.201020226430643410.1016/j.bmcl.2010.09.07720934335
    [Google Scholar]
  134. NagaiT. SuzukiY. TomimoriT. YamadaH. Antiviral activity of plant flavonoid, 5,7,4′-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses.Biol. Pharm. Bull.199518229529910.1248/bpb.18.2957742801
    [Google Scholar]
  135. KimH. JeonW. KoB. Flavanone glycosides from Citrus junos and their anti-influenza virus activity.Planta Med.200167654854910.1055/s‑2001‑1648411509977
    [Google Scholar]
  136. HayashiK. MoriM. KnoxY.M.A.T.S.U.T.A.N.I. SuzutanT. OgasawaraM. YoshidaI. HosokawaK. TsukuiA. AzumaM. Anti influenza virus activity of a red-fleshed potato anthocyanin.Food Sci. Technol. Res.20039324224410.3136/fstr.9.242
    [Google Scholar]
  137. GrienkeU. BraunH. SeidelN. KirchmairJ. RichterM. KrumbholzA. von GrafensteinS. LiedlK.R. SchmidtkeM. RollingerJ.M. Computer-guided approach to access the anti-influenza activity of licorice constituents.J. Nat. Prod.201477356357010.1021/np400817j24313801
    [Google Scholar]
  138. ChenM.H. WangL.Q. MaQ.Y. YangY. RongR. Rapid and targeted discovery of neuraminidase inhibitors from Polygonum cuspidatum Sieb. et Zucc.Zhonghua Zhongyiyao Zazhi202237525982602
    [Google Scholar]
  139. LangS. YanY.T. LiuC. YangJ. WangZ.J. GaoZ.P. Screening of influenza virus neuraminidase inhibitors from Japanese Flowering Fern Rhizome.Zhongguo Xiandai Zhongyao2019211114971504
    [Google Scholar]
  140. ChengD.F. WangJ.H. HuangQ.L. ZhangL. LiuJ. XianH. Effect of sulfated polysaccharide from algae and traditional Chinese medicine compound on inoculation of H9N2 subtype avian influenza virus in chicken embryo.China Animal Husbandry & Veterinary Medicine2018451235943600
    [Google Scholar]
  141. SongL. ChenX. LiuX. ZhangF. HuL. YueY. LiK. LiP. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides.Mar. Drugs2015141410.3390/md1401000426729137
    [Google Scholar]
  142. GerberP. DutcherJ.D. AdamsE.V. ShermanJ.H. Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus.Exp. Biol. Med.195899359059310.3181/00379727‑99‑2442913614432
    [Google Scholar]
  143. XiaoM.T. YangJ.L. LinH.Y. TangF.X. MengC. ShiX.A. GuoY.H. Extraction of Porphyra haitanensis polysaccharides and its anti-influenza virus activity.J. Fuzhou Univ200305631635
    [Google Scholar]
  144. ZhangF.M. ZhangS.Q. SunF. LiuZ.Y. ChenX.Q. Inhibitory effect of lentinan on influenza virus.J. Changchun Univ. Chin. Med.200641112
    [Google Scholar]
  145. JiaW. MaoS.M. ZhangP.P. YanG.L. JinJ. LiuY.H. Study on antiviral effect of Lonicera Thumb polysaccharide in vivo.Liaoning Zhongyiyao Daxue Xuebao20182062527
    [Google Scholar]
  146. BingF.H. LiuJ. LiZ. ZhangG.B. LiaoY.F. LiJ. DongC.Y. Anti-influenza-virus activity of total alkaloids from Commelina communis L.Arch. Virol.2009154111837184010.1007/s00705‑009‑0503‑919774337
    [Google Scholar]
  147. NieL. WuY. DaiZ. MaS. Antiviral activity of Isatidis Radix derived glucosinolate isomers and their breakdown products against influenza A in vitro/ovo and mechanism of action.J. Ethnopharmacol.202025111255010.1016/j.jep.2020.11255031918015
    [Google Scholar]
  148. YongJ. LuC. AisaH.A. Advances in studies on the rupestonic acid derivatives as anti-influenza agents.Mini Rev. Med. Chem.201313231031522625417
    [Google Scholar]
  149. YongJ.P. Synthesis of rupestonic acid derivatives and in vitro inhibition against influenza and herpes simplex viral activities.PhD Thesis, University of Chinese Academy of Sciences: Beijing2008
    [Google Scholar]
  150. ZhaoJ.Y. Study on synthesis and anti-influenza activity of candidate compounds based on rupestonic acid skeleton.PhD Thesis, University of Chinese Academy of Sciences: Beijing2011
    [Google Scholar]
  151. HeY.W. Study on the synthesis and bioactivity of rupestonic acid derivatives as potential influenza virus agents based on the click chemistry and fructodiketoyl-guanidines.PhD Thesis, University of Chinese Academy of Sciences: Beijing2013
    [Google Scholar]
  152. ObulM. Study on the structural modification of 2-methylene and exocyclic alkene of rupestonic acid and anti influenza virus activity of its derivatives.PhD Thesis, University of Chinese Academy of Sciences: Beijing2021
    [Google Scholar]
  153. ChenL. Synthesis and anti-influenza activity of rupestonic acid derivatives with acyl and triazole.Master Thesis, University of Chinese Academy of Sciences: Beijing2022
    [Google Scholar]
  154. GeH. WangY.F. XuJ. GuQ. LiuH.B. XiaoP.G. ZhouJ. LiuY. YangZ. SuH. Anti-influenza agents from Traditional Chinese Medicine.Nat. Prod. Rep.201027121758178010.1039/c0np00005a20941447
    [Google Scholar]
  155. WangX. JiaW. ZhaoA. WangX. Anti-influenza agents from plants and traditional Chinese medicine.Phytother. Res.200620533534110.1002/ptr.189216619359
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673268314231204061224
Loading
/content/journals/cmc/10.2174/0109298673268314231204061224
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test