Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Inhibitors of Apoptosis Proteins (IAP) are inhibitors that can block programmed cell death, are expressed at high levels in various cancers, and are recognized as a therapeutic target for cancer therapy. In the past few years, several small molecule IAP protein inhibitors have been designed to mimic the endogenous IAP antagonist, but no IAP inhibitors have been approved for marketing worldwide. Previously, xevinapant has been awarded a breakthrough therapy designation by the FDA. In addition, a combination of Smac mimetics and chemotherapeutic compounds has been reported to improve anticancer efficacy. According to the phase II clinical data, xevinapant has the potential to significantly enhance the standard therapy for patients with head and neck cancer, which is expected to be approved as an innovative therapy for cancer patients. Therefore, this paper briefly describes the mechanism of IAPs (AT-406, APG-1387, GDC-0152, TL32711, and LCL161) as single or in combination for cancer treatment, their application status as well as the synthetic pathway, and explores the research prospects and challenges of IAPs antagonists in the tumor combination therapy, with the hope of providing strong insights into the further development of Smac mimics in tumor therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283734240206020150
2024-05-20
2025-09-07
Loading full text...

Full text loading...

References

  1. BrunckhorstM.K. LernerD. WangS. YuQ. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer.Cancer Biol. Ther.201213980481110.4161/cbt.2056322669575
    [Google Scholar]
  2. NikkhooA. RostamiN. Hojjat-FarsangiM. AziziG. YousefiB. GhalamfarsaG. Jadidi-NiaraghF. Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer.J. Cell. Biochem.201912069300931410.1002/jcb.2820530506843
    [Google Scholar]
  3. VucicD. DixitV.M. WertzI.E. Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death.Nat. Rev. Mol. Cell Biol.201112743945210.1038/nrm314321697901
    [Google Scholar]
  4. TchoghandjianA. SoubéranA. TabouretE. ColinC. DenicolaïE. Jiguet-JiglaireC. El-BattariA. VillardC. Baeza-KalleeN. Figarella-BrangerD. Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152.Cell Death Dis.201678e232510.1038/cddis.2016.21427490930
    [Google Scholar]
  5. LinT.Y. ChanH.H. ChenS.H. SarvagallaS. ChenP.S. CoumarM.S. ChengS.M. ChangY.C. LinC.H. LeungE. CheungC.H.A. BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells.Autophagy20201671296131310.1080/15548627.2019.167164331612776
    [Google Scholar]
  6. ScheurerM.J.J. SeherA. SteinackerV. LinzC. HartmannS. KüblerA.C. Müller-RichterU.D.A. BrandsR.C. Targeting inhibitors of apoptosis in oral squamous cell carcinoma in vitro.J. Craniomaxillofac. Surg.201947101589159910.1016/j.jcms.2019.07.02231387829
    [Google Scholar]
  7. FuldaS. PervaizS. Apoptosis signaling in cancer stem cells.Int. J. Biochem. Cell Biol.2010421313810.1016/j.biocel.2009.06.01019577660
    [Google Scholar]
  8. KashkarH. X-linked inhibitor of apoptosis: A chemoresistance factor or a hollow promise.Clin. Cancer Res.201016184496450210.1158/1078‑0432.CCR‑10‑166420682709
    [Google Scholar]
  9. EckelmanB.P. SalvesenG.S. ScottF.L. Human inhibitor of apoptosis proteins: Why XIAP is the black sheep of the family.EMBO Rep.200671098899410.1038/sj.embor.740079517016456
    [Google Scholar]
  10. SrinivasulaS.M. AshwellJ.D. IAPs: What’s in a name?Mol. Cell200830212313510.1016/j.molcel.2008.03.00818439892
    [Google Scholar]
  11. XuD. ZhaoH. JinM. ZhuH. ShanB. GengJ. DziedzicS.A. AminP. MifflinL. NaitoM.G. NajafovA. XingJ. YanL. LiuJ. QinY. HuX. WangH. ZhangM. ManuelV.J. TanL. HeZ. SunZ.J. LeeV.M.Y. WagnerG. YuanJ. Modulating TRADD to restore cellular homeostasis and inhibit apoptosis.Nature2020587783213313810.1038/s41586‑020‑2757‑z32968279
    [Google Scholar]
  12. WuM. WangG. ZhaoZ. LiangY. WangH. WuM. MinP. ChenL. FengQ. BeiJ. ZengY. YangD. Smac mimetics in combination with TRAIL selectively target cancer stem cells in nasopharyngeal carcinoma.Mol. Cancer Ther.20131291728173710.1158/1535‑7163.MCT‑13‑001723699656
    [Google Scholar]
  13. FrankD. VinceJ.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk.Cell Death Differ.20192619911410.1038/s41418‑018‑0212‑630341423
    [Google Scholar]
  14. JiangY. MengQ. ChenB. ShenH. YanB. SunB. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo. Biochem. Biophys. Res. Commun.2016478129329910.1016/j.bbrc.2016.07.01127387230
    [Google Scholar]
  15. HagenbuchnerJ. OberacherH. ArnhardK. Kiechl-KohlendorferU. AusserlechnerM.J. Modulation of respiration and mitochondrial dynamics by SMAC mimetics for combination therapy in chemoresistant cancer.Theranostics20199174909492210.7150/thno.3375831410190
    [Google Scholar]
  16. FlygareJ.A. BeresiniM. BudhaN. ChanH. ChanI.T. CheetiS. CohenF. DeshayesK. DoernerK. EckhardtS.G. ElliottL.O. FengB. FranklinM.C. ReisnerS.F. GazzardL. HalladayJ. HymowitzS.G. LaH. LoRussoP. MaurerB. MurrayL. PliseE. QuanC. StephanJ.P. YoungS.G. TomJ. TsuiV. UmJ. VarfolomeevE. VucicD. WagnerA.J. WallweberH.J.A. WangL. WareJ. WenZ. WongH. WongJ.M. WongM. WongS. YuR. ZobelK. FairbrotherW.J. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152).J. Med. Chem.20125594101411310.1021/jm300060k22413863
    [Google Scholar]
  17. ChangY.C. CheungC.H.A. An updated review of smac mimetics, LCL161, birinapant, and GDC-0152 in cancer treatment.Appl. Sci.202011133510.3390/app11010335
    [Google Scholar]
  18. CaiQ. SunH. PengY. LuJ. Nikolovska-ColeskaZ. McEachernD. LiuL. QiuS. YangC.Y. MillerR. YiH. ZhangT. SunD. KangS. GuoM. LeopoldL. YangD. WangS. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment.J. Med. Chem.20115482714272610.1021/jm101505d21443232
    [Google Scholar]
  19. Von HoffD.D. ErvinT. ArenaF.P. ChioreanE.G. InfanteJ. MooreM. SeayT. TjulandinS.A. MaW.W. SalehM.N. HarrisM. ReniM. DowdenS. LaheruD. BaharyN. RamanathanR.K. TaberneroJ. HidalgoM. GoldsteinD. Van CutsemE. WeiX. IglesiasJ. RenschlerM.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.N. Engl. J. Med.2013369181691170310.1056/NEJMoa130436924131140
    [Google Scholar]
  20. FuldaS. VucicD. Targeting IAP proteins for therapeutic intervention in cancer.Nat. Rev. Drug Discov.201211210912410.1038/nrd362722293567
    [Google Scholar]
  21. LiC. ZhuG. CuiZ. ZhangJ. ZhangS. WeiY. The strong inhibitory effect of combining anti-cancer drugs AT406 and rocaglamide with blue LED irradiation on colorectal cancer cells.Photodiagn. Photodyn. Ther.20203010179710.1016/j.pdpdt.2020.10179732360851
    [Google Scholar]
  22. PerimenisP. GalarisA. VoulgariA. PrassaM. PintzasA. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis.BMC Cancer201616162410.1186/s12885‑016‑2606‑527520705
    [Google Scholar]
  23. LiQ. DouglasD. ShoulaiGu. DajunYang. YifanZhai. Therapeutic potential of IAP inhibitor APG-1387 in combination with PARP- or MEK-targeted therapy, or chemotherapy in pancreatic cancer. Cancer Res., 2020; 80(16 Suppl), 6216.
    [Google Scholar]
  24. ChenZ. ChenJ. LiuH. DongW. HuangX. YangD. HouJ. ZhangX. The SMAC mimetic APG-1387 sensitizes immune-mediated cell apoptosis in hepatocellular carcinoma.Front. Pharmacol.20189129810.3389/fphar.2018.0129830459627
    [Google Scholar]
  25. WardG.A. LewisE.J. AhnJ.S. JohnsonC.N. LyonsJ.F. MartinsV. MunckJ.M. RichS.J. SmythT. ThompsonN.T. WilliamsP.A. WilsherN.E. WallisN.G. ChessariG. ASTX660, a novel non-peptidomimetic antagonist of cIAP1/2 and XIAP, potently induces TNFalpha-dependent apoptosis in cancer cell lines and inhibits tumor growth.Mol. Cancer Ther.20181771381139110.1158/1535‑7163.MCT‑17‑084829695633
    [Google Scholar]
  26. LiN. FengL. HanH.Q. YuanJ. QiX.K. LianY.F. KuangB.H. ZhangY.C. DengC.C. ZhangH.J. YaoY.Y. XuM. HeG.P. ZhaoB.C. GaoL. FengQ.S. ChenL.Z. YangL. YangD. ZengY.X. A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis.Cancer Lett.20163811142210.1016/j.canlet.2016.07.00827424523
    [Google Scholar]
  27. LiB.X. WangH.B. QiuM.Z. LuoQ.Y. YiH.J. YanX.L. PanW.T. YuanL.P. ZhangY.X. XuJ.H. ZhangL. YangD.J. Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-α, Ripoptosome and autophagy mediated cell death pathway.J. Exp. Clin. Cancer Res.20183715310.1186/s13046‑018‑0703‑929530056
    [Google Scholar]
  28. HurwitzH.I. SmithD.C. PitotH.C. BrillJ.M. ChughR. RouitsE. RubinJ. StricklerJ. VuagniauxG. SorensenJ.M. ZannaC. Safety, pharmacokinetics, and pharmacodynamic properties of oral DEBIO1143 (AT-406) in patients with advanced cancer: Results of a first-in-man study.Cancer Chemother. Pharmacol.201575485185910.1007/s00280‑015‑2709‑825716544
    [Google Scholar]
  29. RascoD.W. LiY. TangY. MenL. WangH. JiJ. LiangZ. SunJ. AmayaA. HuangY. YangD. ZhaiY. A phase I study of a novel IAP inhibitor APG-1387 as a monotherapy or in combination with pembrolizumab in treatments of patients with advanced solid tumors.J. Clin. Oncol.20193715_suppl3125312510.1200/JCO.2019.37.15_suppl.3125
    [Google Scholar]
  30. EricksonR.I. TarrantJ. CainG. Lewin-KohS.C. DybdalN. WongH. BlackwoodE. WestK. SteigerwaltR. MamounasM. FlygareJ.A. AmemiyaK. DambachD. FairbrotherW.J. DiazD. Toxicity profile of small-molecule IAP antagonist GDC-0152 is linked to TNF-α pharmacology.Toxicol. Sci.2013131124725810.1093/toxsci/kfs26522956632
    [Google Scholar]
  31. ShekharT.M. MilesM.A. GupteA. TaylorS. TasconeB. WalkleyC.R. HawkinsC.J. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα.Oncotarget2016723338663388610.18632/oncotarget.898027129149
    [Google Scholar]
  32. YangL. ShuT. LiangY. GuW. WangC. SongX. FanC. WangW. GDC-0152 attenuates the malignant progression of osteosarcoma promoted by ANGPTL2 via PI3K/AKT but not p38MAPK signaling pathway.Int. J. Oncol.20154641651165810.3892/ijo.2015.287225651778
    [Google Scholar]
  33. ShekharT.M. BurvenichI.J.G. HarrisM.A. RigopoulosA. ZankerD. SpurlingA. ParkerB.S. WalkleyC.R. ScottA.M. HawkinsC.J. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice.BMC Cancer201919192410.1186/s12885‑019‑6103‑531521127
    [Google Scholar]
  34. ChinotO.L. WickW. MasonW. HenrikssonR. SaranF. NishikawaR. CarpentierA.F. Hoang-XuanK. KavanP. CerneaD. BrandesA.A. HiltonM. AbreyL. CloughesyT. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma.N. Engl. J. Med.2014370870972210.1056/NEJMoa130834524552318
    [Google Scholar]
  35. SoubéranA. CappaïJ. ChocryM. NuccioC. RaujolJ. ColinC. LafitteD. KovacicH. QuillienV. Baeza-KalleeN. RougonG. Figarella-BrangerD. TchoghandjianA. Inhibitor of apoptosis proteins determines glioblastoma stem-like cell fate in an oxygen-dependent manner.Stem Cells201937673174210.1002/stem.299730920104
    [Google Scholar]
  36. BenetatosC.A. MitsuuchiY. BurnsJ.M. NeimanE.M. CondonS.M. YuG. SeipelM.E. KapoorG.S. LaPorteM.G. RippinS.R. DengY. HendiM.S. TirunahariP.K. LeeY.H. HaimowitzT. AlexanderM.D. GrahamM.A. WengD. ShiY. McKinlayM.A. ChunduruS.K. Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models.Mol. Cancer Ther.201413486787910.1158/1535‑7163.MCT‑13‑079824563541
    [Google Scholar]
  37. XieX. LeeJ. LiuH. PearsonT. LuA.Y. TripathyD. DeviG.R. BartholomeuszC. UenoN.T. Birinapant enhances gemcitabine’s antitumor efficacy in triple-negative breast cancer by inducing intrinsic pathway–dependent apoptosis.Mol. Cancer Ther.202120229630610.1158/1535‑7163.MCT‑19‑116033323457
    [Google Scholar]
  38. FalkenhorstJ. GrunewaldS. MühlenbergT. Marino-EnriquezA. ReisA.C. CorlessC. HeinrichM. TreckmannJ. PodleskaL.E. SchulerM. FletcherJ.A. BauerS. Inhibitor of apoptosis proteins (IAPs) are commonly dysregulated in GIST and can be pharmacologically targeted to enhance the pro-apoptotic activity of imatinib.Oncotarget2106727413904140310.18632/oncotarget.915927167336
    [Google Scholar]
  39. CrawfordN. SalvucciM. HellwigC.T. LincolnF.A. MooneyR.E. O’ConnorC.L. PrehnJ.H.M. LongleyD.B. RehmM. Simulating and predicting cellular and in vivo responses of colon cancer to combined treatment with chemotherapy and IAP antagonist Birinapant/TL32711.Cell Death Differ.201825111952196610.1038/s41418‑018‑0082‑y29500433
    [Google Scholar]
  40. LincolnF.A. ImigD. BoccellatoC. JuricV. NoonanJ. KontermannR.E. AllgöwerF. MurphyB.M. RehmM. Sensitization of glioblastoma cells to TRAIL-induced apoptosis by IAP- and Bcl-2 antagonism.Cell Death Dis.2018911111210.1038/s41419‑018‑1160‑230385739
    [Google Scholar]
  41. WestA.C. MartinB.P. AndrewsD.A. HoggS.J. BanerjeeA. GrigoriadisG. JohnstoneR.W. ShorttJ. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock.Oncogenesis201654e21610.1038/oncsis.2016.2627043662
    [Google Scholar]
  42. ChangY.C. KondapuramS.K. YangT.H. SyedS.B. ChengS.M. LinT.Y. LinY.C. CoumarM.S. ChangJ.Y. LeungE. CheungC.H.A. The SMAC mimetic LCL161 is a direct ABCB1/MDR1-ATPase activity modulator and BIRC5/Survivin expression down-regulator in cancer cells.Toxicol. Appl. Pharmacol.202040111508010.1016/j.taap.2020.11508032497533
    [Google Scholar]
  43. RenK. MaL. ChongD. ZhangZ. ZhouC. LiuH. ZhaoS. Effects of LCL161, a Smac mimetic on the proliferation and apoptosis in hepatocellular carcinoma cells.Zhong Nan Da Xue Xue Bao Yi Xue Ban201641989890427640787
    [Google Scholar]
  44. BrandsR.C. ScheurerM.J.J. HartmannS. SeherA. FreudlspergerC. MoratinJ. LinzC. KüblerA.C. Müller-RichterU.D.A. Sensitization of head and neck squamous cell carcinoma to apoptosis by combinational SMAC mimetic and Fas ligand-Fc treatment in vitro. J. Craniomaxillofac. Surg.202048768569310.1016/j.jcms.2020.05.00732507671
    [Google Scholar]
  45. ChenK.F. LinJ.P. ShiauC.W. TaiW.T. LiuC.Y. YuH.C. ChenP.J. ChengA.L. Inhibition of Bcl-2 improves effect of LCL161, a Smac mimetic, in hepatocellular carcinoma cells.Biochem. Pharmacol.201284326827710.1016/j.bcp.2012.04.02322580047
    [Google Scholar]
  46. QinQ. ZuoY. YangX. LuJ. ZhanL. XuL. ZhangC. ZhuH. LiuJ. LiuZ. TaoG. DaiS. ZhangX. MaJ. CaiJ. SunX. Smac mimetic compound LCL161 sensitizes esophageal carcinoma cells to radiotherapy by inhibiting the expression of inhibitor of apoptosis protein.Tumour Biol.20143532565257410.1007/s13277‑013‑1338‑224170321
    [Google Scholar]
  47. DobsonC.C. NaingT. BeugS.T. FayeM.D. ChabotJ. St-JeanM. WalkerD.E. LaCasseE.C. StojdlD.F. KornelukR.G. HolcikM. Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model.Oncotarget2017823495350810.18632/oncotarget.1384927966453
    [Google Scholar]
  48. KimD.S. DastidarH. ZhangC. ZempF.J. LauK. ErnstM. RakicA. SikdarS. RajwaniJ. NaumenkoV. BalceD.R. EwanchukB.W. TailorP. YatesR.M. JenneC. GafuikC. MahoneyD.J. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms.Nat. Commun.20178134410.1038/s41467‑017‑00324‑x28839138
    [Google Scholar]
  49. YangL. KumarB. ShenC. ZhaoS. BlakajD. LiT. RomitoM. TeknosT.N. WilliamsT.M. LCL161, a SMAC-mimetic, preferentially radiosensitizes human papillomavirus–negative head and neck squamous cell carcinoma.Mol. Cancer Ther.20191861025103510.1158/1535‑7163.MCT‑18‑115731015310
    [Google Scholar]
  50. RunckelK. BarthM.J. MavisC. GuJ.J. Hernandez-IlizaliturriF.J. The SMAC mimetic LCL-161 displays antitumor activity in preclinical models of rituximab-resistant B-cell lymphoma.Blood Adv.20182233516352510.1182/bloodadvances.201801816830530779
    [Google Scholar]
  51. RamakrishnanV. GomezM. PrasadV. KimlingerT. PainulyU. MukhopadhyayB. HaugJ. BiL. RajkumarS.V. KumarS. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma.Oncotarget2016735562535626510.18632/oncotarget.1102827494845
    [Google Scholar]
  52. RamakrishnanV. PainulyU. KimlingerT. HaugJ. RajkumarS.V. KumarS. Inhibitor of apoptosis proteins as therapeutic targets in multiple myeloma.Leukemia20142871519152810.1038/leu.2014.224402161
    [Google Scholar]
  53. NajemS. LangemannD. ApplB. TrochimiukM. HundsdoerferP. ReinshagenK. EschenburgG. Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L.Oncotarget2016745726347265310.18632/oncotarget.1205527655666
    [Google Scholar]
  54. LangemannD. TrochimiukM. ApplB. HundsdoerferP. ReinshagenK. EschenburgG. Sensitization of neuroblastoma for vincristine-induced apoptosis by Smac mimetic LCL161 is attended by G2 cell cycle arrest but is independent of NFκB, RIP1 and TNF-α.Oncotarget2017850877638777210.18632/oncotarget.2119329152118
    [Google Scholar]
  55. ChenS.M. LinT.K. TsengY.Y. TuC.H. LuiT.N. HuangS.F. HsiehL.L. LiY.Y. Targeting inhibitors of apoptosis proteins suppresses medulloblastoma cell proliferation via G2/M phase arrest and attenuated neddylation of p21.Cancer Med.2018783988400310.1002/cam4.165829984917
    [Google Scholar]
  56. CornmarkL. HolmgrenC. MasoumiK. LarssonC. PKC activation sensitizes basal-like breast cancer cell lines to Smac mimetics.Cell Death Discov.2016211600210.1038/cddiscovery.2016.227551497
    [Google Scholar]
  57. YuanZ. SyrkinG. AdemA. GehaR. PastorizaJ. VrikshajananiC. SmithT. QuinnT.J. AlemuG. ChoH. BarrettC.J. ArapW. PasqualiniR. LibuttiS.K. Blockade of inhibitors of apoptosis (IAPs) in combination with tumor-targeted delivery of tumor necrosis factor-α leads to synergistic antitumor activity.Cancer Gene Ther.2013201465610.1038/cgt.2012.8323154431
    [Google Scholar]
  58. HarrisM.A. ShekharT.M. MilesM.A. CerraC. HawkinsC.J. The smac mimetic LCL161 targets established pulmonary osteosarcoma metastases in mice.Clin. Exp. Metastasis202138544144910.1007/s10585‑021‑10116‑934398333
    [Google Scholar]
  59. ZhangB. YangC. WangR. WuJ. ZhangY. LiuD. SunX. LiX. RenH. QinS. OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3.J. Exp. Clin. Cancer Res.202039124410.1186/s13046‑020‑01751‑333198776
    [Google Scholar]
  60. YangC. WangH. ZhangB. ChenY. ZhangY. SunX. XiaoG. NanK. RenH. QinS. LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC.J. Exp. Clin. Cancer Res.201635115810.1186/s13046‑016‑0435‑727737687
    [Google Scholar]
  61. TianA. WilsonG.S. LieS. WuG. HuZ. HebbardL. DuanW. GeorgeJ. QiaoL. Synergistic effects of IAP inhibitor LCL161 and paclitaxel on hepatocellular carcinoma cells.Cancer Lett.2014351223224110.1016/j.canlet.2014.06.00624976294
    [Google Scholar]
  62. MrkvováZ. PortešováM. SlaninováI. Loss of FADD and caspases affects the response of T-cell leukemia jurkat cells to anti-cancer drugs.Int. J. Mol. Sci.2021225270210.3390/ijms2205270233800107
    [Google Scholar]
  63. JinG. LanY. HanF. SunY. LiuZ. ZhangM. LiuX. ZhangX. HuJ. LiuH. WangB. Smac mimetic-induced caspase-independent necroptosis requires RIP1 in breast cancer.Mol. Med. Rep.201613135936610.3892/mmr.2015.454226573429
    [Google Scholar]
  64. LeeK.M. LeeH. HanD. MoonW.K. KimK. OhH.J. ChoiJ. HwangE.H. KangS.E. ImS.A. LeeK.H. RyuH.S. Combined the SMAC mimetic and BCL2 inhibitor sensitizes neoadjuvant chemotherapy by targeting necrosome complexes in tyrosine aminoacyl-tRNA synthase-positive breast cancer.Breast Cancer Res.202022113010.1186/s13058‑020‑01367‑733239070
    [Google Scholar]
  65. GuoH. TreudeF. KrämerO.H. LüscherB. HartkampJ. PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1.Sci. Rep.201991875510.1038/s41598‑019‑45209‑931217499
    [Google Scholar]
  66. GranqvistV. HolmgrenC. LarssonC. Induction of interferon-β and interferon signaling by TRAIL and Smac mimetics via caspase-8 in breast cancer cells.PLoS One2021163e024817510.1371/journal.pone.024817533770100
    [Google Scholar]
  67. PetersenJ.S. FelsG. RapoportH. Chirospecific syntheses of (+)- and (-)-anatoxin a.J. Am. Chem. Soc.1984106164539454710.1021/ja00328a040
    [Google Scholar]
  68. PengY. SunH. Nikolovska-ColeskaZ. QiuS. YangC.Y. LuJ. CaiQ. YiH. KangS. YangD. WangS. Potent, orally bioavailable diazabicyclic small-molecule mimetics of second mitochondria-derived activator of caspases.J. Med. Chem.200851248158816210.1021/jm801254r19049347
    [Google Scholar]
  69. DengY. XieQ. LaPorteM.G. ChasnoffA.T.A. MortensenM.A. PatraD. PutreloS.A. AntonovichR.S. CaoH. YanJ. CooperA.J. RippinS.R. AlexanderM.D. KumarP.T. HendiM.S. LeeY.H. HaimowitzT. CondonS.M. Process development and synthesis of birinapant: Large scale preparation and acid-mediated dimerization of the key indole intermediate.Org. Process Res. Dev.201620224225210.1021/acs.oprd.5b00390
    [Google Scholar]
  70. Solid oral formulations and crystalline forms of an inhibitor of apoptosis protein.2011
  71. MorrishE. BrumattiG. SilkeJ. Future therapeutic directions for smac mimetics.Cells20209240610.3390/cells902040632053868
    [Google Scholar]
  72. FuldaS. Promises and challenges of smac mimetics as cancer therapeutics.Clin. Cancer Res.201521225030503610.1158/1078‑0432.CCR‑15‑036526567362
    [Google Scholar]
  73. FuldaS. Molecular pathways: Targeting inhibitor of apoptosis proteins in cancer--from molecular mechanism to therapeutic application.Clin. Cancer Res.201420228929510.1158/1078‑0432.CCR‑13‑022724270683
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283734240206020150
Loading
/content/journals/cmc/10.2174/0109298673283734240206020150
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; combined therapy; IAP; mechanism; oncotherapy; Smac mimetics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test