Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Аims

This research aimed to study the features of gene regulation of the inflammatory response in cells carrying mitochondrial mutations associated with atherosclerosis.

Background

Inflammation plays an important, if not decisive, role in the occurrence of atherosclerotic lesions and then accompanies it throughout its further development. Thus, atherogenesis is a chronic inflammatory process. Chronification of inflammation is a consequence of disruption of the normal inflammatory response at the cell level of the vascular wall.

Objectives

In this study, we used cytoplasmic hybrids or cybrids carrying atherosclerosis-associated mitochondrial mutations to study gene regulation of inflammatory response. The main goal of the study was to identify the key genes responsible for the impaired inflammatory response revealed for some cybrids.

Methods

Inflammatory stimulation of cybrids was induced with bacterial lipopolysaccharide, and assessed through secretion of pro-inflammatory cytokines CCL2, IL8, IL6, IL1b. A transcriptome analysis was performed to identify the key genes (master regulators) in the normal (tolerant) and intolerant response of cybrid cells.

Results

Normal inflammatory response after re-stimulation elicited a much smaller secretion of pro-inflammatory cytokines. In an intolerant response, the level of secretion upon re-stimulation was the same or even higher than after the first stimulation. Normal and intolerant responses differed significantly both in terms of the number of signaling pathways involved and qualitatively, since the signaling pathways for normal and intolerant responses are completely different. Master regulators controlling normal and intolerant inflammatory response were identified. For a normal response to the first inflammatory stimulation, no common master up-regulators and 3 master down-regulators were identified. The reverse situation was observed with the intolerant inflammatory response: 6 master up-regulators, and no master down regulators were identified. After the second inflammatory stimulation, no master regulator common to all studied cytokines was found. Thus, key genes involved in the development of intolerant inflammatory response have been identified. In addition, other key genes were identified that were initially associated with an intolerant inflammatory response and thus determine disorders of the inflammatory reaction leading to chronification of inflammation.

Conclusion

We identified disturbances in gene associated with the development of intolerant immune response that may be relevant to atherosclerosis. Key genes responsible for the chronification of inflammation were discovered.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673303008240829075444
2024-09-12
2025-09-05
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/15/CMC-32-15-07.html?itemId=/content/journals/cmc/10.2174/0109298673303008240829075444&mimeType=html&fmt=ahah

References

  1. ZhangT. PangC. XuM. ZhaoQ. HuZ. JiangX. GuoM. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities.Hum. Immunol.202485211076510.1016/j.humimm.2024.11076538369442
    [Google Scholar]
  2. LiuY. XuK. XiangY. MaB. LiH. LiY. ShiY. LiS. BaiY. Role of MCP-1 as an inflammatory biomarker in nephropathy.Front. Immunol.202414130307610.3389/fimmu.2023.130307638239353
    [Google Scholar]
  3. MangioneM.C. WenJ. CaoD.J. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases.J. Mol. Cell. Cardiol.202418611112410.1016/j.yjmcc.2023.10.01138039845
    [Google Scholar]
  4. OlsonM.E. HornickM.G. StefanskiA. AlbannaH.R. GjoniA. HallG.D. HartP.C. RajabI.M. PotempaL.A. A biofunctional review of C-reactive protein (CRP) as a mediator of inflammatory and immune responses: Differentiating pentameric and modified CRP isoform effects.Front. Immunol.202314126438310.3389/fimmu.2023.126438337781355
    [Google Scholar]
  5. JungK.I. McKennaS. VijayamahanteshV. HeY. HahmB. Protective versus pathogenic type I interferon responses during virus infections.Viruses2023159191610.3390/v1509191637766322
    [Google Scholar]
  6. CavaillonJ.M. During sepsis and COVID-19, the pro-inflammatory and anti-inflammatory responses are concomitant.Clin. Rev. Allergy Immunol.202365218318710.1007/s12016‑023‑08965‑137395985
    [Google Scholar]
  7. TodosenkoN. KhaziakhmatovaO. MalashchenkoV. YurovaK. BograyaM. BeletskayaM. VulfM. MikhailovaL. MinchenkoA. SorokoI. KhlusovI. LitvinovaL. Adipocyte- and monocyte-mediated vicious circle of inflammation and obesity (review of cellular and molecular mechanisms).Int. J. Mol. Sci.202324151225910.3390/ijms24151225937569635
    [Google Scholar]
  8. LiaoZ. ZhengR. ShaoG. Mechanisms and application strategies of miRNA-146a regulating inflammation and fibrosis at molecular and cellular levels (Review).Int. J. Mol. Med.2022511710.3892/ijmm.2022.521036484394
    [Google Scholar]
  9. BinsalehN.K. SherwaniS. EltayebR. QanashH. BazaidA.S. AlthobitiM. HazzaziM.S. RajendrasozhanS. Increased inflammatory cytokines and oxidative stress enhanced antibody production in breast and prostate cancer patients with COVID-19 related depression.Front Chem.202311119207410.3389/fchem.2023.119207437153524
    [Google Scholar]
  10. VerschoorC.P. VlasschaertC. RauhM.J. ParéG. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long-term inflammatory exposure: A Canadian Longitudinal Study on Aging analysis.Aging Cell2023227e1386310.1111/acel.1386337139638
    [Google Scholar]
  11. ZhangS. MengY. ZhouL. QiuL. WangH. SuD. ZhangB. ChanK.M. HanJ. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy.MedComm.202234e17310.1002/mco2.173
    [Google Scholar]
  12. LindquistK.A. SheinS.A. HovhannisyanA.H. MecklenburgJ. ZouY. LaiZ. TumanovA.V. AkopianA.N. Association of inflammation and tissue damage induced biological processes in masseter muscle with the resolution of chronic myalgia.bioRxiv202310.1101/2023.04.21.537828
    [Google Scholar]
  13. NaitoS. TanakaH. JiangJ.J. TarumiM. HashimotoA. TanakaY. MurakamiK. KubotaS.I. HojyoS. HashimotoS. MurakamiM. DDX6 is involved in the pathogenesis of inflammatory diseases via NF-κB activation.Biochem. Biophys. Res. Commun.202470314966610.1016/j.bbrc.2024.14966638377944
    [Google Scholar]
  14. FanX. HuangJ. ZhangW. SuZ. LiJ. WuZ. ZhangP. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing.ACS Appl. Mater. Interfaces20241689749976710.1021/acsami.3c1683738359334
    [Google Scholar]
  15. RomanoA. MortellaroA. The new frontiers of gene therapy and gene editing in inflammatory diseases.Hum. Gene Ther.2024357-821923110.1089/hum.2023.21038323580
    [Google Scholar]
  16. BonamS.R. MastrippolitoD. GeorgelP. MullerS. Pharmacological targets at the lysosomal autophagy–NLRP3 inflammasome crossroads.Trends Pharmacol. Sci.20244518110110.1016/j.tips.2023.11.00538102020
    [Google Scholar]
  17. AaltoA.L. LuukkonenV. MeinanderA. Ubiquitin signalling in Drosophila innate immune responses.FEBS J.20232023febs.1702810.1111/febs.1702838069549
    [Google Scholar]
  18. GoldmannO. NwoforO.V. ChenQ. MedinaE. Mechanisms underlying immunosuppression by regulatory cells.Front. Immunol.202415132819310.3389/fimmu.2024.132819338380317
    [Google Scholar]
  19. DagenaisA. Villalba-GuerreroC. OlivierM. Trained immunity: A “new” weapon in the fight against infectious diseases.Front. Immunol.202314114747610.3389/fimmu.2023.114747636993966
    [Google Scholar]
  20. LajqiT. Köstlin-GilleN. BauerR. ZarogiannisS.G. LajqiE. AjetiV. DietzS. KranigS.A. RühleJ. DemajA. HebelJ. BartosovaM. FrommholdD. HudallaH. GilleC. Training vs. tolerance: The yin/yang of the innate immune system.Biomedicines202311376610.3390/biomedicines1103076636979747
    [Google Scholar]
  21. MoraV.P. LoaizaR.A. SotoJ.A. BohmwaldK. KalergisA.M. Involvement of trained immunity during autoimmune responses.J. Autoimmun.202313710295610.1016/j.jaut.2022.10295636526524
    [Google Scholar]
  22. ZubairK. YouC. KwonG. KangK. Two faces of macrophages: Training and tolerance.Biomedicines2021911159610.3390/biomedicines911159634829825
    [Google Scholar]
  23. OrekhovA.N. NikiforovN.G. ElizovaN.V. IvanovaE.A. MakeevV.J. Phenomenon of individual difference in human monocyte activation.Exp. Mol. Pathol.201599115115410.1016/j.yexmp.2015.06.01126107006
    [Google Scholar]
  24. NikiforovN.G. RyabovaA. KubekinaM.V. RomanishkinI.D. TrofimovK.A. ChegodaevY.S. IvanovaE. OrekhovA.N. Two subpopulations of human monocytes that differ by mitochondrial membrane potential.Biomedicines20219215310.3390/biomedicines902015333557383
    [Google Scholar]
  25. NikiforovN.G. KirichenkoT.V. KubekinaM.V. ChegodaevY.S. ZhuravlevA.D. IlchukL.A. NikolaevaM.A. ArefievaA.S. PopovM.A. VerkhovaS.S. Bagheri EktaM. OrekhovA.N. Macrophages derived from LPS-stimulated monocytes from individuals with subclinical atherosclerosis were characterized by increased pro-inflammatory activity.Cytokine202317215641110.1016/j.cyto.2023.15641137918051
    [Google Scholar]
  26. HayakawaS. TamuraA. NikiforovN. KoikeH. KudoF. ChengY. MiyazakiT. KubekinaM. KirichenkoT.V. OrekhovA.N. YuiN. ManabeI. OishiY. Activated cholesterol metabolism is integral for innate macrophage responses by amplifying MYD88 signaling.JCI Insight2022722e13853910.1172/jci.insight.13853936509286
    [Google Scholar]
  27. OrekhovA.N. NikiforovN.G. SukhorukovV.N. KubekinaM.V. SobeninI.A. WuW.K. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. GratchevA.N. MelnichenkoA.A. WetzkerR. SummerhillV.I. ManabeI. OishiY. Role of phagocytosis in the pro-inflammatory response in LDL-induced foam cell formation; a transcriptome analysis.Int. J. Mol. Sci.202021381710.3390/ijms2103081732012706
    [Google Scholar]
  28. NikiforovN.G. WetzkerR. KubekinaM.V. PetukhovaA.V. KirichenkoT.V. OrekhovA.N. Trained circulating monocytes in atherosclerosis: Ex vivo model approach.Front. Pharmacol.20191072510.3389/fphar.2019.0072531316385
    [Google Scholar]
  29. WangT. WangY. ZhangJ. YaoY. Role of trained innate immunity against mucosal cancer.Curr. Opin. Virol.20246410138710.1016/j.coviro.2024.10138738364654
    [Google Scholar]
  30. YangQ. SaaoudF. LuY. PuY. XuK. ShaoY. JiangX. WuS. YangL. TianY. LiuX. GillespieA. LuoJ.J. ShiX.M. ZhaoH. MartinezL. Vazquez-PadronR. WangH. YangX. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types.Front. Immunol.202414134823810.3389/fimmu.2023.134823838327764
    [Google Scholar]
  31. ZiogasA. BrunoM. van der MeelR. MulderW.J.M. NeteaM.G. Trained immunity: Target for prophylaxis and therapy.Cell Host Microbe202331111776179110.1016/j.chom.2023.10.01537944491
    [Google Scholar]
  32. JeljeliM.M. AdamopoulosI.E. Innate immune memory in inflammatory arthritis.Nat. Rev. Rheumatol.2023191062763910.1038/s41584‑023‑01009‑037674048
    [Google Scholar]
  33. RiksenN.P. BekkeringS. MulderW.J.M. NeteaM.G. Trained immunity in atherosclerotic cardiovascular disease.Nat. Rev. Cardiol.2023201279981110.1038/s41569‑023‑00894‑y37322182
    [Google Scholar]
  34. GuoZ. WangL. LiuH. XieY. Innate immune memory in monocytes and macrophages: The potential therapeutic strategies for atherosclerosis.Cells20221124407210.3390/cells1124407236552836
    [Google Scholar]
  35. GusevE. SarapultsevA. Atherosclerosis and inflammation: Insights from the theory of general pathological processes.Int. J. Mol. Sci.2023249791010.3390/ijms2409791037175617
    [Google Scholar]
  36. KeeterW.C. MaS. StahrN. MoriartyA.K. GalkinaE.V. Atherosclerosis and multi-organ-associated pathologies.Semin. Immunopathol.202244336337410.1007/s00281‑022‑00914‑y35238952
    [Google Scholar]
  37. SharmaH. MossmanK. AustinR.C. Fatal attractions that trigger inflammation and drive atherosclerotic disease.Eur. J. Clin. Invest.2024545e1416910.1111/eci.1416938287209
    [Google Scholar]
  38. AttiqA. AfzalS. AhmadW. KandeelM. Hegemony of inflammation in atherosclerosis and coronary artery disease.Eur. J. Pharmacol.202496617633810.1016/j.ejphar.2024.17633838242225
    [Google Scholar]
  39. TangD. KangR. CoyneC.B. ZehH.J. LotzeM.T. PAMP s and DAMP s: Signal 0s that spur autophagy and immunity.Immunol. Rev.2012249115817510.1111/j.1600‑065X.2012.01146.x22889221
    [Google Scholar]
  40. SeongS.Y. MatzingerP. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses.Nat. Rev. Immunol.20044646947810.1038/nri137215173835
    [Google Scholar]
  41. MogensenT.H. Pathogen recognition and inflammatory signaling in innate immune defenses.Clin. Microbiol. Rev.200922224027310.1128/CMR.00046‑0819366914
    [Google Scholar]
  42. CicchinelliS. PignataroG. GemmaS. PiccioniA. PicozziD. OjettiV. FranceschiF. CandelliM. PAMPs and DAMPs in aepsis: A review of their molecular features and potential clinical implications.Int. J. Mol. Sci.202425296210.3390/ijms2502096238256033
    [Google Scholar]
  43. TruongR. ThankamF.G. AgrawalD.K. Immunological mechanisms underlying sterile inflammation in the pathogenesis of atherosclerosis: Potential sites for intervention.Expert Rev. Clin. Immunol.2021171375010.1080/1744666X.2020.186075733280442
    [Google Scholar]
  44. RaiV. AgrawalD.K. The role of damage- and pathogen-associated molecular patterns in inflammation-mediated vulnerability of atherosclerotic plaques.Can. J. Physiol. Pharmacol.201795101245125310.1139/cjpp‑2016‑066428746820
    [Google Scholar]
  45. KauppilaT.E.S. KauppilaJ.H.K. LarssonN.G. Mammalian mitochondria and aging: An update.Cell Metab.2017251577110.1016/j.cmet.2016.09.01728094012
    [Google Scholar]
  46. SilvaR.C.M.C. Mitochondria, autophagy and inflammation: interconnected in aging.Cell Biochem. Biophys.202482241142610.1007/s12013‑024‑01231‑x38381268
    [Google Scholar]
  47. OrekhovA. NikiforovN. IvanovaE. SobeninI. Possible role of mitochondrial DNA mutations in chronification of inflammation: focus on atherosclerosis.J. Clin. Med.20209497810.3390/jcm904097832244740
    [Google Scholar]
  48. OrekhovA.N. NikiforovN.G. OmelchenkoA.V. SinyovV.V. SobeninI.A. VinokurovA.Y. OrekhovaV.A. The role of mitochondrial mutations in chronification of inflammation: hypothesis and overview of own data.Life (Basel)2022128115310.3390/life1208115336013333
    [Google Scholar]
  49. OrekhovA.N. GerasimovaE.V. SukhorukovV.N. PoznyakA.V. NikiforovN.G. Do mitochondrial DNA mutations play a key Role in the chronification of sterile inflammation? special focus on atherosclerosis.Curr. Pharm. Des.202127227629210.2174/138161282666620101216433033045961
    [Google Scholar]
  50. OrekhovA.N. PoznyakA.V. SobeninI.A. NikifirovN.N. IvanovaE.A. Mitochondrion as a selective target for the treatment of atherosclerosis: role of mitochondrial DNA mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation.Curr. Neuropharmacol.202018111064107510.2174/1570159X1766619111812501831744449
    [Google Scholar]
  51. OrekhovA.N. SummerhillV.I. KhotinaV.A. PopovM.A. UzokovJ.K. SukhorukovV.N. Role of mitochondria in the chronification of inflammation: Focus on dysfunctional mitophagy and mitochondrial DNA mutations.Gene Expr.202322432934410.14218/GE.2023.00061
    [Google Scholar]
  52. SobeninI.A. ZhelankinA.V. KhasanovaZ.B. SinyovV.V. MedvedevaL.V. SagaidakM.O. MakeevV.J. KolmychkovaK.I. SmirnovaA.S. SukhorukovV.N. PostnovA.Y. GrechkoA.V. OrekhovA.N. Heteroplasmic variants of mitochondrial DNA in atherosclerotic lesions of human aortic intima.Biomolecules20199945510.3390/biom909045531500189
    [Google Scholar]
  53. OrekhovA.N. IvanovaE.A. MarkinA.M. NikiforovN.G. SobeninI.A. Genetics of arterial-wall-specific mechanisms in atherosclerosis: Focus on mitochondrial mutations.Curr. Atheroscler. Rep.202022105410.1007/s11883‑020‑00873‑532772280
    [Google Scholar]
  54. SazonovaM.A. SinyovV.V. RyzhkovaA.I. SazonovaM.D. KhasanovaZ.B. ShkuratT.P. KaragodinV.P. OrekhovA.N. SobeninI.A. Creation of cybrid cultures containing mtDNA mutations m.12315G>A and m.1555G>A, associated with atherosclerosis.Biomolecules20199949910.3390/biom909049931540444
    [Google Scholar]
  55. KhotinaV.A. VinokurovA.Y. Bagheri EktaM. SukhorukovV.N. OrekhovA.N. Creation of mitochondrial disease models using mitochondrial DNA editing.Biomedicines202311253210.3390/biomedicines1102053236831068
    [Google Scholar]
  56. KingM.P. AttardiG. Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation.Science1989246492950050310.1126/science.28144772814477
    [Google Scholar]
  57. AndrewsS. Others. FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics.Cambridge, United KingdomBabraham Institute2010
    [Google Scholar]
  58. Trim GaloreTrim Galore: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries.2012 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
  59. WingenderE. KelA. geneXplain — eine integrierte Bioinformatik-Plattform.BIOspektrum (Heidelb.)201218555455610.1007/s12268‑012‑0228‑2
    [Google Scholar]
  60. RzhetskyA. IossifovI. KoikeT. KrauthammerM. KraP. MorrisM. YuH. DubouéP.A. WengW. WilburW.J. HatzivassiloglouV. FriedmanC. GeneWays: A system for extracting, analyzing, visualizing, and integrating molecular pathway data.J. Biomed. Inform.2004371435310.1016/j.jbi.2003.10.00115016385
    [Google Scholar]
  61. OrekhovA.N. SobeninI.A. GrechkoA.V. YetS.F. OrekhovA.N. The role of mitochondria in cardiovascular diseases related to atherosclerosis.Front. Biosci. (Elite Ed.)202012110211210.2741/e86031585872
    [Google Scholar]
  62. IbaT. HelmsJ. MaierCL. LeviM. ScarlatescuE. LevyJH. The role of thromboinflammation in acute kidney injury among patients with septic coagulopathy.J Thromb Haemost.20242261530154010.1016/j.jtha.2024.02.006
    [Google Scholar]
  63. FredmanG. SerhanC.N. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease.Nat. Rev. Cardiol.2024202400984-x10.1038/s41569‑023‑00984‑x38216693
    [Google Scholar]
  64. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  65. KeQ. GreenawaltA.N. ManukondaV. JiX. TischR.M. The regulation of self-tolerance and the role of inflammasome molecules.Front. Immunol.202314115455210.3389/fimmu.2023.115455237081890
    [Google Scholar]
  66. ZhaoL. MaD. WangL. SuX. FengL. ZhuL. ChenY. HaoY. WangX. FengJ. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins.Front. Immunol.202314130105110.3389/fimmu.2023.130105138143759
    [Google Scholar]
  67. Abdullah MarzoogB. Cytokines and regulating epithelial cell division.Curr. Drug Targets202425319020010.2174/011389450127997924010105134538213162
    [Google Scholar]
  68. NeteaM.G. QuintinJ. van der MeerJ.W.M. Trained immunity: A memory for innate host defense.Cell Host Microbe20119535536110.1016/j.chom.2011.04.00621575907
    [Google Scholar]
  69. BurcuA. Innate (learned) memory.J. Allergy. Clin. Immunol.2023152355156610.1016/j.jaci.2023.06.014
    [Google Scholar]
  70. LiY. ChenY. CaiG. NiQ. GengY. WangT. BaoC. RuanX. WangH. SunW. Roles of trained immunity in the pathogenesis of periodontitis.J. Periodontal Res.202358586487310.1111/jre.1315837424315
    [Google Scholar]
  71. PiretJ. BoivinG. The impact of trained immunity in respiratory viral infections.Rev. Med. Virol.2024341e251010.1002/rmv.251038282407
    [Google Scholar]
  72. KountourasJ. KazakosE. PolyzosS.A. PapaefthymiouA. ZavosC. Tzitiridou-ChatzopoulouM. ChatzopoulosD. VardakaE. GatopoulouA. KyrailidiF. MouratidouM.C. DoulberisM. Potential impact of trained innate immunity on the pathophysiology of metabolic dysfunction-associated fatty liver disease.Clin. Immunol.202325610977610.1016/j.clim.2023.10977637742792
    [Google Scholar]
  73. RobinsonK.A. AkbarN. BaidžajevasK. ChoudhuryR.P. Trained immunity in diabetes and hyperlipidemia: Emerging opportunities to target cardiovascular complications and design new therapies.FASEB J.20233711e2323110.1096/fj.202301078R37779347
    [Google Scholar]
  74. QuintinJ. SaeedS. MartensJ.H.A. Giamarellos-BourboulisE.J. IfrimD.C. LogieC. JacobsL. JansenT. KullbergB.J. WijmengaC. JoostenL.A.B. XavierR.J. van der MeerJ.W.M. StunnenbergH.G. NeteaM.G. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes.Cell Host Microbe201212222323210.1016/j.chom.2012.06.00622901542
    [Google Scholar]
  75. QuintinJ. Oxidized low-density lipoprotein induces long-term pro-inflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes.Arterioscler. Thromb. Vasc. Biol.20143481731173810.1161/ATVBAHA.114.30388724903093
    [Google Scholar]
  76. van der HeijdenC.D.C.C. GrohL. KeatingS.T. KaffaC. NozM.P. KerstenS. van HerwaardenA.E. HoischenA. JoostenL.A.B. TimmersH.J.L.M. NeteaM.G. RiksenN.P. Catecholamines induce trained immunity in monocytes in vitro and in vivo.Circ. Res.2020127226928310.1161/CIRCRESAHA.119.31580032241223
    [Google Scholar]
  77. DivangahiM. AabyP. KhaderS.A. BarreiroL.B. BekkeringS. ChavakisT. van CrevelR. CurtisN. DiNardoA.R. Dominguez-AndresJ. DuivenvoordenR. FanucchiS. FayadZ. FuchsE. HamonM. JeffreyK.L. KhanN. JoostenL.A.B. KaufmannE. LatzE. MatareseG. van der MeerJ.W.M. MhlangaM. MoorlagS.J.C.F.M. MulderW.J.M. NaikS. NovakovicB. O’NeillL. OchandoJ. OzatoK. RiksenN.P. SauerweinR. SherwoodE.R. SchlitzerA. SchultzeJ.L. SiewekeM.H. BennC.S. StunnenbergH. SunJ. van de VeerdonkF.L. WeisS. WilliamsD.L. XavierR. NeteaM.G. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes.Nat. Immunol.20212212610.1038/s41590‑020‑00845‑633293712
    [Google Scholar]
  78. SaaoudF. LuY. XuK. ShaoY. PraticòD. Vazquez-PadronR.I. WangH. YangX. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers – Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer.Pharmacol. Ther.202425510860410.1016/j.pharmthera.2024.10860438360205
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673303008240829075444
Loading
/content/journals/cmc/10.2174/0109298673303008240829075444
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test