Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Tyrosol (Ty) and its derivatives have gathered considerable attention in recent years due to their diverse pharmacological properties and potential therapeutic applications. This comprehensive review aims to summarize the current understanding of the therapeutic potential of Ty and its derivatives in combating various diseases, including cancer, cardiovascular disease (CVD), neurodegenerative diseases, diabetes, and obesity. This review highlights the multifaceted properties of Ty, including its pharmacokinetic profile and pharmacological actions, which contribute to its efficacy against these prevalent health conditions. Moreover, the antimicrobial and wound-healing effects of Ty are explored, elucidating its potential for broader therapeutic utilization. While existing studies provide evidence supporting the beneficial effects of Ty, gaps remain in our understanding of its molecular mechanisms of action and the exploration of novel derivatives. Future research efforts are thus critical for unraveling the full therapeutic potential of Ty and its derivatives. Moreover, the synthesis of novel derivatives with enhanced efficacy and improved bioavailability shows potential for addressing unmet medical needs. This review emphasizes the necessity for ongoing research into Ty and its derivatives, providing valuable insights into their potential as essential therapeutic agents for addressing diverse health conditions.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330437240816150736
2024-08-27
2025-09-06
Loading full text...

Full text loading...

References

  1. MurianaF.J.G. Montserrat-de la PazS. LucasR. BermudezB. JaramilloS. MoralesJ.C. AbiaR. LopezS. Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells.Food Funct.2017882905291410.1039/C7FO00641A28740975
    [Google Scholar]
  2. PeronaJ. CabellomorunoR. RuizgutierrezV. The role of virgin olive oil components in the modulation of endothelial function.J. Nutr. Biochem.200617742944510.1016/j.jnutbio.2005.11.00716481154
    [Google Scholar]
  3. GutfingerT. Polyphenols in olive oils.J. Am. Oil Chem. Soc.1981581196696810.1007/BF02659771
    [Google Scholar]
  4. BoronatA. MateusJ. Soldevila-DomenechN. GuerraM. Rodríguez-MoratóJ. VaronC. MuñozD. BarbosaF. MoralesJ.C. GaedigkA. LangohrK. CovasM.I. Pérez-MañáC. FitóM. TyndaleR.F. de la TorreR. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial.Free Radic. Biol. Med.201914347148110.1016/j.freeradbiomed.2019.08.03231479717
    [Google Scholar]
  5. CasaburiI. PuociF. ChimentoA. SirianniR. RuggieroC. AvenaP. PezziV. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies.Mol. Nutr. Food Res.2013571718310.1002/mnfr.20120050323193056
    [Google Scholar]
  6. ChandramohanR. SaravananS. PariL. Beneficial effects of tyrosol on altered glycoprotein components in streptozotocin-induced diabetic rats.Pharm. Biol.20175511631163710.1080/13880209.2017.131560328427293
    [Google Scholar]
  7. Robles-AlmazanM. Pulido-MoranM. Moreno-FernandezJ. Ramirez-TortosaC. Rodriguez-GarciaC. QuilesJ.L. Ramirez-TortosaM.C. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications.Food Res. Int.201810565466710.1016/j.foodres.2017.11.05329433260
    [Google Scholar]
  8. Karković MarkovićA. TorićJ. BarbarićM. Jakobušić BralaC. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health.Molecules20192410200110.3390/molecules2410200131137753
    [Google Scholar]
  9. Ramírez-ExpósitoM.J. Carrera-GonzálezM.P. Martínez-MartosJ.M. The effects of olive oil and other dietary fats on redox status on breast cancer. Olives and Olive Oil in Health and Disease PreventionCambridge, MassachusettsAcademic Press202110.1016/B978‑0‑12‑819528‑4.00046‑8
    [Google Scholar]
  10. YinF. WangX. HuY. XieH. LiuX. QinL. ZhangJ. ZhouD. ShahidiF. Evaluation of absorption and plasma pharmacokinetics of tyrosol acyl esters in rats.J. Agric. Food Chem.20206851248125610.1021/acs.jafc.9b0511231927921
    [Google Scholar]
  11. Vilaplana-PérezC. AuñónD. García-FloresL.A. Gil-IzquierdoA. Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS.Front. Nutr.201411825988120
    [Google Scholar]
  12. ShiT. FengS. XingJ. WuY. LiX. ZhangN. TianZ. LiuS. ZhaoM. Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro.Neurotox. Res.201221435836710.1007/s12640‑011‑9290‑722095090
    [Google Scholar]
  13. Di BenedettoR. VarìR. ScazzocchioB. FilesiC. SantangeloC. GiovanniniC. MatarreseP. D’ArchivioM. MasellaR. Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness.Nutr. Metab. Cardiovasc. Dis.200717753554510.1016/j.numecd.2006.03.00516928436
    [Google Scholar]
  14. ZhouD.Y. SunY.X. ShahidiF. Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters.J. Funct. Foods201737667310.1016/j.jff.2017.06.042
    [Google Scholar]
  15. NapolitanoA. The chemistry of tyrosol and hydroxytyrosol: Implications for oxidative stress. Olives and Olive Oil in Health and Disease PreventionCambridge, MassachusettsAcademic Press201010.1016/B978‑0‑12‑374420‑3.00134‑0
    [Google Scholar]
  16. VarìR. Extra virgin olive oil biophenols and mrna transcription of glutathione-related enzymes. Olives and olive oil in health and disease preventionCambridge, MassachusettsAcademic Press201010.1016/B978‑0‑12‑374420‑3.00119‑4
    [Google Scholar]
  17. CasadeyR. ChallierC. AltamiranoM. SpesiaM.B. CriadoS. Antioxidant and antimicrobial properties of tyrosol and derivative-compounds in the presence of vitamin B2. Assays of synergistic antioxidant effect with commercial food additives.Food Chem.202133512757610.1016/j.foodchem.2020.12757632739805
    [Google Scholar]
  18. AissaI. SghairR.M. BouazizM. LaouiniD. SayadiS. GargouriY. Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities.Lipids Health Dis.20121111310.1186/1476‑511X‑11‑1322264330
    [Google Scholar]
  19. CasadeyR. ChallierC. SenzA. CriadoS. Antioxidant ability of tyrosol and derivative-compounds in the presence of O2(1Δg)-species. Studies of synergistic antioxidant effect with commercial antioxidants.Food Chem.201928527528110.1016/j.foodchem.2019.01.16130797345
    [Google Scholar]
  20. MateosR. TrujilloM. Pereira-CaroG. MadronaA. CertA. EsparteroJ.L. New lipophilic tyrosyl esters. Comparative antioxidant evaluation with hydroxytyrosyl esters.J. Agric. Food Chem.20085622109601096610.1021/jf802026718983160
    [Google Scholar]
  21. VrbanacJ. SlauterR. ADME in Drug Discovery. A Comprehensive Guide to Toxicology in Preclinical Drug DevelopmentAmsterdamElsevier201310.1016/B978‑0‑12‑387815‑1.00002‑2
    [Google Scholar]
  22. MandlikV. BejugamP.R. SinghS. Application of artificial neural networks in modern drug discovery. Artificial Neural Network for Drug Design, Delivery and DispositionCambridge, MassachusettsAcademic Press201610.1016/B978‑0‑12‑801559‑9.00006‑5
    [Google Scholar]
  23. SuárezM. VallsR.M. RomeroM.P. MaciàA. FernándezS. GiraltM. SolàR. MotilvaM.J. Bioavailability of phenols from a phenol-enriched olive oil.Br. J. Nutr.2011106111691170110.1017/S000711451100220021736768
    [Google Scholar]
  24. SakavitsiM.E. BreynaertA. NikouT. LauwersS. PietersL. HermansN. HalabalakiM. Availability and metabolic fate of olive phenolic alcohols hydroxytyrosol and tyrosol in the human gi tract simulated by the In Vitro GIDM–colon model.Metabolites202212539110.3390/metabo1205039135629895
    [Google Scholar]
  25. Rodríguez-MoratóJ. BoronatA. KotronoulasA. PujadasM. PastorA. OlestiE. Pérez-MañáC. KhymenetsO. FitóM. FarréM. de la TorreR. Metabolic disposition and biological significance of simple phenols of dietary origin: Hydroxytyrosol and tyrosol.Drug Metab. Rev.201648221823610.1080/03602532.2016.117975427186796
    [Google Scholar]
  26. TuckK.L. FreemanM.P. HayballP.J. StretchG.L. StupansI. The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats.J. Nutr.200113171993199610.1093/jn/131.7.199311435519
    [Google Scholar]
  27. Miró-CasasE. CovasM-I. FitóM. Farré-AlbadalejoM. MarrugatJ. de la TorreR. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans.Eur. J. Clin. Nutr.200357118619010.1038/sj.ejcn.160153212548315
    [Google Scholar]
  28. ChernyshevaG.A. Smol’niakovaV.I. CherkashinaI.V. PlotnikovM.B. TolstikovaT.G. KrysinA.P. SorokinaI.V. The main pharmacokinetic parameters of p-tyrosol upon intravenous injection in rats.Eksp. Klin. Farmakol.2005686434416405034
    [Google Scholar]
  29. ChernyshovaG.A. PlotnikovM.B. Smol’iakovaV.I. KrasnovE.A. Main pharmacokinetic parameters of p-tyrosol after intravenous injection in rats. Part III: Distribution of p-tyrosol in rat.Eksp. Klin. Farmakol.2011747272921894765
    [Google Scholar]
  30. D’AntuonoI. Biophenols from table olive cv bella di cerignola: Chemical characterization, bioaccessibility, and intestinal absorption.J. Agric. Food Chem.201664285671810.1021/acs.jafc.6b01642
    [Google Scholar]
  31. GavahianM. Mousavi KhaneghahA. LorenzoJ.M. MunekataP.E.S. Garcia-MantranaI. ColladoM.C. Meléndez-MartínezA.J. BarbaF.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases.Trends Food Sci. Technol.20198822022710.1016/j.tifs.2019.03.008
    [Google Scholar]
  32. VissersM.N. ZockP.L. KatanM.B. Bioavailability and antioxidant effects of olive oil phenols in humans: A review.Eur. J. Clin. Nutr.200458695596510.1038/sj.ejcn.160191715164117
    [Google Scholar]
  33. DávalosJ.Z. Valderrama-NegrónA.C. BarriosJ.R. FreitasV.L.S. Ribeiro da SilvaM.D.M.C. Energetic and structural properties of two phenolic antioxidants: Tyrosol and hydroxytyrosol.J. Phys. Chem. A2018122164130413710.1021/acs.jpca.8b0045729616550
    [Google Scholar]
  34. WangX. ChenK. QiuJ. HuY. YinF. LiuX. ZhouD. Gastrointestinal distribution of tyrosol acyl esters in orally infected mice and their hydrolysis by lactobacillus species isolated from the feces of mice.J. Agric. Food Chem.20227041316132610.1021/acs.jafc.1c0743235068150
    [Google Scholar]
  35. SerraA. RubióL. BorràsX. MaciàA. RomeroM.P. MotilvaM.J. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake.Mol. Nutr. Food Res.201256348649610.1002/mnfr.20110043622183818
    [Google Scholar]
  36. López-YerenaA. PerezM. Vallverdú-QueraltA. Escribano-FerrerE. Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions.Pharmaceutics20201211112310.3390/pharmaceutics1211112333233356
    [Google Scholar]
  37. LiM. HagermanA.E. Interactions between plasma proteins and naturally occurring polyphenols.Curr. Drug Metab.201314443244510.2174/138920021131404000623330924
    [Google Scholar]
  38. CovasM-I. The bioavailability of olive oil phenolic compounds. Olives and Olive Oil in Health and Disease PreventionCambridge, MassachusettsAcademic Press201010.1016/B978‑0‑12‑374420‑3.00073‑5
    [Google Scholar]
  39. BucciantiniM. LeriM. NardielloP. CasamentiF. StefaniM. Olive polyphenols: Antioxidant and anti-inflammatory properties.Antioxidants2021107104410.3390/antiox1007104434209636
    [Google Scholar]
  40. DasB. BaidyaA.T.K. MathewA.T. YadavA.K. KumarR. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery.Bioorg. Med. Chem.20225611661410.1016/j.bmc.2022.11661435033884
    [Google Scholar]
  41. Maini RekdalV. BessE.N. BisanzJ.E. TurnbaughP.J. BalskusE.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism.Science20193646445eaau632310.1126/science.aau632331196984
    [Google Scholar]
  42. Rodríguez-MoratóJ. RobledoP. TannerJ.A. BoronatA. Pérez-MañáC. Oliver ChenC.Y. TyndaleR.F. de la TorreR. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol.Food Chem.201721771672510.1016/j.foodchem.2016.09.02627664690
    [Google Scholar]
  43. MateosR. GoyaL. BravoL. Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells.J. Agric. Food Chem.200553269897990510.1021/jf051721q16366672
    [Google Scholar]
  44. GiusepponiD. BarolaC. BucalettiE. MorettiS. PaolettiF. ValianiA. BranciariR. GalariniR. Occurrence of hydroxytyrosol, tyrosol and their metabolites in italian cheese.Molecules20232817620410.3390/molecules2817620437687033
    [Google Scholar]
  45. LeeD.H. KimY.J. KimM. AhnJ. HaT.Y. LeeS. JangY. JungC. Pharmacokinetics of tyrosol metabolites in rats.Molecules201621112810.3390/molecules2101012826805800
    [Google Scholar]
  46. MoseleJ.I. Martín-PeláezS. MaciàA. FarràsM. VallsR.M. CatalánÚ. MotilvaM.J. Faecal microbial metabolism of olive oil phenolic compounds: In vitro and in vivo approaches.Mol. Nutr. Food Res.20145891809181910.1002/mnfr.20140012424990102
    [Google Scholar]
  47. MoseleJ. MaciàA. MotilvaM.J. Metabolic and microbial modulation of the large intestine ecosystem by non-absorbed diet phenolic compounds: A review.Molecules2015209174291746810.3390/molecules20091742926393570
    [Google Scholar]
  48. Almanza-AguileraE. Davila-CordovaE. Guiñón-FortD. FarràsM. MasalaG. Santucci de MagistrisM. BaldassariI. TuminoR. PadroniL. KatzkeV.A. SchulzeM.B. ScalbertA. Zamora-RosR. Correlation analysis between dietary intake of tyrosols and their food sources and urinary excretion of tyrosol and hydroxytyrosol in a European population.Antioxidants202312371510.3390/antiox1203071536978963
    [Google Scholar]
  49. CovasM.I. Miró-CasasE. FitóM. Farré-AlbadalejoM. GimenoE. MarrugatJ. De La TorreR. Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans.Drugs Exp. Clin. Res.2003295-620320615134375
    [Google Scholar]
  50. PlotnikovM.B. PlotnikovaT.M. Tyrosol as a neuroprotector: strong effects of a “weak” antioxidant.Curr. Neuropharmacol.202119443444810.2174/18756190MTA2fNDIby32379590
    [Google Scholar]
  51. LeeK.M. HurJ. LeeY. YoonB-R. ChoiS.Y. Protective effects of tyrosol against oxidative damage in L6 muscle cells.Food Sci. Technol. Res.201824594394710.3136/fstr.24.943
    [Google Scholar]
  52. YuF. GuoJ. RenH. LuS. HeZ. ChangJ. HuX. ShiR. JinY. LiY. LiuZ. WangX. HuP. Tyrosol inhibits NF-κB pathway in the treatment of enterotoxigenic Escherichia coli-induced diarrhea in mice.Microb. Pathog.202317610594410.1016/j.micpath.2022.105944
    [Google Scholar]
  53. BonechiC. DonatiA. TamasiG. PardiniA. RostomH. LeoneG. LamponiS. ConsumiM. MagnaniA. RossiC. Chemical characterization of liposomes containing nutraceutical compounds: Tyrosol, hydroxytyrosol and oleuropein.Biophys. Chem.2019246253410.1016/j.bpc.2019.01.00230659995
    [Google Scholar]
  54. BerniniR. MincioneE. BarontiniM. CrisanteF. Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol.J. Agric. Food Chem.200856198897890410.1021/jf801558z18771272
    [Google Scholar]
  55. AnnunziataF. ContenteM.L. PinnaC. TamboriniL. PintoA. Biocatalyzed flow oxidation of tyrosol to hydroxytyrosol and efficient production of their acetate esters.Antioxidants2021107114210.3390/antiox1007114234356374
    [Google Scholar]
  56. AngeloniC. MalagutiM. BarbalaceM. HreliaS. Bioactivity of olive oil phenols in neuroprotection.Int. J. Mol. Sci.20171811223010.3390/ijms1811223029068387
    [Google Scholar]
  57. BucklandG. MayénA.L. AgudoA. TravierN. NavarroC. HuertaJ.M. ChirlaqueM.D. BarricarteA. ArdanazE. Moreno-IribasC. MarinP. QuirósJ.R. RedondoM.L. AmianoP. DorronsoroM. ArriolaL. MolinaE. SanchezM.J. GonzalezC.A. Olive oil intake and mortality within the Spanish population (EPIC-Spain).Am. J. Clin. Nutr.201296114214910.3945/ajcn.111.02421622648725
    [Google Scholar]
  58. BucklandG. TravierN. AgudoA. Fonseca-NunesA. NavarroC. LagiouP. DemetriouC. AmianoP. DorronsoroM. ChirlaqueM.D. HuertaJ.M. MolinaE. PérezM.J.S. ArdanazE. Moreno-IribasC. QuirósJ.R. NaskaA. TrichopoulosD. GiurdanellaM.C. TuminoR. AgnoliC. GrioniS. PanicoS. MattielloA. MasalaG. SacerdoteC. PolidoroS. PalliD. TrichopoulouA. GonzálezC.A. Olive oil intake and breast cancer risk in the Mediterranean countries of the European prospective investigation into cancer and nutrition study.Int. J. Cancer2012131102465246910.1002/ijc.2751622392404
    [Google Scholar]
  59. BucklandG. TravierN. BarricarteA. ArdanazE. Moreno-IribasC. SánchezM.J. Molina-MontesE. ChirlaqueM.D. HuertaJ.M. NavarroC. RedondoM.L. AmianoP. DorronsoroM. LarrañagaN. GonzalezC.A. Olive oil intake and CHD in the European prospective investigation into cancer and nutrition spanish cohort.Br. J. Nutr.2012108112075208210.1017/S000711451200298X23006416
    [Google Scholar]
  60. de MartelC. GeorgesD. BrayF. FerlayJ. CliffordG.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis.Lancet Glob. Health202082e180e19010.1016/S2214‑109X(19)30488‑731862245
    [Google Scholar]
  61. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  62. LamyS. Ben SaadA. ZgheibA. AnnabiB. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.J. Nutr. Biochem.20162713614510.1016/j.jnutbio.2015.08.02626410343
    [Google Scholar]
  63. CocciaA. BastianelliD. MoscaL. MonticoloR. PanuccioI. CarboneA. CalogeroA. LendaroE. Extra virgin olive oil phenols suppress migration and invasion of T24 human bladder cancer cells through modulation of matrix metalloproteinase-2.Nutr. Cancer201466694695410.1080/01635581.2014.92220424918476
    [Google Scholar]
  64. El HaouariM. Anti-cancer and cardiovascular properties of phenolic compounds present in virgin olive oil. Olive Oil - New Perspectives and ApplicationsLondonInTechOpen202210.5772/intechopen.96392
    [Google Scholar]
  65. FerreiraW.A. Potencial antitumoral dos compostos fenólicos de produtos da oliveira (Olea europaea L.): Uma revisão integrativa da literatura.Res. Soc. Dev.20211013e22101320733
    [Google Scholar]
  66. FuggettaM.P. In vitro antitumor activity of olive oil tyrosol and hydroxytyrosol and their methyl carbonate derivatives.Med Aromat Plant Sci Biotechnol2012622530
    [Google Scholar]
  67. St-Laurent-ThibaultC. ArseneaultM. LongpréF. RamassamyC. Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-β-induced toxicity. Involvement of the NF-κB signaling.Curr. Alzheimer Res.20118554355110.2174/15672051179639184521605049
    [Google Scholar]
  68. LuoG. HuangY. MoD. MaN. GaoF. SongL. SunX. XuX. LiuL. HuoX. WangB. LiX. JiaB. DengY. ZhangX. Fernandez-EscobarA. PengG. MiaoZ. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation in in vitro oxygen glucose deprivation.Neurochem. Int.201812114014510.1016/j.neuint.2018.10.00630291953
    [Google Scholar]
  69. ZhouD. PapayannisI. MackenzieG.G. AlstonN. OuyangN. HuangL. NieT. WongC.C. RigasB. The anticancer effect of phospho-tyrosol-indomethacin (MPI-621), a novel phosphoderivative of indomethacin: In vitro and in vivo studies.Carcinogenesis201334494395110.1093/carcin/bgs39423338686
    [Google Scholar]
  70. MozaffarianD. Global scourge of cardiovascular disease.J. Am. Coll. Cardiol.2017701262810.1016/j.jacc.2017.05.00728527667
    [Google Scholar]
  71. RothG.A. JohnsonC. AbajobirA. Abd-AllahF. AberaS.F. AbyuG. AhmedM. AksutB. AlamT. AlamK. AllaF. Alvis-GuzmanN. AmrockS. AnsariH. ÄrnlövJ. AsayeshH. AteyT.M. Avila-BurgosL. AwasthiA. BanerjeeA. BaracA. BärnighausenT. BarregardL. BediN. Belay KetemaE. BennettD. BerheG. BhuttaZ. BitewS. CarapetisJ. CarreroJ.J. MaltaD.C. Castañeda-OrjuelaC.A. Castillo-RivasJ. Catalá-LópezF. ChoiJ.Y. ChristensenH. CirilloM. CooperL.Jr CriquiM. CundiffD. DamascenoA. DandonaL. DandonaR. DavletovK. DharmaratneS. DorairajP. DubeyM. EhrenkranzR. El Sayed ZakiM. FaraonE.J.A. EsteghamatiA. FaridT. FarvidM. FeiginV. DingE.L. FowkesG. GebrehiwotT. GillumR. GoldA. GonaP. GuptaR. HabtewoldT.D. Hafezi-NejadN. HailuT. HailuG.B. HankeyG. HassenH.Y. AbateK.H. HavmoellerR. HayS.I. HorinoM. HotezP.J. JacobsenK. JamesS. JavanbakhtM. JeemonP. JohnD. JonasJ. KalkondeY. KarimkhaniC. KasaeianA. KhaderY. KhanA. KhangY.H. KheraS. KhojaA.T. KhubchandaniJ. KimD. KolteD. KosenS. KrohnK.J. KumarG.A. KwanG.F. LalD.K. LarssonA. LinnS. LopezA. LotufoP.A. El RazekH.M.A. MalekzadehR. MazidiM. MeierT. MelesK.G. MensahG. MeretojaA. MezgebeH. MillerT. MirrakhimovE. MohammedS. MoranA.E. MusaK.I. NarulaJ. NealB. NgalesoniF. NguyenG. ObermeyerC.M. OwolabiM. PattonG. PedroJ. QatoD. QorbaniM. RahimiK. RaiR.K. RawafS. RibeiroA. SafiriS. SalomonJ.A. SantosI. Santric MilicevicM. SartoriusB. SchutteA. SepanlouS. ShaikhM.A. ShinM.J. ShishehborM. ShoreH. SilvaD.A.S. SobngwiE. StrangesS. SwaminathanS. Tabarés-SeisdedosR. Tadele AtnafuN. TesfayF. ThakurJ.S. ThriftA. Topor-MadryR. TruelsenT. TyrovolasS. UkwajaK.N. UthmanO. VasankariT. VlassovV. VollsetS.E. WakayoT. WatkinsD. WeintraubR. WerdeckerA. WestermanR. WiysongeC.S. WolfeC. WorkichoA. XuG. YanoY. YipP. YonemotoN. YounisM. YuC. VosT. NaghaviM. MurrayC. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015.J. Am. Coll. Cardiol.201770112510.1016/j.jacc.2017.04.05228527533
    [Google Scholar]
  72. MathersC.D. LoncarD. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.003044217132052
    [Google Scholar]
  73. HongY.M. Atherosclerotic cardiovascular disease beginning in childhood.Korean Circ. J.20104011910.4070/kcj.2010.40.1.120111646
    [Google Scholar]
  74. Jebari-BenslaimanS. Galicia-GarcíaU. Larrea-SebalA. OlaetxeaJ.R. AllozaI. VandenbroeckK. Benito-VicenteA. MartínC. Pathophysiology of atherosclerosis.Int. J. Mol. Sci.2022236334610.3390/ijms2306334635328769
    [Google Scholar]
  75. GiovanniniC. StrafaceE. ModestiD. ConiE. CantaforaA. De VincenziM. MalorniW. MasellaR. Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells.J. Nutr.199912971269127710.1093/jn/129.7.126910395586
    [Google Scholar]
  76. CovasM.I. de la TorreK. Farré-AlbaladejoM. KaikkonenJ. FitóM. López-SabaterC. Pujadas-BastardesM.A. JoglarJ. WeinbrennerT. Lamuela-RaventósR.M. de la TorreR. Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans.Free Radic. Biol. Med.200640460861610.1016/j.freeradbiomed.2005.09.02716458191
    [Google Scholar]
  77. WangP. ZhuQ. WuN. SiowY.L. AukemaH. OK. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase.J. Agric. Food Chem.201361153669367510.1021/jf400227u23566115
    [Google Scholar]
  78. ChandramohanR. PariL. Anti-inflammatory effects of tyrosol in streptozotocin-induced diabetic Wistar rats.J. Funct. Foods201627172810.1016/j.jff.2016.08.043
    [Google Scholar]
  79. WangW. XiaY. YangB. SuX. ChenJ. LiW. JiangT. Protective effects of tyrosol against LPS-induced acute lung injury via inhibiting NF-κB and AP-1 activation and activating the HO-1/Nrf2 pathways.Biol. Pharm. Bull.201740558359310.1248/bpb.b16‑0075628190857
    [Google Scholar]
  80. ZhaoW. WeiH. LuJ. ShaW. SunD. PanT. LeiT. Tyrosol attenuates lipopolysaccharide-induced inflammation in HUVECs to promote vascular health against atherosclerosis challenge.Exp. Ther. Med.202325524010.3892/etm.2023.1193937114177
    [Google Scholar]
  81. Guasch-FerréM. HuF.B. Martínez-GonzálezM.A. FitóM. BullóM. EstruchR. RosE. CorellaD. RecondoJ. Gómez-GraciaE. FiolM. LapetraJ. Serra- MajemL. MuñozM.A. PintóX. Lamuela-RaventósR.M. BasoraJ. Buil-CosialesP. SorlíJ.V. Ruiz-GutiérrezV. MartínezJ.A. Salas-SalvadóJ. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study.BMC Med.20141217810.1186/1741‑7015‑12‑7824886626
    [Google Scholar]
  82. HuX. WangM. ShahidiF. Antiglycative and anti-inflammatory effects of lipophilized tyrosol derivatives.Food Prod. Process Nutr.20202100041-x10.1186/s43014‑020‑00041‑x
    [Google Scholar]
  83. FatimaJ. SiddiqueY.H. Application of nanocomposites and nanoparticles in treating neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202420242338288843
    [Google Scholar]
  84. HornerP.J. GageF.H. Regenerating the damaged central nervous system.Nature2000407680796397010.1038/3503955911069169
    [Google Scholar]
  85. Alzheimer's disease internationalWorld Alzheimer Report 2021.2021Available From: https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf
    [Google Scholar]
  86. MortadaI. FarahR. NabhaS. OjciusD.M. FaresY. AlmawiW.Y. SadierN.S. Immunotherapies for neurodegenerative diseases.Front. Neurol.20211265473910.3389/fneur.2021.65473934163421
    [Google Scholar]
  87. CarreraI. CacabelosR. Current drugs and potential future neuroprotective compounds for Parkinson’s disease.Curr. Neuropharmacol.201917329530610.2174/1570159X1766618112712570430479218
    [Google Scholar]
  88. Nájera-MaldonadoJ.M. SalazarR. Alvarez-FitzP. Acevedo-QuirozM. Flores-AlfaroE. Hernández-SoteloD. Espinoza-RojoM. RamírezM. Phenolic compounds of therapeutic interest in neuroprotection.J. Xenobiot.202414122724610.3390/jox1401001438390994
    [Google Scholar]
  89. Gallardo-FernandezM. GarciaA.R. Hornedo-OrtegaR. TroncosoA.M. Garcia-ParrillaM.C. BritoM.A. In vitro study of the blood–brain barrier transport of bioactives from Mediterranean foods.Food Funct.20241573420343210.1039/D3FO04760A38497922
    [Google Scholar]
  90. BuY. RhoS. KimJ. KimM.Y. LeeD.H. KimS.Y. ChoiH. KimH. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats.Neurosci. Lett.2007414321822110.1016/j.neulet.2006.08.09417316989
    [Google Scholar]
  91. SunL. IsaakC.K. ZhouY. PetkauJ.C. OK. LiuY. SiowY.L. Salidroside and tyrosol from rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis.Life Sci.2012915-615115810.1016/j.lfs.2012.06.02622771701
    [Google Scholar]
  92. VauzourD. VafeiadouK. CoronaG. PollardS.E. TzounisX. SpencerJ.P.E. Champagne wine polyphenols protect primary cortical neurons against peroxynitrite-induced injury.J. Agric. Food Chem.20075582854286010.1021/jf063304z17381112
    [Google Scholar]
  93. MartínS. González-BurgosE. CarreteroM.E. Gómez-SerranillosM.P. Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes.Food Chem.20111281404810.1016/j.foodchem.2011.02.07425214327
    [Google Scholar]
  94. VauzourD. CoronaG. SpencerJ.P.E. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.Arch. Biochem. Biophys.2010501110611110.1016/j.abb.2010.03.01620361927
    [Google Scholar]
  95. KhodanovichM.Y. Kisel’A.A. ChernyshevaG.A. Smol’yakovaV.I. KudabaevaM.S. KrutenkovaE.P. TyumentsevaY.А. PlotnikovM.B. P-tyrosol enhances the production of new neurons in the hippocampal ca1 field after transient global cerebral ischemia in rats.Bull. Exp. Biol. Med.2019168222422810.1007/s10517‑019‑04679‑731776958
    [Google Scholar]
  96. YatingD. QingweiW. XueyingL. YuW. ZijieD. Dose-dependent pharmacokinetics of tyrosol galactoside as an anti-fatigue drug in rats.Arzneimittelforschung201161843543810.1055/s‑0031‑129622421950146
    [Google Scholar]
  97. ZangH. ShenP. XuQ. ZhangL. XiaG. SunJ. ZhuJ. YangX. Synthesis and biological activities of tyrosol phenolic acid ester derivatives.Chem. Nat. Compd.20195561043104910.1007/s10600‑019‑02889‑z
    [Google Scholar]
  98. OngK.L. StaffordL.K. McLaughlinS.A. BoykoE.J. VollsetS.E. SmithA.E. DaltonB.E. DupreyJ. CruzJ.A. HaginsH. LindstedtP.A. AaliA. AbateY.H. AbateM.D. AbbasianM. Abbasi-KangevariZ. Abbasi-KangevariM. Abd ElHafeezS. Abd-RabuR. AbdulahD.M. AbdullahA.Y.M. AbediV. AbidiH. AboagyeR.G. AbolhassaniH. Abu-GharbiehE. Abu-ZaidA. AdaneT.D. AdaneD.E. AddoI.Y. AdegboyeO.A. AdekanmbiV. AdepojuA.V. AdnaniQ.E.S. AfolabiR.F. AgarwalG. AghdamZ.B. Agudelo-BoteroM. Aguilera ArriagadaC.E. Agyemang-DuahW. AhinkorahB.O. AhmadD. AhmadR. AhmadS. AhmadA. AhmadiA. AhmadiK. AhmedA. AhmedA. AhmedL.A. AhmedS.A. AjamiM. AkinyemiR.O. Al HamadH. Al HasanS.M. AL-AhdalT.M.A. AlalwanT.A. Al-AlyZ. AlBatainehM.T. Alcalde-RabanalJ.E. AlemiS. AliH. AliniaT. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Alvis-GuzmanN. AmareF. AmeyawE.K. AmiriS. AmusaG.A. AndreiC.L. AnjanaR.M. AnsarA. AnsariG. Ansari-MoghaddamA. AnyasodorA.E. ArablooJ. AravkinA.Y. AredaD. ArifinH. ArkewM. ArmocidaB. ÄrnlövJ. ArtamonovA.A. ArulappanJ. ArulebaR.T. ArumugamA. AryanZ. AsemuM.T. Asghari-JafarabadiM. AskariE. AsmelashD. Astell-BurtT. AtharM. AthariS.S. AtoutM.M.W. Avila-BurgosL. AwaisuA. AzadnajafabadS. BD.B. BabamohamadiH. BadarM. BadawiA. BadiyeA.D. BaghcheghiN. BagheriN. BagheriehS. BahS. BahadoryS. BaiR. BaigA.A. BaltatuO.C. BaradaranH.R. BarchittaM. BardhanM. BarengoN.C. BärnighausenT.W. BaroneM.T.U. Barone-AdesiF. BarrowA. BashiriH. BasiruA. BasuS. BasuS. BatihaA-M.M. BatraK. BayihM.T. BayileyegnN.S. BehnoushA.H. BekeleA.B. BeleteM.A. BelgaumiU.I. BeloL. BennettD.A. BensenorI.M. BerheK. BerhieA.Y. BhaskarS. BhatA.N. BhattiJ.S. BikbovB. BilalF. BintoroB.S. BitarafS. BitraV.R. Bjegovic-MikanovicV. BodolicaV. BoloorA. BrauerM. Brazo-SayaveraJ. BrennerH. ButtZ.A. CalinaD. CamposL.A. Campos-NonatoI.R. CaoY. CaoC. CarJ. CarvalhoM. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. ChadwickJ. ChandrasekarE.K. ChanieG.S. CharanJ. ChattuV.K. ChauhanK. CheemaH.A. Chekol AbebeE. ChenS. CherbuinN. ChichagiF. ChidambaramS.B. ChoW.C.S. ChoudhariS.G. ChowdhuryR. ChowdhuryE.K. ChuD-T. ChukwuI.S. ChungS-C. CoberlyK. ColumbusA. ContrerasD. CousinE. CriquiM.H. Cruz-MartinsN. CuschieriS. DaboB. DadrasO. DaiX. DamascenoA.A.M. DandonaR. DandonaL. DasS. DascaluA.M. DashN.R. DashtiM. Dávila-CervantesC.A. De la Cruz-GóngoraV. DebeleG.R. DelpasandK. DemisseF.W. DemissieG.D. DengX. Denova-GutiérrezE. DeoS.V. DerviševićE. DesaiH.D. DesaleA.T. DessieA.M. DestaF. DewanS.M.R. DeyS. DhamaK. DhimalM. DiaoN. DiazD. DinuM. DiressM. DjalaliniaS. DoanL.P. DongarwarD. dos Santos FigueiredoF.W. DuncanB.B. DuttaS. DziedzicA.M. EdinurH.A. EkholuenetaleM. EkundayoT.C. ElgendyI.Y. ElhadiM. El-HuneidiW. ElmeligyO.A.A. ElmonemM.A. EndeshawD. EsayasH.L. EshetuH.B. EtaeeF. FadhilI. FagbamigbeA.F. FahimA. FalahiS. FarisM.A.I.E.M. FarrokhpourH. FarzadfarF. FatehizadehA. FazliG. FengX. FeredeT.Y. FischerF. FloodD. ForouhariA. ForoumadiR. Foroutan KoudehiM. GaidhaneA.M. GaihreS. GaipovA. GalaliY. GanesanB. Garcia-GordilloM.A. GautamR.K. GebrehiwotM. GebrekidanK.G. GebremeskelT.G. GetacherL. GhadirianF. GhamariS-H. Ghasemi NourM. GhassemiF. GolechhaM. GoleijP. GolinelliD. GopalaniS.V. GuadieH.A. GuanS-Y. GudayuT.W. GuimarãesR.A. GuledR.A. GuptaR. GuptaK. GuptaV.B. GuptaV.K. GyawaliB. HaddadiR. HadiN.R. HaileT.G. HajibeygiR. Haj-MirzaianA. HalwaniR. HamidiS. HankeyG.J. HannanM.A. HaqueS. HarandiH. HarliantoN.I. HasanS.M.M. HasanS.S. HasaniH. HassanipourS. HassenM.B. HauboldJ. HayatK. HeidariG. HeidariM. HessamiK. HiraikeY. HollaR. HossainS. HossainM.S. HosseiniM-S. HosseinzadehM. HosseinzadehH. HuangJ. HudaM.N. HussainS. HuynhH-H. HwangB-F. IbitoyeS.E. IkedaN. IlicI.M. IlicM.D. InbarajL.R. IqbalA. IslamS.M.S. IslamR.M. IsmailN.E. IsoH. IsolaG. ItumallaR. IwagamiM. IwuC.C.D. IyamuI.O. IyasuA.N. JacobL. JafarzadehA. JahramiH. JainR. JajaC. JamalpoorZ. JamshidiE. JanakiramanB. JayannaK. JayapalS.K. JayaramS. JayawardenaR. JebaiR. JeongW. JinY. JokarM. JonasJ.B. JosephN. JosephA. JoshuaC.E. JoukarF. JozwiakJ.J. KaambwaB. KabirA. KabthymerR.H. KadashettiV. KaheF. KalhorR. KandelH. KaranthS.D. KarayeI.M. KarkhahS. KatotoP.D.M.C. KaurN. KazemianS. KebedeS.A. KhaderY.S. KhajuriaH. KhalajiA. KhanM.A.B. KhanM. KhanA. KhanalS. KhatatbehM.M. KhaterA.M. KhateriS. khorashadizadehF. KhubchandaniJ. KibretB.G. KimM.S. KimokotiR.W. KisaA. KivimäkiM. KolahiA-A. KomakiS. KompaniF. KoohestaniH.R. KorzhO. KostevK. KothariN. KoyanagiA. KrishanK. KrishnamoorthyY. Kuate DefoB. KuddusM. KuddusM.A. KumarR. KumarH. KunduS. KurniasariM.D. KuttikkattuA. La VecchiaC. LallukkaT. LarijaniB. LarssonA.O. LatiefK. LawalB.K. LeT.T.T. LeT.T.B. LeeS.W.H. LeeM. LeeW-C. LeeP.H. LeeS. LeeS.W. LegesseS.M. LenziJ. LiY. LiM-C. LimS.S. LimL-L. LiuX. LiuC. LoC-H. LopesG. LorkowskiS. LozanoR. LucchettiG. MaghazachiA.A. MahashaP.W. MahjoubS. MahmoudM.A. MahmoudiR. MahmoudimaneshM. MaiA.T. MajeedA. Majma SanayeP. MakrisK.C. MalhotraK. MalikA.A. MalikI. MallhiT.H. MaltaD.C. MamunA.A. MansouriB. MaratebH.R. MardiP. MartiniS. MartorellM. MarzoR.R. MasoudiR. MasoudiS. MathewsE. MaugeriA. MazzagliaG. MekonnenT. MeshkatM. MestrovicT. Miao JonassonJ. MiazgowskiT. MichalekI.M. MinhL.H.N. MiniG.K. MirandaJ.J. MirfakhraieR. MirrakhimovE.M. Mirza-Aghazadeh-AttariM. MisganawA. MisginaK.H. MishraM. MoazenB. MohamedN.S. MohammadiE. MohammadiM. Mohammadian-HafshejaniA. MohammadshahiM. MohseniA. Mojiri-forushaniH. MokdadA.H. MomtazmaneshS. MonastaL. MoniruzzamanM. MonsU. MontazeriF. Moodi GhalibafA.A. MoradiY. MoradiM. Moradi SarabiM. MorovatdarN. MorrisonS.D. MorzeJ. MossialosE. MostafaviE. MuellerU.O. MulitaF. MulitaA. Murillo-ZamoraE. MusaK.I. MwitaJ.C. NagarajuS.P. NaghaviM. NainuF. NairT.S. NajmuldeenH.H.R. NangiaV. NargusS. NaserA.Y. NassereldineH. NattoZ.S. NaumanJ. NayakB.P. NdejjoR. NegashH. NegoiR.I. NguyenH.T.H. NguyenD.H. NguyenP.T. NguyenV.T. NguyenH.Q. NiaziR.K. NigatuY.T. NingrumD.N.A. NizamM.A. NnyanziL.A. NoreenM. NoubiapJ.J. NzoputamO.J. NzoputamC.I. OanceaB. OdogwuN.M. OdukoyaO.O. OjhaV.A. Okati-AliabadH. OkekunleA.P. OkonjiO.C. OkwuteP.G. OlufadewaI.I. OnwujekweO.E. OrdakM. OrtizA. OsuagwuU.L. OulhajA. OwolabiM.O. Padron-MonederoA. PadubidriJ.R. PalladinoR. PanagiotakosD. Panda-JonasS. PandeyA. PandeyA. Pandi-PerumalS.R. Pantea StoianA.M. PardhanS. ParekhT. ParekhU. PasovicM. PatelJ. PatelJ.R. PaudelU. PepitoV.C.F. PereiraM. PericoN. PernaS. PetcuI-R. Petermann-RochaF.E. PodderV. PostmaM.J. PouraliG. PourtaheriN. PratesE.J.S. QadirM.M.F. QatteaI. RaeeP. RafiqueI. RahimiM. RahimifardM. Rahimi-MovagharV. RahmanM.O. RahmanM.A. RahmanM.H.U. RahmanM. RahmanM.M. RahmaniM. RahmaniS. RahmanianV. RahmawatyS. RahnavardN. RajbhandariB. RamP. RamazanuS. RanaJ. RancicN. RanjhaM.M.A.N. RaoC.R. RapakaD. RasaliD.P. RashediS. RashediV. RashidA.M. RashidiM-M. RatanZ.A. RawafS. RawalL. RedwanE.M.M. RemuzziG. RengasamyK.R.R. RenzahoA.M.N. ReyesL.F. RezaeiN. RezaeiN. RezaeianM. RezazadehH. RiahiS.M. RiasY.A. RiazM. RibeiroD. RodriguesM. RodriguezJ.A.B. RoeverL. RohloffP. RoshandelG. RoustazadehA. RwegereraG.M. SaadA.M.A. Saber-AyadM.M. SabourS. SabzmakanL. SaddikB. SadeghiE. SaeedU. Saeedi MoghaddamS. SafiS. SafiS.Z. SaghazadehA. Saheb Sharif-AskariN. Saheb Sharif-AskariF. SahebkarA. SahooS.S. SahooH. Saif-Ur-RahmanK.M. SajidM.R. SalahiS. SalahiS. SalehM.A. SalehiM.A. SalomonJ.A. SanabriaJ. SanjeevR.K. SanmarchiF. Santric-MilicevicM.M. SarasmitaM.A. SargaziS. SathianB. SathishT. SawhneyM. SchlaichM.P. SchmidtM.I. SchuermansA. SeiduA-A. Senthil KumarN. SepanlouS.G. SethiY. SeylaniA. ShabanyM. ShafaghatT. ShafeghatM. ShafieM. ShahN.S. ShahidS. ShaikhM.A. ShanawazM. ShannawazM. SharfaeiS. ShashamoB.B. ShiriR. ShittuA. ShivakumarK.M. ShivalliS. ShobeiriP. ShokriF. ShuvalK. SibhatM.M. SilvaL.M.L.R. SimpsonC.R. SinghJ.A. SinghP. SinghS. SirajM.S. SkryabinaA.A. SohagA.A.M. SoleimaniH. SolikhahS. Soltani-ZangbarM.S. SomayajiR. SorensenR.J.D. StarodubovaA.V. SujataS. SulemanM. SunJ. SundströmJ. Tabarés-SeisdedosR. TabatabaeiS.M. TabatabaeizadehS-A. TabishM. TaheriM. TaheriE. TakiE. TamuziJ.J.L.L. TanK-K. TatN.Y. TayeB.T. TemesgenW.A. TemsahM-H. TeslerR. ThangarajuP. ThankappanK.R. ThapaR. TharwatS. ThomasN. TicoaluJ.H.V. TiyuriA. TonelliM. Tovani-PaloneM.R. TricoD. TrihandiniI. TripathyJ.P. TromansS.J. TsegayG.M. TualekaA.R. TufaD.G. TyrovolasS. UllahS. UpadhyayE. VahabiS.M. VaithinathanA.G. ValizadehR. van DaalenK.R. VartP. VarthyaS.B. VasankariT.J. VaziriS. VermaM. VerrasG-I. VoD.C. WagayeB. WaheedY. WangZ. WangY. WangC. WangF. WassieG.T. WeiM.Y.W. WeldemariamA.H. WestermanR. WickramasingheN.D. WuY.F. WulandariR.D.W.I. XiaJ. XiaoH. XuS. XuX. YadaD.Y. YangL. YatsuyaH. YesiltepeM. YiS. YohannisH.K. YonemotoN. YouY. ZamanS.B. ZamoraN. ZareI. ZareaK. ZarrintanA. ZastrozhinM.S. ZeruN.G. ZhangZ-J. ZhongC. ZhouJ. ZielińskaM. ZikargY.T. ZodpeyS. ZoladlM. ZouZ. ZumlaA. ZunigaY.M.H. MaglianoD.J. MurrayC.J.L. HayS.I. VosT. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021.Lancet20234021039720323410.1016/S0140‑6736(23)01301‑637356446
    [Google Scholar]
  99. FinucaneM.M. StevensG.A. CowanM.J. DanaeiG. LinJ.K. PaciorekC.J. SinghG.M. GutierrezH.R. LuY. BahalimA.N. FarzadfarF. RileyL.M. EzzatiM. National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants.Lancet2011377976555756710.1016/S0140‑6736(10)62037‑521295846
    [Google Scholar]
  100. WingR.R. GoldsteinM.G. ActonK.J. BirchL.L. JakicicJ.M. SallisJ.F.Jr Smith-WestD. JefferyR.W. SurwitR.S. Behavioral science research in diabetes: Lifestyle changes related to obesity, eating behavior, and physical activity.Diabetes Care200124111712310.2337/diacare.24.1.11711194216
    [Google Scholar]
  101. IDF Diabetes AtlasIDF Diabetes Atlas Reports.2021Available From: https://www.diabetesatlas.org
  102. ChandramohanR. PariL. RathinamA. SheikhB.A. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats.Chem. Biol. Interact.2015229445410.1016/j.cbi.2015.01.02625641191
    [Google Scholar]
  103. Jafari-RastegarN. HosseininiaH.S. JalilvandE. NaseroleslamiM. KhakpaiF. Mousavi-NiriN. Oral administration of nano-tyrosol reversed the diabetes-induced liver damage in streptozotocin-induced diabetic rats.J. Diabetes Metab. Disord.202222129730510.1007/s40200‑022‑01133‑w37255797
    [Google Scholar]
  104. PacificiF. FariasC.L.A. ReaS. CapuaniB. FeracoA. CoppolaA. MammiC. PastoreD. AbeteP. RovellaV. SalimeiC. LombardoM. CaprioM. BelliaA. SbracciaP. Di DanieleN. LauroD. Della-MorteD. Tyrosol may prevent obesity by inhibiting adipogenesis in 3T3-L1 preadipocytes.Oxid. Med. Cell. Longev.2020202011210.1155/2020/479478033376578
    [Google Scholar]
  105. González-AcedoA. Ramos-TorrecillasJ. Illescas- MontesR. Costela-RuizV.J. RuizC. Melguizo-RodríguezL. García-MartínezO. The benefits of olive oil for skin health: Study on the effect of hydroxytyrosol, tyrosol, and oleocanthal on human fibroblasts.Nutrients2023159207710.3390/nu1509207737432217
    [Google Scholar]
  106. D’ArchivioM. SantangeloC. SilenziA. ScazzocchioB. VarìR. MasellaR. Dietary EVOO polyphenols and gut microbiota interaction: Are there any sex/gender influences?Antioxidants2022119174410.3390/antiox1109174436139818
    [Google Scholar]
  107. Hassan Abdel-RhmanS. Mostafa El-MahdyA. El-MowafyM. Effect of tyrosol and farnesol on virulence and antibiotic resistance of clinical isolates of Pseudomonas aeruginosa.BioMed Res. Int.201520151710.1155/2015/456463
    [Google Scholar]
  108. AminiA. LiuM. AhmadZ. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase.Int. J. Biol. Macromol.201710115316410.1016/j.ijbiomac.2017.03.08728322962
    [Google Scholar]
  109. AdampourZ. Yilmaz ÖztürkB. Dağİ. The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells.J. Advances VetBio Sci. Techniq.20227332733710.31797/vetbio.1153190
    [Google Scholar]
  110. Delgado-AdámezR.R.J. Martín-VertedorJ.R-P.D. Pro-/antioxidant and antibacterial activity of olive leaf extracts according to bioavailability of phenolic compounds.Emir. J. Food Agric.20202020479
    [Google Scholar]
  111. ShaymaaH.A.R. DinaE.R. Effect of tyrosol on Staphylococcus aureus antimicrobial susceptibility, biofilm formation and virulence factors.Afr. J. Microbiol. Res.2016102068769310.5897/AJMR2016.8001
    [Google Scholar]
  112. FerencK. Sokal-DembowskaA. HelmaK. MotykaE. Jarmakiewicz-CzajaS. FilipR. Modulation of the gut microbiota by nutrition and its relationship to epigenetics.Int. J. Mol. Sci.2024252122810.3390/ijms2502122838279228
    [Google Scholar]
  113. LiX. WeiT. LiJ. YuanY. WuM. ChenF. DengZ.Y. LuoT. Tyrosol ameliorates the symptoms of obesity, promotes adipose thermogenesis, and modulates the composition of gut microbiota in HFD fed mice.Mol. Nutr. Food Res.20226615210101510.1002/mnfr.20210101535385199
    [Google Scholar]
  114. ZhanX. HeM. PeiJ. FanW. MwangiC.N. ZhangP. ChaiX. JiangM. Natural phenylethanoid supplementation alleviates metabolic syndrome in female mice induced by high-fructose diet.Front. Pharmacol.20221385077710.3389/fphar.2022.85077735928270
    [Google Scholar]
  115. MalkaO. MalishevR. BersudskyM. RajendranM. KrishnamohanM. ShaikJ. ChamovitzD.A. TikhonovE. SultanE. KorenO. ApteR.N. RosentalB. VoronovE. JelinekR. Tryptophol acetate and tyrosol acetate, small-molecule metabolites identified in a probiotic mixture, inhibit hyperinflammation.J. Innate Immun.202315153154710.1159/00052978236809756
    [Google Scholar]
  116. AraújoM. PimentelF.B. AlvesR.C. OliveiraM.B.P.P. Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxidants.Trends Food Sci. Technol.201545220021110.1016/j.tifs.2015.06.010
    [Google Scholar]
  117. TampucciS. CastagnaA. MontiD. ManeraC. SaccomanniG. ChetoniP. ZucchettiE. BarbagalloM. FazioL. SantinM. RanieriA. Tyrosol-enriched tomatoes by diffusion across the fruit peel from a chitosan coating: A proposal of functional food.Foods202110233510.3390/foods1002033533557256
    [Google Scholar]
  118. DikkalaP.K. Computational screening of phytochemicals for anti-diabetic drug discovery. Phytochemistry, Computational Tools and Databases in Drug DiscoveryAmsterdamElsevier202310.1016/B978‑0‑323‑90593‑0.00009‑5
    [Google Scholar]
  119. PetcuC.D. TăpăloagăD. MihaiO.D. Gheorghe-IrimiaR.A. NegoițăC. GeorgescuI.M. TăpăloagăP.R. BordaC. GhimpețeanuO.M. Harnessing natural antioxidants for enhancing food shelf life: exploring sources and applications in the food industry.Foods20231217317610.3390/foods1217317637685108
    [Google Scholar]
  120. Soldevila-DomenechN. BoronatA. MateusJ. Diaz-PellicerP. MatillaI. Pérez-OteroM. Aldea-PeronaA. de la TorreR. Generation of the antioxidant hydroxytyrosol from tyrosol present in beer and red wine in a randomized clinical trial.Nutrients2019119224110.3390/nu1109224131540384
    [Google Scholar]
  121. LombardoL. Broad-Spectrum Health Protection of Extra Virgin Olive Oil Compounds.2018574177
    [Google Scholar]
  122. BendiniA. CerretaniL. Carrasco-PancorboA. Gómez- CaravacaA.M. Segura-CarreteroA. Fernández-GutiérrezA. LerckerG. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade.Molecules20071281679171910.3390/1208167917960082
    [Google Scholar]
  123. KiritsakisA.K. Flavor components of olive oil—a review.J. Am. Oil Chem. Soc.199875667368110.1007/s11746‑998‑0205‑6
    [Google Scholar]
  124. LlorX. PonsE. RocaA. AlvarezM. MañéJ. Fernández-BañaresF. GassullM.A. The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes.Clin. Nutr.2003221717910.1054/clnu.2002.062712553953
    [Google Scholar]
  125. SilvaS. SepodesB. RochaJ. DireitoR. FernandesA. BritesD. FreitasM. FernandesE. BronzeM.R. FigueiraM.E. Protective effects of hydroxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthritis.J. Nutr. Biochem.201526436036810.1016/j.jnutbio.2014.11.01125620693
    [Google Scholar]
  126. BulottaS. CelanoM. LeporeS.M. MontalciniT. PujiaA. RussoD. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases.J. Transl. Med.201412121910.1186/s12967‑014‑0219‑925086598
    [Google Scholar]
  127. AhnE.Y. JiangY. ZhangY. SonE. YouS. KangS.W. ParkJ.S. JungJ. LeeB.J. KimD.K. Cytotoxicity of p-tyrosol and its derivatives may correlate with the inhibition of DNA replication initiation.Oncol. Rep.200819252753410.3892/or.19.2.52718202803
    [Google Scholar]
  128. AissaI. Abdelkafi-KoubaaZ. ChouaïbK. JalouliM. AsselA. RomdhaneA. HarrathA.H. MarrakchiN. Ben JannetH. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates.Bioorg. Chem.202111410507110.1016/j.bioorg.2021.10507134130108
    [Google Scholar]
  129. Abdelkafi-KoubaaZ. AissaI. Ben JannetH. Srairi-AbidN. MarrakchiN. MenifS. Tyrosol derivatives, bearing 3,5-disubstituted isoxazole and 1,4-disubstituted triazole, as potential antileukemia agents by promoting apoptosis.Molecules20222716508610.3390/molecules2716508636014333
    [Google Scholar]
  130. MaC.J. KimY.C. SungS.H. Compounds with neuroprotective activity from the medicinal plant Machilus thunbergii.J. Enzyme Inhib. Med. Chem.20092451117112110.1080/1475636080263297119555186
    [Google Scholar]
  131. AtochinD.N. ChernyshevaG.A. SmolyakovaV.I. OsipenkoA.N. LogvinovS.V. ZhdankinaA.A. SysolyatinS.V. KryukovY.A. AnfinogenovaY. PlotnikovaT.M. PlotnikovM.B. Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats.Phytomedicine201623778479210.1016/j.phymed.2016.03.01527180226
    [Google Scholar]
  132. TurnerR. EtienneN. Garcia AlonsoM. de Pascual-TeresaS. MinihaneA.M. WeinbergP.D. RimbachG. Antioxidant and anti-atherogenic activities of olive oil phenolics.Int. J. Vitam. Nutr. Res.2005751617010.1024/0300‑9831.75.1.6115830923
    [Google Scholar]
  133. JeI.G. KimD.S. KimS.W. LeeS. LeeH.S. ParkE.K. KhangD. KimS.H. Tyrosol suppresses allergic inflammation by inhibiting the activation of phosphoinositide 3-kinase in mast cells.PLoS One2015106e012982910.1371/journal.pone.012982926068872
    [Google Scholar]
  134. MorenoJ.J. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7.Free Radic. Biol. Med.20033591073108110.1016/S0891‑5849(03)00465‑914572610
    [Google Scholar]
  135. GiovanniniL. MiglioriM. FilippiC. OrigliaN. PanichiV. FalchiM. BertelliA.A. BertelliA. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells.Int. J. Tissue React.2002242535612182233
    [Google Scholar]
  136. MannaC. NapoliD. CacciapuotiG. PorcelliM. ZappiaV. Olive oil phenolic compounds inhibit homocysteine-induced endothelial cell adhesion regardless of their different antioxidant activity.J. Agric. Food Chem.20095793478348210.1021/jf803765919358606
    [Google Scholar]
  137. CarluccioM.A. SiculellaL. AncoraM.A. MassaroM. ScodittiE. StorelliC. VisioliF. DistanteA. De CaterinaR. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: Antiatherogenic properties of Mediterranean diet phytochemicals.Arterioscler. Thromb. Vasc. Biol.200323462262910.1161/01.ATV.0000062884.69432.A012615669
    [Google Scholar]
  138. ChangC.Y. HuangI-T. ShihH-J. ChangY-Y. KaoM-C. ShihP-C. HuangC-J. Cluster of differentiation 14 and toll-like receptor 4 are involved in the anti-inflammatory effects of tyrosol.J. Funct. Foods2019539310410.1016/j.jff.2018.12.011
    [Google Scholar]
  139. De StefanoD. MaiuriM.C. CarnuccioR. Effects of tyrosol on RAW 264.7 macrophages activated by interferon-γ and gliadin.Olives and olive oil in health and disease preventionCambridge, MassachusettsAcademic Press2010
    [Google Scholar]
  140. De StefanoD. MaiuriM.C. SimeonV. GrassiaG. SosciaA. CinelliM.P. CarnuccioR. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ.Eur. J. Pharmacol.20075661-319219910.1016/j.ejphar.2007.03.05117477920
    [Google Scholar]
  141. DewapriyaP. HimayaS.W.A. LiY.X. KimS.K. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson’s disease.Food Chem.201314121147115710.1016/j.foodchem.2013.04.00423790897
    [Google Scholar]
  142. FusiJ. BianchiS. DanieleS. PellegriniS. MartiniC. GalettaF. GiovanniniL. FranzoniF. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds.Biomed. Pharmacother.201810180581910.1016/j.biopha.2018.03.00629525677
    [Google Scholar]
  143. GiovanniniC. ScazzocchioB. MatarreseP. VarìR. D’ArchivioM. Di BenedettoR. CascianiS. DessìM.R. StrafaceE. MalorniW. MasellaR. Apoptosis induced by oxidized lipids is associated with up-regulation of p66Shc in intestinal Caco-2 cells: Protective effects of phenolic compounds.J. Nutr. Biochem.200819211812810.1016/j.jnutbio.2007.01.01017588737
    [Google Scholar]
  144. DeianaM. CoronaG. IncaniA. LoruD. RosaA. AtzeriA. Paola MelisM. Assunta DessìM. Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells.Food Chem. Toxicol.201048103008301610.1016/j.fct.2010.07.04120691238
    [Google Scholar]
  145. KimY.Y. LeeS. KimM.J. KangB.C. DhakalH. ChoiY.A. ParkP.H. ChoiH. ShinT.Y. ChoiH.G. KwonT.K. KhangD. KimS.H. Tyrosol attenuates lipopolysaccharide-induced acute lung injury by inhibiting the inflammatory response and maintaining the alveolar capillary barrier.Food Chem. Toxicol.2017109Pt 152653310.1016/j.fct.2017.09.05328974441
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330437240816150736
Loading
/content/journals/cmc/10.2174/0109298673330437240816150736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test