Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Leukemia is a malignant clonal disease of hematopoietic stem cells, which accounts for about 3% of the total incidence of tumors and is particularly prevalent among children and adolescents. It mainly includes four types of leukemia, namely ALL, AML, CLL, and CML, which are often aggressive and challenging diseases to treat. Several signaling pathways are dysregulated in almost all types of leukemia, such as JAK, PI3K, and MAPK, and others are dysregulated in specific types of leukemia, like Wnt/β-catenin, Hedgehog, FLT3, Bcr-Abl, and so on. Many efforts have been devoted to developing small molecule inhibitors targeting protein kinases involved in leukemia-related signaling pathways. In this review, we focus on the study of signaling pathways and protein kinases that developed as targets of anti-leukemia drug therapy and report the research progress of relevant small molecule kinase inhibitors over the last five years.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673267738231129104216
2024-02-16
2025-10-09
Loading full text...

Full text loading...

References

  1. DemirY. TürkeşC. KüfrevioğluÖ.İ. BeydemirŞ. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione‐dependent enzymes.Chem. Biodivers.2023201e20220065610.1002/cbdv.20220065636538730
    [Google Scholar]
  2. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  3. ÇalışkanB. Öztürk KesebirA. DemirY. Akyol Salmanİ. The effect of brimonidine and proparacaine on metabolic enzymes: Glucose‐6‐phosphate dehydrogenase, 6‐phosphogluconate dehydrogenase, and glutathione reductase.Biotechnol. Appl. Biochem.202269128128810.1002/bab.210733438819
    [Google Scholar]
  4. PomeroyA.E. SchmidtE.V. SorgerP.K. PalmerA.C. Drug independence and the curability of cancer by combination chemotherapy.Trends Cancer202281191592910.1016/j.trecan.2022.06.00935842290
    [Google Scholar]
  5. DemirY. TürkeşC. BeydemirŞ. Molecular docking studies and inhibition properties of some antineoplastic agents against paraoxonase-i.Anticancer. Agents Med. Chem.202020788789610.2174/187152062066620021811064532067621
    [Google Scholar]
  6. Taruneshwar JhaK. ShomeA. Chahat ChawlaP.A. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship.Bioorg. Chem.202313810668010.1016/j.bioorg.2023.10668037336103
    [Google Scholar]
  7. YıldızM.L. DemirY. KüfrevioğluÖ.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase enzymes.J. Mol. Recognit.20223512e298710.1002/jmr.298736326002
    [Google Scholar]
  8. WhiteleyA.E. PriceT.T. CantelliG. SipkinsD.A. Leukaemia: A model metastatic disease.Nat. Rev. Cancer202121746147510.1038/s41568‑021‑00355‑z33953370
    [Google Scholar]
  9. PatelS.S. WeinbergO.K. Diagnostic workup of acute leukemias of ambiguous lineage.Am. J. Hematol.202095671872210.1002/ajh.2577132124470
    [Google Scholar]
  10. RubnitzJ.E. GibsonB. SmithF.O. Acute myeloid leukemia.Hematol. Oncol. Clin. North Am.2010241356310.1016/j.hoc.2009.11.00820113895
    [Google Scholar]
  11. YuC.H. JouS.T. SuY.H. Coustan-SmithE. WuG. ChengC.N. LuM.Y. LinK.H. WuK.H. ChenS.H. HuangF.L. ChangH.H. WangJ.L. YenH.J. LiM.J. ChouS.W. HoW.L. LiuY.L. ChangC.C. LinZ.S. LinC.Y. ChenH.Y. NiY.L. LinD.T. LinS.W. YangJ.J. NiY.H. PuiC.H. YuS.L. YangY.L. Clinical impact of minimal residual disease and genetic subtypes on the prognosis of childhood acute lymphoblastic leukemia.Cancer2023129579080210.1002/cncr.3460636537587
    [Google Scholar]
  12. WangJ. JiaW.G. YangL.H. KuangW.Y. HuangL.B. ChenH.Q. WangL.N. ZhouD.H. LiaoN. Clinical summary of pediatric acute lymphoblastic leukemia patients complicated with asparaginase-associated pancreatitis in SCCLG-ALL-2016 protocol.Hematology2023281217172310.1080/16078454.2023.217172336752506
    [Google Scholar]
  13. MartelliA.M. LonettiA. BuontempoF. RicciF. TazzariP.L. EvangelistiC. BressaninD. CappelliniA. OrsiniE. ChiariniF. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells.Adv. Biol. Regul.20145662110.1016/j.jbior.2014.04.00424819383
    [Google Scholar]
  14. NewellL.F. CookR.J. Advances in acute myeloid leukemia.BMJ20213752026n202610.1136/bmj.n202634615640
    [Google Scholar]
  15. BriotT. RogerE. ThépotS. LagarceF. Advances in treatment formulations for acute myeloid leukemia.Drug Discov. Today201823121936194910.1016/j.drudis.2018.05.04029870791
    [Google Scholar]
  16. HallekM. Al-SawafO. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures.Am. J. Hematol.202196121679170510.1002/ajh.2636734625994
    [Google Scholar]
  17. StevensonF.K. ForconiF. KippsT.J. Exploring the pathways to chronic lymphocytic leukemia.Blood20211381082783510.1182/blood.202001002934075408
    [Google Scholar]
  18. OsmanA.E.G. DeiningerM.W. Chronic myeloid leukemia: Modern therapies, current challenges and future directions.Blood Rev.20214910082510.1016/j.blre.2021.10082533773846
    [Google Scholar]
  19. Özgür YurttaşN. EşkazanA.E. Novel therapeutic approaches in chronic myeloid leukemia.Leuk. Res.20209110633710.1016/j.leukres.2020.10633732200189
    [Google Scholar]
  20. VadilloE. Dorantes-AcostaE. PelayoR. SchnoorM. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies.Blood Rev.2018321365110.1016/j.blre.2017.08.00628830639
    [Google Scholar]
  21. Cordo’V. van der ZwetJ.C.G. Canté-BarrettK. PietersR. MeijerinkJ.P.P. T-cell acute lymphoblastic leukemia: A roadmap to targeted therapies.Blood Cancer Discov.202121193110.1158/2643‑3230.BCD‑20‑009334661151
    [Google Scholar]
  22. EvangelistiC. ChiariniF. CappelliniA. PaganelliF. FiniM. SantiS. MartelliA.M. NeriL.M. EvangelistiC. Targeting Wnt/β‐catenin and PI3K/Akt/mTOR pathways in T‐cell acute lymphoblastic leukemia.J. Cell. Physiol.202023565413542810.1002/jcp.2942931904116
    [Google Scholar]
  23. TasianS.K. LohM.L. HungerS.P. Philadelphia chromosome–like acute lymphoblastic leukemia.Blood2017130192064207210.1182/blood‑2017‑06‑74325228972016
    [Google Scholar]
  24. PłotkaA. LewandowskiK. BCR/ABL1-like acute lymphoblastic leukemia: From diagnostic approaches to molecularly targeted therapy.Acta Haematol.2022145212213110.1159/00051978234818644
    [Google Scholar]
  25. JainS. AbrahamA. BCR-ABL1–like B-acute lymphoblastic leukemia/lymphoma: A comprehensive review.Arch. Pathol. Lab. Med.2020144215015510.5858/arpa.2019‑0194‑RA31644323
    [Google Scholar]
  26. PourrajabF. Zare-KhormiziM.R. HekmatimoghaddamS. HashemiA.S. Molecular targeting and rational chemotherapy in acute myeloid leukemia.J. Exp. Pharmacol.20201210712810.2147/JEP.S25433432581600
    [Google Scholar]
  27. CarterJ.L. HegeK. YangJ. KalpageH.A. SuY. EdwardsH. HüttemannM. TaubJ.W. GeY. Targeting multiple signaling pathways: The new approach to acute myeloid leukemia therapy.Signal Transduct. Target. Ther.20205128810.1038/s41392‑020‑00361‑x33335095
    [Google Scholar]
  28. GhoshA.K. KayN.E. Critical signal transduction pathways in CLL.Adv. Exp. Med. Biol.201379221523910.1007/978‑1‑4614‑8051‑8_1024014299
    [Google Scholar]
  29. EckerV. StumpfM. BrandmeierL. NeumayerT. PfeufferL. EngleitnerT. RingshausenI. NelsonN. JückerM. WanningerS. ZenzT. WendtnerC. ManskeK. SteigerK. RadR. MüschenM. RulandJ. BuchnerM. Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia.Nat. Commun.2021121352610.1038/s41467‑021‑23752‑234112805
    [Google Scholar]
  30. MinciacchiV.R. KumarR. KrauseD.S. Chronic myeloid leukemia: A model disease of the past, present and future.Cells202110111710.3390/cells1001011733435150
    [Google Scholar]
  31. FasouliE.S. KatsantoniE. JAK-STAT in early hematopoiesis and leukemia.Front. Cell Dev. Biol.2021966936310.3389/fcell.2021.66936334055801
    [Google Scholar]
  32. McCubreyJ.A. SteelmanL.S. AbramsS.L. BertrandF.E. LudwigD.E. BäseckeJ. LibraM. StivalaF. MilellaM. TafuriA. LunghiP. BonatiA. MartelliA.M. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy.Leukemia200822470872210.1038/leu.2008.2718337766
    [Google Scholar]
  33. Al-RawashdeF.A. Al-wajeehA.S. VishkaeiM.N. SaadH.K.M. JohanM.F. TaibW.R.W. IsmailI. Al-JamalH.A.N. Thymoquinone inhibits JAK/STAT and PI3K/Akt/ mTOR signaling pathways in MV4-11 and K562 myeloid leukemia cells.Pharmaceuticals2022159112310.3390/ph1509112336145344
    [Google Scholar]
  34. FavoinoE. PreteM. CatacchioG. RuscittiP. NavariniL. GiacomelliR. PerosaF. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart?Autoimmun. Rev.202120310275010.1016/j.autrev.2021.10275033482338
    [Google Scholar]
  35. NepstadI. HatfieldK.J. GrønningsæterI.S. ReikvamH. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells.Int. J. Mol. Sci.2020218290710.3390/ijms2108290732326335
    [Google Scholar]
  36. BertacchiniJ. HeidariN. MedianiL. CapitaniS. ShahjahaniM. AhmadzadehA. SakiN. Targeting PI3K/AKT/mTOR network for treatment of leukemia.Cell. Mol. Life Sci.201572122337234710.1007/s00018‑015‑1867‑525712020
    [Google Scholar]
  37. XinP. XuX. DengC. LiuS. WangY. ZhouX. MaH. WeiD. SunS. The role of JAK/STAT signaling pathway and its inhibitors in diseases.Int. Immunopharmacol.20208010621010.1016/j.intimp.2020.10621031972425
    [Google Scholar]
  38. SimioniC. MartelliA. ZauliG. MelloniE. NeriL. Targeting mTOR in acute lymphoblastic leukemia.Cells20198219010.3390/cells802019030795552
    [Google Scholar]
  39. HerschbeinL. LiesveldJ.L. Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML.Blood Rev.201832323524810.1016/j.blre.2017.11.00629276026
    [Google Scholar]
  40. ZughaibiT.A. SuhailM. TariqueM. TabrezS. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach.Int. J. Mol. Sci.202122221245510.3390/ijms22221245534830339
    [Google Scholar]
  41. AsatiV. MahapatraD.K. BhartiS.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives.Eur. J. Med. Chem.201610931434110.1016/j.ejmech.2016.01.01226807863
    [Google Scholar]
  42. KhezriM.R. JafariR. YousefiK. ZolbaninN.M. The PI3K/AKT signaling pathway in cancer: Molecular mechanisms and possible therapeutic interventions.Exp. Mol. Pathol.202212710478710.1016/j.yexmp.2022.10478735644245
    [Google Scholar]
  43. ShirazP. PayneK.J. MufflyL. The current genomic and molecular landscape of philadelphia-like acute lymphoblastic leukemia.Int. J. Mol. Sci.2020216219310.3390/ijms2106219332235787
    [Google Scholar]
  44. DaneshmaneshA.H. Hojjat-FarsangiM. MoshfeghA. KhanA.S. MikaelssonE. ÖsterborgA. MellstedtH. The PI3K/AKT/mTOR pathway is involved in direct apoptosis of CLL cells induced by ROR1 monoclonal antibodies.Br. J. Haematol.2015169345545810.1111/bjh.1322825407287
    [Google Scholar]
  45. ZhengQ. PengX. YuH. Local anesthetic drug inhibits growth and survival in chronic myeloid leukemia through suppressing PI3K/Akt/mTOR.Am. J. Med. Sci.2018355326627310.1016/j.amjms.2017.11.01129549929
    [Google Scholar]
  46. KnightT. IrvingJ.A.E. Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting.Front. Oncol.2014416010.3389/fonc.2014.0016025009801
    [Google Scholar]
  47. DegirmenciU. WangM. HuJ. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.Cells20209119810.3390/cells901019831941155
    [Google Scholar]
  48. AsatiV. MahapatraD.K. BhartiS.K. K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives.Eur. J. Med. Chem.201712529931410.1016/j.ejmech.2016.09.04927688185
    [Google Scholar]
  49. AmmarU.M. Abdel-MaksoudM.S. OhC.H. Recent advances of RAF (rapidly accelerated fibrosarcoma) inhibitors as anti-cancer agents.Eur. J. Med. Chem.201815814416610.1016/j.ejmech.2018.09.00530216849
    [Google Scholar]
  50. WangC. WangH. ZhengC. LiuZ. GaoX. XuF. NiuY. ZhangL. XuP. Research progress of MEK1/2 inhibitors and degraders in the treatment of cancer.Eur. J. Med. Chem.202121811338610.1016/j.ejmech.2021.11338633774345
    [Google Scholar]
  51. YanZ. OhuchidaK. FeiS. ZhengB. GuanW. FengH. KibeS. AndoY. KoikawaK. AbeT. IwamotoC. ShindoK. MoriyamaT. NakataK. MiyasakaY. OhtsukaT. MizumotoK. HashizumeM. NakamuraM. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer–stromal interaction and metastasis.J. Exp. Clin. Cancer Res.201938122110.1186/s13046‑019‑1226‑831133044
    [Google Scholar]
  52. JohnsonD.B. SmalleyK.S.M. SosmanJ.A. Molecular pathways: Targeting NRAS in melanoma and acute myelogenous leukemia.Clin. Cancer Res.201420164186419210.1158/1078‑0432.CCR‑13‑327024895460
    [Google Scholar]
  53. van der ZwetJ.C.G. Buijs-GladdinesJ.G.C.A.M. Cordo’V. DebetsD.O. SmitsW.K. ChenZ. DylusJ. ZamanG.J.R. AltelaarM. OshimaK. BornhauserB. BourquinJ.P. CoolsJ. FerrandoA.A. VormoorJ. PietersR. VormoorB. MeijerinkJ.P.P. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance.Leukemia202135123394340510.1038/s41375‑021‑01291‑534007050
    [Google Scholar]
  54. PomeroyE.J. EckfeldtC.E. Targeting Ras signaling in AML: RALB is a small GTPase with big potential.Small GTPases2020111394410.1080/21541248.2017.133976528682649
    [Google Scholar]
  55. BertacchiniJ. KetabchiN. MedianiL. CapitaniS. MarmiroliS. SakiN. Inhibition of Ras-mediated signaling pathways in CML stem cells.Cell Oncol. (Dordr.)201538640741810.1007/s13402‑015‑0248‑226458816
    [Google Scholar]
  56. PantS. JonesS. F. KurkjianC. D. InfanteJ. R. MooreK. N. BurrisH. A. McMeekinD. S. BenhadjiK. A. PatelB. K. R. FrenzelM. J. KursarJ. D. Zamek-GliszczynskiM. J. YuenE. S. M. ChanE. M. BendellJ. C. A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur. J. Cancer2016561910.1016/j.ejca.2015.11.021
    [Google Scholar]
  57. GavaiA.V. QuesnelleC. NorrisD. HanW.C. GillP. ShanW. BalogA. ChenK. TebbenA. RampullaR. WuD.R. ZhangY. MathurA. WhiteR. RoseA. WangH. YangZ. RanasingheA. D’ArienzoC. GuarinoV. XiaoL. SuC. EverlofG. AroraV. ShenD.R. CvijicM.E. MenardK. WenM.L. MeredithJ. TrainorG. LombardoL.J. OlsonR. BaranP.S. HuntJ.T. ViteG.D. FischerB.S. WesthouseR.A. LeeF.Y. Discovery of clinical candidate BMS-906024: A potent pan-notch inhibitor for the treatment of leukemia and solid tumors.ACS Med. Chem. Lett.20156552352710.1021/acsmedchemlett.5b0000126005526
    [Google Scholar]
  58. HabetsR.A. de BockC.E. SerneelsL. LodewijckxI. VerbekeD. NittnerD. NarlawarR. DemeyerS. DooleyJ. ListonA. TaghonT. CoolsJ. de StrooperB. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition.Sci. Transl. Med.201911494eaau624610.1126/scitranslmed.aau624631142678
    [Google Scholar]
  59. WangZ. LiZ. JiH. Direct targeting of β ‐catenin in the Wnt signaling pathway: Current progress and perspectives.Med. Res. Rev.20214142109212910.1002/med.2178733475177
    [Google Scholar]
  60. ChiariniF. PaganelliF. MartelliA.M. EvangelistiC. The role played by Wnt/β-catenin signaling pathway in acute lymphoblastic leukemia.Int. J. Mol. Sci.2020213109810.3390/ijms2103109832046053
    [Google Scholar]
  61. ValléeA. LecarpentierY. ValléeJ.N. Cannabidiol and the canonical WNT/β-catenin pathway in glaucoma.Int. J. Mol. Sci.2021227379810.3390/ijms2207379833917605
    [Google Scholar]
  62. TeraoT. MinamiY. Targeting hedgehog (Hh) pathway for the acute myeloid leukemia treatment.Cells20198431210.3390/cells804031230987263
    [Google Scholar]
  63. KhanA.A. HarrisonC.N. McLornanD.P. Targeting of the hedgehog pathway in myeloid malignancies: Still a worthy chase?Br. J. Haematol.2015170332333510.1111/bjh.1342625892100
    [Google Scholar]
  64. JamiesonC. MartinelliG. PapayannidisC. CortesJ.E. Hedgehog pathway inhibitors: A new therapeutic class for the treatment of acute myeloid leukemia.Blood Cancer Discov.20201213414510.1158/2643‑3230.BCD‑20‑000734661144
    [Google Scholar]
  65. DaverN. SchlenkR.F. RussellN.H. LevisM.J. Targeting FLT3 mutations in AML: review of current knowledge and evidence.Leukemia201933229931210.1038/s41375‑018‑0357‑930651634
    [Google Scholar]
  66. ZhaoJ.C. AgarwalS. AhmadH. AminK. BewersdorfJ.P. ZeidanA.M. A review of FLT3 inhibitors in acute myeloid leukemia.Blood Rev.20225210090510.1016/j.blre.2021.10090534774343
    [Google Scholar]
  67. KennedyV.E. SmithC.C. FLT3 mutations in acute myeloid leukemia: Key concepts and emerging controversies.Front. Oncol.20201061288010.3389/fonc.2020.61288033425766
    [Google Scholar]
  68. PiedimonteM. OttoneT. AlfonsoV. FerrariA. ConteE. DivonaM. BianchiM.P. RicciardiM.R. MirabiliiS. LicchettaR. CampagnaA. CicconiL. GalassiG. PellicciaS. LeporaceA. Lo CocoF. TafuriA. A rare BCR-ABL1 transcript in Philadelphia-positive acute myeloid leukemia: Case report and literature review.BMC Cancer20191915010.1186/s12885‑019‑5265‑530630459
    [Google Scholar]
  69. BraunT.P. EideC.A. DrukerB.J. Response and resistance to BCR-ABL1-targeted therapies.Cancer Cell202037453054210.1016/j.ccell.2020.03.00632289275
    [Google Scholar]
  70. YinY. ChenC.J. YuR.N. ShuL. ZhangT.T. ZhangD.Y. Discovery of novel selective Janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold.Bioorg. Med. Chem.20192781562157610.1016/j.bmc.2019.02.05430846405
    [Google Scholar]
  71. XuP. ShenP. WangH. QinL. RenJ. SunQ. GeR. BianJ. ZhongY. LiZ. WangJ. QiuZ. Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2.Eur. J. Med. Chem.202121811339410.1016/j.ejmech.2021.11339433813153
    [Google Scholar]
  72. LiY. YeT. XuL. DongY. LuoY. WangC. HanY. ChenK. QinM. LiuY. ZhaoY. Discovery of 4-piperazinyl-2-aminopyrimidine derivatives as dual inhibitors of JAK2 and FLT3.Eur. J. Med. Chem.201918111159010.1016/j.ejmech.2019.11159031408808
    [Google Scholar]
  73. ZhengY.G. WangJ.A. MengL. PeiX. ZhangL. AnL. LiC.L. MiaoY.L. Design, synthesis, biological activity evaluation of 3-(4-phenyl-1H-imidazol-2-yl)-1H-pyrazole derivatives as potent JAK 2/3 and aurora A/B kinases multi-targeted inhibitors.Eur. J. Med. Chem.202120911293410.1016/j.ejmech.2020.11293433109396
    [Google Scholar]
  74. Aranda-TavíoH. RecioC. Martín-AcostaP. Guerra-RodríguezM. Brito-CasillasY. BlancoR. JuncoV. LeónJ. MonteroJ. C. Gandullo-SánchezL. McNaughton-SmithG. ZapataJ. M. PandiellaA. AmestyA. Estévez-BraunA. Fernández-PérezL. GuerraB. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia.Biomed. Pharmacother.202114411233010.1016/j.biopha.2021.112330
    [Google Scholar]
  75. BiS. ChenK. FengL. FuG. YangQ. DengM. ZhaoH. LiZ. YuL. FangZ. XuB. Napabucasin (BBI608) eliminate AML cells in vitro and in vivo via inhibition of Stat3 pathway and induction of DNA damage.Eur. J. Pharmacol.201985525226110.1016/j.ejphar.2019.05.02031085238
    [Google Scholar]
  76. ElumalaiN. BergA. RubnerS. BlechschmidtL. SongC. NatarajanK. MatysikJ. BergT. Rational development of Stafib-2: a selective, nanomolar inhibitor of the transcription factor STAT5b.Sci. Rep.20177181910.1038/s41598‑017‑00920‑328400581
    [Google Scholar]
  77. WingelhoferB. MaurerB. HeyesE.C. CumaraswamyA.A. Berger-BecvarA. de AraujoE.D. OrlovaA. FreundP. RugeF. ParkJ. TinG. AhmarS. LardeauC.H. SadovnikI. BajuszD. KeserűG.M. GrebienF. KubicekS. ValentP. GunningP.T. MorigglR. Pharmacologic inhibition of STAT5 in acute myeloid leukemia.Leukemia20183251135114610.1038/s41375‑017‑0005‑929472718
    [Google Scholar]
  78. YangC. XuC. LiZ. ChenY. WuT. HongH. LuM. JiaY. YangY. LiuX. DengM. ChenZ. LiQ. LingY. ZhouY. Bioisosteric replacements of the indole moiety for the development of a potent and selective PI3Kδ inhibitor: Design, synthesis and biological evaluation.Eur. J. Med. Chem.202122311366110.1016/j.ejmech.2021.11366134237636
    [Google Scholar]
  79. LiangX. LiF. ChenC. JiangZ. WangA. LiuX. GeJ. HuZ. YuK. WangW. ZouF. LiuQ. WangB. WangL. ZhangS. WangY. LiuQ. LiuJ. Discovery of (S)-2-amino-N-(5-(6-chloro-5-(3-methylphenylsulfonamido)pyridin-3-yl)-4-methylthiazol-2-yl)-3-methylbutanamide (CHMFL-PI3KD-317) as a potent and selective phosphoinositide 3-kinase delta (PI3Kδ) inhibitor.Eur. J. Med. Chem.201815683184610.1016/j.ejmech.2018.07.03630053721
    [Google Scholar]
  80. MaX. WeiJ. WangC. GuD. HuY. ShengR. Design, synthesis and biological evaluation of novel benzothiadiazine derivatives as potent PI3Kδ-selective inhibitors for treating B-cell-mediated malignancies.Eur. J. Med. Chem.201917011212510.1016/j.ejmech.2019.03.00530878826
    [Google Scholar]
  81. PengW. TuZ.C. LongZ.J. LiuQ. LuG. Discovery of 2-(2-aminopyrimidin-5-yl)-4-morpholino- N -(pyridin-3-yl)quinazolin-7-amines as novel PI3K/mTOR inhibitors and anticancer agents.Eur. J. Med. Chem.201610864465410.1016/j.ejmech.2015.11.03826731167
    [Google Scholar]
  82. XinM. DuanW. FengY. HeiY.Y. ZhangH. ShenY. ZhaoH.Y. MaoS. ZhangS.Q. Novel 6-aryl substituted 4-pyrrolidineaminoquinazoline derivatives as potent phosphoinositide 3-kinase delta (PI3Kδ) inhibitors.Bioorg. Med. Chem.20182682028204010.1016/j.bmc.2018.03.00229534936
    [Google Scholar]
  83. HiraiH. SootomeH. NakatsuruY. MiyamaK. TaguchiS. TsujiokaK. UenoY. HatchH. MajumderP.K. PanB.S. KotaniH. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo.Mol. Cancer Ther.2010971956196710.1158/1535‑7163.MCT‑09‑101220571069
    [Google Scholar]
  84. PapaV. TazzariP.L. ChiariniF. CappelliniA. RicciF. BilliA.M. EvangelistiC. OttavianiE. MartinelliG. TestoniN. McCubreyJ.A. MartelliA.M. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells.Leukemia200822114716010.1038/sj.leu.240498017928881
    [Google Scholar]
  85. YaoD. JiangJ. ZhangH. HuangY. HuangJ. WangJ. Design, synthesis and biological evaluation of dual mTOR/HDAC6 inhibitors in MDA-MB-231 cells.Bioorg. Med. Chem. Lett.20214712820410.1016/j.bmcl.2021.12820434139324
    [Google Scholar]
  86. LiC. HanY. WangZ. YuY. WangC. RenZ. GuoY. ZhuT. LiX. DongS. MaM. Function-oriented synthesis of Imidazo[1,2-a]pyrazine and Imidazo[1,2-b]pyridazine derivatives as potent PI3K/mTOR dual inhibitors.Eur. J. Med. Chem.202324711503010.1016/j.ejmech.2022.11503036586298
    [Google Scholar]
  87. ZhangB. ZhangQ. XiaoZ. SunX. YangZ. GuQ. LiuZ. XieT. JinQ. ZhengP. XuS. ZhuW. Design, synthesis and biological evaluation of substituted 2-(thiophen-2-yl)-1,3,5-triazine derivatives as potential dual PI3Kα/mTOR inhibitors.Bioorg. Chem.20209510352510.1016/j.bioorg.2019.10352531887474
    [Google Scholar]
  88. YangY.Y. WangW.L. HuX.T. ChenX. NiY. LeiY.H. QiuQ.Y. TaoL.Y. LuoT.W. WangN.Y. Design, synthesis and biological evaluation of novel 9-methyl-9H-purine and thieno[3, 2-d]pyrimidine derivatives as potent mTOR inhibitors.Bioorg. Chem.202313210635610.1016/j.bioorg.2023.10635636669357
    [Google Scholar]
  89. SunX. ZhangB. LuoL. YangY. HeB. ZhangQ. WangL. XuS. ZhengP. ZhuW. Design, synthesis and pharmacological evaluation of 2-arylurea-1,3,5-triazine derivative (XIN-9): A novel potent dual PI3K/mTOR inhibitor for cancer therapy.Bioorg. Chem.202212910615710.1016/j.bioorg.2022.10615736209563
    [Google Scholar]
  90. PanZ. ChenY. PangH. WangX. ZhangY. XieX. HeG. Design, synthesis, and biological evaluation of novel dual inhibitors of heat shock protein 90/mammalian target of rapamycin (Hsp90/mTOR) against bladder cancer cells.Eur. J. Med. Chem.202224211467410.1016/j.ejmech.2022.11467435987020
    [Google Scholar]
  91. DumeaC. BeleiD. GhinetA. DuboisJ. FarceA. BîcuE. Novel indolizine derivatives with unprecedented inhibitory activity on human farnesyltransferase.Bioorg. Med. Chem. Lett.201424245777578110.1016/j.bmcl.2014.10.04425453818
    [Google Scholar]
  92. ChoH. ShinI. JuE. ChoiS. HurW. KimH. HongE. KimN.D. ChoiH.G. GrayN.S. SimT. First SAR study for overriding NRAS mutant driven acute myeloid leukemia.J. Med. Chem.201861188353837310.1021/acs.jmedchem.8b0088230153003
    [Google Scholar]
  93. MonacoK.A. DelachS. YuanJ. MishinaY. FordjourP. LabrotE. McKayD. GuoR. HigginsS. WangH.Q. LiangJ. BuiK. GreenJ. AspesiP. AmbroseJ. MapaF. GrinerL. JaskelioffM. FullerJ. CrawfordK. PardeeG. WidgerS. HammermanP.S. EngelmanJ.A. StuartD.D. CookeV.G. CaponigroG. LXH254, a potent and selective araf-sparing inhibitor of BRAF and CRAF for the treatment of MAPK-driven tumors.Clin. Cancer Res.20212772061207310.1158/1078‑0432.CCR‑20‑256333355204
    [Google Scholar]
  94. ThabitM.G. MostafaA.S. SelimK.B. ElsayedM.A.A. NasrM.N.A. Design, synthesis and molecular modeling of phenyl dihydropyridazinone derivatives as B-Raf inhibitors with anticancer activity.Bioorg. Chem.202010310414810.1016/j.bioorg.2020.10414832763518
    [Google Scholar]
  95. El-GamalM.I. KhanM.A. TaraziH. Abdel-MaksoudM.S. Gamal El-DinM.M. YooK.H. OhC.H. Design and synthesis of new RAF kinase-inhibiting antiproliferative quinoline derivatives. Part 2: Diarylurea derivatives.Eur. J. Med. Chem.201712741342310.1016/j.ejmech.2017.01.00628088086
    [Google Scholar]
  96. El-DamasyA.K. HaqueM.M. ParkJ.W. ShinS.C. LeeJ.S. EunKyeong KimE. KeumG. 2-Anilinoquinoline based arylamides as broad spectrum anticancer agents with B-RAFV600E/C-RAF kinase inhibitory effects: Design, synthesis, in vitro cell-based and oncogenic kinase assessments.Eur. J. Med. Chem.202020811275610.1016/j.ejmech.2020.11275632942186
    [Google Scholar]
  97. El-DamasyA.K. LeeJ.H. SeoS.H. ChoN.C. PaeA.N. KeumG. Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-RafV600E and C-Raf kinase inhibitory activities.Eur. J. Med. Chem.201611520121610.1016/j.ejmech.2016.02.03927017549
    [Google Scholar]
  98. AbeH. KikuchiS. HayakawaK. IidaT. NagahashiN. MaedaK. SakamotoJ. MatsumotoN. MiuraT. MatsumuraK. SekiN. InabaT. KawasakiH. YamaguchiT. KakefudaR. NanayamaT. KurachiH. HoriY. YoshidaT. KakegawaJ. WatanabeY. GilmartinA.G. RichterM.C. MossK.G. LaquerreS.G. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO Solvate).ACS Med. Chem. Lett.20112432032410.1021/ml200004g24900312
    [Google Scholar]
  99. ShannonS. JiaD. EnterszI. BeelenP. YuM. CarcioneC. CarcioneJ. MahtabfarA. VacaC. WeaverM. ShreiberD. ZahnJ.D. LiuL. LinH. FotyR.A. Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901.BMC Cancer201717112110.1186/s12885‑017‑3107‑x28187762
    [Google Scholar]
  100. Van DortM.E. HongH. WangH. NinoC.A. LombardiR.L. BlanksA.E. GalbánS. RossB.D. Discovery of bifunctional oncogenic target inhibitors against allosteric mitogen-activated protein kinase (MEK1) and phosphatidylinositol 3-Kinase (PI3K).J. Med. Chem.20165962512252210.1021/acs.jmedchem.5b0165526943489
    [Google Scholar]
  101. HuJ. WeiJ. YimH. WangL. XieL. JinM.S. KabirM. QinL. ChenX. LiuJ. JinJ. Potent and selective mitogen-activated protein kinase kinase 1/2 (mek1/2) heterobifunctional small-molecule degraders.J. Med. Chem.20206324158831590510.1021/acs.jmedchem.0c0160933284613
    [Google Scholar]
  102. WeiJ. HuJ. WangL. XieL. JinM.S. ChenX. LiuJ. JinJ. Discovery of a first-in-class mitogen-activated protein kinase kinase 1/2 degrader.J. Med. Chem.20196223108971091110.1021/acs.jmedchem.9b0152831730343
    [Google Scholar]
  103. BogaS.B. AlhassanA.B. CooperA.B. DollR. ShihN.Y. ShippsG. DengY. ZhuH. NanY. SunR. ZhuL. DesaiJ. PatelM. MuppallaK. GaoX. WangJ. YaoX. KellyJ. GudipatiS. PaliwalS. TsuiH.C. WangT. SherborneB. XiaoL. HruzaA. BuevichA. ZhangL.K. HeskD. SamatarA.A. CarrD. LongB. BlackS. DayananthP. WindsorW. KirschmeierP. BishopR. Discovery of 3( S )-thiomethyl pyrrolidine ERK inhibitors for oncology.Bioorg. Med. Chem. Lett.201828112029203410.1016/j.bmcl.2018.04.06329748051
    [Google Scholar]
  104. BogaS.B. DengY. ZhuL. NanY. CooperA.B. ShippsG.W.Jr DollR. ShihN.Y. ZhuH. SunR. WangT. PaliwalS. TsuiH.C. GaoX. YaoX. DesaiJ. WangJ. AlhassanA.B. KellyJ. PatelM. MuppallaK. GudipatiS. ZhangL.K. BuevichA. HeskD. CarrD. DayananthP. BlackS. MeiH. CoxK. SherborneB. HruzaA.W. XiaoL. JinW. LongB. LiuG. TaylorS.A. KirschmeierP. WindsorW.T. BishopR. SamatarA.A. MK-8353: Discovery of an orally bioavailable dual mechanism erk inhibitor for oncology.ACS Med. Chem. Lett.20189776176710.1021/acsmedchemlett.8b0022030034615
    [Google Scholar]
  105. López-GuerraM. Xargay-TorrentS. RosichL. MontravetaA. RoldánJ. Matas-CéspedesA. VillamorN. AymerichM. López-OtínC. Pérez-GalánP. RouéG. CampoE. ColomerD. The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells.Leukemia20152919610610.1038/leu.2014.14324781018
    [Google Scholar]
  106. BorthakurG. MartinelliG. RaffouxE. ChevallierP. ChromikJ. LithioA. SmithC.L. YuenE. OakleyG.J.III BenhadjiK.A. DeAngeloD.J. Phase 1 study to evaluate Crenigacestat (LY3039478) in combination with dexamethasone in patients with T‐cell acute lymphoblastic leukemia and lymphoma.Cancer2021127337238010.1002/cncr.3318833107983
    [Google Scholar]
  107. NeogiK. MurumkarP.R. SharmaP. YadavP. TewariM. KarunagaranD. NayakP.K. YadavM.R. Design, synthesis and evaluation of 4,7-disubstituted 8-methoxyquinazoline derivatives as potential cytotoxic agents targeting β-catenin/TCF4 signaling pathway.Transl. Oncol.20221910139510.1016/j.tranon.2022.10139535325837
    [Google Scholar]
  108. ShenL.A. PengX. BaoY. LiuC. ZhangH. LiJ. ZhuD. ZhangQ. Design, synthesis and biological evaluation of quercetin derivatives as novel β-catenin/B-cell lymphoma 9 protein−protein interaction inhibitors.Eur. J. Med. Chem.202324711507510.1016/j.ejmech.2022.11507536599228
    [Google Scholar]
  109. DanieauG. MoriceS. RenaultS. BrionR. BiteauK. AmiaudJ. CadéM. HeymannD. LézotF. VerrecchiaF. RédiniF. Brounais-Le RoyerB. ICG-001, an inhibitor of the β-Catenin and cAMP response element-binding protein dependent gene transcription, decreases proliferation but enhances migration of osteosarcoma cells.Pharmaceuticals202114542110.3390/ph1405042134062831
    [Google Scholar]
  110. OkazakiH. SatoS. KoyamaK. MorizumiS. AbeS. AzumaM. ChenY. GotoH. AonoY. OgawaH. KagawaK. NishimuraH. KawanoH. ToyodaY. UeharaH. KoujiH. NishiokaY. The novel inhibitor PRI-724 for Wnt/β-catenin/CBP signaling ameliorates bleomycin-induced pulmonary fibrosis in mice.Exp. Lung Res.201945718819910.1080/01902148.2019.163846631298961
    [Google Scholar]
  111. ZhangJ.J. ZhangW. ZhangL. HuM. XuQ.J. XuY. Design, synthesis and biological evaluation of novel 4-aminopiperidine derivatives as SMO/ERK dual inhibitors.Bioorg. Med. Chem.20227411705110.1016/j.bmc.2022.11705136270113
    [Google Scholar]
  112. JiD. ZhangW. XuY. ZhangJ.J. Design, synthesis and biological evaluation of anthranilamide derivatives as potent SMO inhibitors.Bioorg. Med. Chem.202028611535410.1016/j.bmc.2020.11535432063403
    [Google Scholar]
  113. BerardozziS. BernardiF. InfanteP. IngallinaC. ToscanoS. De PaolisE. AlfonsiR. CaimanoM. BottaB. MoriM. Di MarcotullioL. GhirgaF. Synergistic inhibition of the Hedgehog pathway by newly designed Smo and Gli antagonists bearing the isoflavone scaffold.Eur. J. Med. Chem.201815655456210.1016/j.ejmech.2018.07.01730025349
    [Google Scholar]
  114. ChennaV. HuC. KhanS.R. Synthesis and cytotoxicity studies of Hedgehog enzyme inhibitors SANT-1 and GANT-61 as anticancer agents.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201449664164710.1080/10934529.2014.86542524521409
    [Google Scholar]
  115. YuZ. DuJ. HuiH. KanS. HuoT. ZhaoK. WuT. GuoQ. LuN. LT-171-861, a novel FLT3 inhibitor, shows excellent preclinical efficacy for the treatment of FLT3 mutant acute myeloid leukemia.Theranostics20211119310610.7150/thno.4659333391463
    [Google Scholar]
  116. ZhiY. WangZ. YaoC. LiB. HengH. CaiJ. XiangL. WangY. LuT. LuS. Design and synthesis of 4-(Heterocyclic substituted amino)-1H-Pyrazole-3-carboxamide derivatives and their potent activity against acute myeloid leukemia (aml).Int. J. Mol. Sci.20192022573910.3390/ijms2022573931731727
    [Google Scholar]
  117. JeongP. MoonY. LeeJ.H. LeeS.D. ParkJ. LeeJ. KimJ. LeeH.J. KimN.Y. ChoiJ. HeoJ.D. ShinJ.E. ParkH.W. KimY.G. HanS.Y. KimY.C. Discovery of orally active indirubin-3′-oxime derivatives as potent type 1 FLT3 inhibitors for acute myeloid leukemia.Eur. J. Med. Chem.202019511220510.1016/j.ejmech.2020.11220532272419
    [Google Scholar]
  118. LiangX. WangB. ChenC. WangA. HuC. ZouF. YuK. LiuQ. LiF. HuZ. LuT. WangJ. WangL. WeisbergE.L. LiL. XiaR. WangW. RenT. GeJ. LiuJ. LiuQ. Discovery of N -(4-(6-Acetamidopyrimidin-4-yloxy)phenyl)-2-(2-(trifluoromethyl)phenyl)acetamide (CHMFL-FLT3-335) as a Potent FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutant selective inhibitor for acute myeloid leukemia.J. Med. Chem.201962287589210.1021/acs.jmedchem.8b0159430565931
    [Google Scholar]
  119. CilibrasiV. SpanòV. BortolozziR. BarrecaM. RaimondiM.V. RoccaR. MarucaA. MontalbanoA. AlcaroS. RoncaR. ViolaG. BarrajaP. Synthesis of 2H-Imidazo[2′,1′:2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations.Eur. J. Med. Chem.202223511429210.1016/j.ejmech.2022.11429235339838
    [Google Scholar]
  120. ChoiS.J. MoonM.J. LeeS.D. ChoiS.U. HanS.Y. KimY.C. Indirubin derivatives as potent FLT3 inhibitors with anti-proliferative activity of acute myeloid leukemic cells.Bioorg. Med. Chem. Lett.20102062033203710.1016/j.bmcl.2010.01.03920153646
    [Google Scholar]
  121. LiuH. MiQ. DingX. LinC. LiuL. RenC. ShenS. ShaoY. ChenJ. ZhouY. JiL. ZhangH. BaiF. YangX. YinQ. JiangB. Discovery and characterization of novel potent BCR-ABL degraders by conjugating allosteric inhibitor.Eur. J. Med. Chem.202224411481010.1016/j.ejmech.2022.11481036306539
    [Google Scholar]
  122. PanX. LiuN. LiuY. ZhangQ. WangK. LiuX. ZhangJ. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors.Eur. J. Med. Chem.202223811442510.1016/j.ejmech.2022.11442535561654
    [Google Scholar]
  123. El-DamasyA.K. JinH. SeoS.H. BangE.K. KeumG. Design, synthesis, and biological evaluations of novel 3-amino-4-ethynyl indazole derivatives as Bcr-Abl kinase inhibitors with potent cellular antileukemic activity.Eur. J. Med. Chem.202020711271010.1016/j.ejmech.2020.11271032961435
    [Google Scholar]
  124. GuptaP. ZhangG.N. BarbutiA.M. ZhangX. KaradkhelkarN. ZhouJ. DingK. PanJ. YoganathanS. YangD.H. ChenZ.S. Preclinical development of a novel BCR-ABL T315I inhibitor against chronic myeloid leukemia.Cancer Lett.202047213214110.1016/j.canlet.2019.11.04031837444
    [Google Scholar]
  125. Di MariaS. PicarazziF. MoriM. CianciusiA. CarboneA. CrespanE. PeriniC. SabettaS. DeplanoS. PoggialiniF. MolinariA. AronneR. MaccioniE. MagaG. AngelucciA. SchenoneS. MusumeciF. DreassiE. Novel pyrazolo[3,4-d]pyrimidines as dual Src/Bcr-Abl kinase inhibitors: Synthesis and biological evaluation for chronic myeloid leukemia treatment.Bioorg. Chem.202212810607110.1016/j.bioorg.2022.10607135932498
    [Google Scholar]
  126. BertrandJ. DostálováH. KrystofV. JordaR. CastroA. MellaJ. Espinosa-BustosC. María ZarateA. SalasC.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia.Bioorg. Chem.20209410336110.1016/j.bioorg.2019.10336131699386
    [Google Scholar]
  127. ChauhanA. IslamA.U. PrakashH. SinghS. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions.J. Pharm. Anal.202212339440510.1016/j.jpha.2021.07.00235811622
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673267738231129104216
Loading
/content/journals/cmc/10.2174/0109298673267738231129104216
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chemotherapy; drug therapy; inhibitors; leukemia; protein kinase; signal pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test