Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is a global health issue that requires modern treatments. Biocompatibility, variable size, and customisable targeting ligands make polymeric nanoparticles (PNPs) a flexible cancer therapy platform. Dynamic nanocarriers, Hyaluronic Acid (HA) coated PNPs, target the overexpressed CD44 receptor in cancer. Through improved permeability and retention, HA, a naturally occurring, biodegradable polymer, increases tumor accumulation and penetration. Hyaluronic acid-grafted polymeric nanoparticles (HA-PNPs) provide a number of advantages over other varieties due to their distinct characteristics. They used CD44 receptor upregulation on cancer cells for selective administration, leveraging the EPR effect for cancer site accumulation. Their natural composition improves biocompatibility while promoting conjugation with a variety of medicinal compounds and providing influence over size and surface features. HA-PNPs facilitate effective cellular uptake, safeguard their cargo, and have the possibility for regulated release, which leads to better delivery of drugs and therapeutic efficacy. While problems, such as CD44 expression variability and drug loading modification, persist, HA-PNPs offer a viable path for targeted and successful treatment of cancer due to their intrinsic benefits. HA-PNPs can be coupled with imaging agents to enable real-time tracking of the delivery of drugs and therapy responses, hence enhancing individualized treatment regimens. HA-PNPs can be programmed to respond to particular environmental signals found in the tumor's microenvironment (such as pH, redox potential, and enzymes). This enables for controlled dispensing of therapeutic cargo only when it reaches the target site, reducing systemic exposure and associated negative effects. HA-PNPs have the ability to overcome common MDR processes used by cancer cells, thereby enhancing the efficiency of previously ineffective chemotherapeutic medicines. Recent advances in HA-functionalized PNP fabrication and cancer applications are covered in this article. It discusses complete treatment effectiveness and HA's targeting of tumors and receptors. The study describes production, clinical trials, and problems and prospects in turning HA-coated PNP platforms into viable therapeutic nanomedicines. HA-functionalized PNPs are versatile, targeted nanotherapeutics for various tumor types and disease stages, as shown in this comprehensive study.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673302510240328050115
2024-04-03
2025-10-08
Loading full text...

Full text loading...

References

  1. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  2. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  3. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  4. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  5. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  6. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  7. XuJ. WangY. GomezH. FengX. Biomechanical modelling of tumor growth with chemotherapeutic treatment: A review.Smart Mater. Struct.2023321010300210.1088/1361‑665X/acf79a
    [Google Scholar]
  8. YadavR. DasP.P. SharmaS. SenguptaS. KumarD. SagarR. Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment.Med. Oncol.2023401234710.1007/s12032‑023‑02195‑337930458
    [Google Scholar]
  9. ZhaoX. YeY. GeS. SunP. YuP. Cellular and molecular targeted drug delivery in central nervous system cancers: Advances in targeting strategies.Curr. Top. Med. Chem.202020302762277610.2174/156802662066620082612240232851962
    [Google Scholar]
  10. UllahR. WazirJ. KhanF.U. DialloM.T. IhsanA.U. MikraniR. AquibM. ZhouX. Factors influencing the delivery efficiency of cancer nanomedicines.AAPS PharmSciTech202021413210.1208/s12249‑020‑01691‑332409932
    [Google Scholar]
  11. YuanC.S. DengZ.W. QinD. MuY.Z. ChenX.G. LiuY. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?Acta Biomater.202112512810.1016/j.actbio.2021.02.03033639310
    [Google Scholar]
  12. ZhangP. XiaoY. SunX. LinX. KooS. YaremenkoA.V. QinD. KongN. FarokhzadO.C. TaoW. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects.Med.20234314716710.1016/j.medj.2022.12.00136549297
    [Google Scholar]
  13. S MS. NaveenN.R. RaoG.K. GopanG. ChopraH. ParkM.N. AlshahraniM.M. JoseJ. EmranT.B. KimB. A spotlight on alkaloid nanoformulations for the treatment of lung cancer.Front. Oncol.20221299415510.3389/fonc.2022.99415536330493
    [Google Scholar]
  14. CristR.M. DasaS.S.K. LiuC.H. ClogstonJ.D. DobrovolskaiaM.A. SternS.T. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021131e166510.1002/wnan.166532830448
    [Google Scholar]
  15. LuY. FengN. DuY. YuR. Nanoparticle-based therapeutics to overcome obstacles in the tumor microenvironment of hepatocellular carcinoma.Nanomaterials20221216283210.3390/nano1216283236014696
    [Google Scholar]
  16. YunW.S. KimJ. LimD.K. KimD.H. JeonS.I. KimK. Recent studies and progress in the intratumoral administration of nano-sized drug delivery systems.Nanomaterials20231315222510.3390/nano1315222537570543
    [Google Scholar]
  17. van der MeelR. SulheimE. ShiY. KiesslingF. MulderW.J.M. LammersT. Smart cancer nanomedicine.Nat. Nanotechnol.201914111007101710.1038/s41565‑019‑0567‑y31695150
    [Google Scholar]
  18. LooY.S. BoseR.J.C. McCarthyJ.R. Mat AzmiI.D. MadheswaranT. Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications.Drug Discov. Today202126490291510.1016/j.drudis.2020.12.01733383213
    [Google Scholar]
  19. AtanaseL.I. Micellar drug delivery systems based on natural biopolymers.Polymers202113347710.3390/polym1303047733540922
    [Google Scholar]
  20. LanH.R. ZhangY.N. HanY.J. YaoS.Y. YangM.X. XuX.G. MouX.Z. JinK.T. Multifunctional nanocarriers for targeted drug delivery and diagnostic applications of lymph nodes metastasis: A review of recent trends and future perspectives.J. Nanobiotechnology202321124710.1186/s12951‑023‑01990‑437528366
    [Google Scholar]
  21. ShenW. LiuW. YangH. ZhangP. XiaoC. ChenX. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy.Biomaterials201817870671910.1016/j.biomaterials.2018.02.01129433753
    [Google Scholar]
  22. LiuT. HuangQ. Biodegradable brush-type copolymer modified with targeting peptide as a nanoscopic platform for targeting drug delivery to treat castration-resistant prostate cancer.Int. J. Pharm.201651121002101110.1016/j.ijpharm.2016.08.01727521701
    [Google Scholar]
  23. WengY. SongC. ChiangC.W. LeiA. Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input.Commun. Chem.20203117110.1038/s42004‑020‑00413‑x36703459
    [Google Scholar]
  24. ZhaoC.Y. ChengR. YangZ. TianZ.M. Nanotechnology for cancer therapy based on chemotherapy.Molecules201823482610.3390/molecules2304082629617302
    [Google Scholar]
  25. JoY. SimH. LeeC.S. KimK.S. NaK. Solubilized chlorin e6-layered double hydroxide complex for anticancer photodynamic therapy.Biomater. Res.20222612310.1186/s40824‑022‑00272‑835690811
    [Google Scholar]
  26. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules2710323735630713
    [Google Scholar]
  27. DuL. ChenW. ZhongJ. YanS. YangC. PuY. ZhuJ. ChenT. ZhangX. WuC. Dopamine multivalent-modified polyaspartic acid for MRI-guided near-infrared photothermal therapy.Regen. Biomater.202310rbad02210.1093/rb/rbad02237066094
    [Google Scholar]
  28. WangL.C. ChangL.C. SuG.L. ChangP.Y. HsuH.F. LeeC.L. LiJ.R. LiaoM.C. ThanguduS. TreekoonJ. YuC.C. SheuH.S. TuT.Y. SuW.P. SuC.H. YehC.S. Chemical structure and shape enhance MR imaging-guided x-ray therapy following marginative delivery.ACS Appl. Mater. Interfaces20221411130561306910.1021/acsami.1c2499135253424
    [Google Scholar]
  29. LiS. WuY. XueX. LiuS. NIR and reduction dual-sensitive polymeric prodrug nanoparticles for bioimaging and combined chemo-phototherapy.Polymers202214228710.3390/polym1402028735054697
    [Google Scholar]
  30. AS. AhmedM.G. GowdaB.H.J. SuryaS. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo.J. Dispers. Sci. Technol.202445222423310.1080/01932691.2022.2139716
    [Google Scholar]
  31. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  32. HaniU. GowdaJ.B.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  33. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future J. Pharm. Sci.20217118610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  34. DubeyS.K. ParabS. AchallaV.P.K. NarwariaA. SharmaS. GowdaJ.B.H. KesharwaniP. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts.J. Biomater. Sci. Polym. Ed.202233121531155410.1080/09205063.2022.206540835404217
    [Google Scholar]
  35. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
  36. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. ThakurS.R.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  37. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  38. MeyerK. PalmerJ.W. The polysaccharide of the vitreous humor.J. Biol. Chem.1934107362963410.1016/S0021‑9258(18)75338‑6
    [Google Scholar]
  39. BalazsE.A. LaurentT.C. JeanlozR.W. Nomenclature of hyaluronic acid.Biochem. J.1986235390390310.1042/bj235090316744177
    [Google Scholar]
  40. KnudsonC.B. KnudsonW. Hyaluronan-binding proteins in development, tissue homeostasis, and disease.FASEB J.19937131233124110.1096/fasebj.7.13.76916707691670
    [Google Scholar]
  41. LaurentT.C. LaurentU.B. FraserJ.R. The structure and function of hyaluronan: An overview.Immunol. Cell Biol.199674217
    [Google Scholar]
  42. LierovaA. KasparovaJ. FilipovaA. CizkovaJ. PekarovaL. KoreckaL. MannovaN. BilkovaZ. SinkorovaZ. Hyaluronic acid: Known for almost a century, but still in vogue.Pharmaceutics202214483810.3390/pharmaceutics1404083835456670
    [Google Scholar]
  43. GarantziotisS. Modulation of hyaluronan signaling as a therapeutic target in human disease.Pharmacol. Ther.202223210799310.1016/j.pharmthera.2021.10799334587477
    [Google Scholar]
  44. PendyalaM. WoodsP.S. BrubakerD.K. BlaberE.A. SchmidtT.A. ChanD.D. Endogenous production of hyaluronan, PRG4, and cytokines is sensitive to cyclic loading in synoviocytes.PLoS One20221712e026792110.1371/journal.pone.026792136576921
    [Google Scholar]
  45. JainA. KumariR. TiwariA. VermaA. TripathiA. ShrivastavaA. JainS.K. Nanocarrier based advances in drug delivery to tumor: An overview.Curr. Drug Targets201819131498151810.2174/138945011966618013110582229384060
    [Google Scholar]
  46. SaksenaJ. HamiltonA.E. GilbertR.J. ZuidemaJ.M. Nanomaterial payload delivery to central nervous system glia for neural protection and repair.Front. Cell. Neurosci.202317126601910.3389/fncel.2023.126601937941607
    [Google Scholar]
  47. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. ZaidA.M.A. AcoboC.R.Y. IsmailA.H. AminA.H. SigariA.R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  48. BayramB. OzgurA. TutarL. TutarY. Tumor targeting of polymeric nanoparticles conjugated with peptides, saccharides, and small molecules for anticancer drugs.Curr. Pharm. Des.201723355349535728911307
    [Google Scholar]
  49. De RubisG. PaudelK.R. CorrieL. MehndirattaS. PatelV.K. KumbharP.S. ManjappaA.S. DisouzaJ. PatravaleV. GuptaG. ManandharB. RajputR. RobinsonA.K. ReyesR.J. ChakrabortyA. ChellappanD.K. SinghS.K. OliverB.G.G. HansbroP.M. DuaK. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease.Naunyn Schmiedebergs Arch. Pharmacol.2023202310.1007/s00210‑023‑02830‑w37991539
    [Google Scholar]
  50. TanakaH.Y. NakazawaT. EnomotoA. MasamuneA. KanoM.R. Therapeutic strategies to overcome fibrotic barriers to nanomedicine in the pancreatic tumor microenvironment.Cancers202315372410.3390/cancers1503072436765684
    [Google Scholar]
  51. BeloquiA. des RieuxA. PréatV. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier.Adv. Drug Deliv. Rev.2016106Pt B24225510.1016/j.addr.2016.04.01427117710
    [Google Scholar]
  52. DilliardS.A. SiegwartD.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.Nat. Rev. Mater.20238428230010.1038/s41578‑022‑00529‑736691401
    [Google Scholar]
  53. KrishnamoorthyK. MahalingamM. Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach.Adv. Pharm. Bull.201551576725789220
    [Google Scholar]
  54. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart Mater. Med.20201101910.1016/j.smaim.2020.04.00134553138
    [Google Scholar]
  55. SharmaS. SudhakaraP. SinghJ. IlyasR.A. AsyrafM.R.M. RazmanM.R. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications.Polymers20211316262310.3390/polym1316262334451161
    [Google Scholar]
  56. WangZ. XiaoM. GuoF. YanY. TianH. ZhangQ. RenS. YangL. Biodegradable polyester-based nano drug delivery system in cancer chemotherapy: A review of recent progress (2021–2023).Front. Bioeng. Biotechnol.202311129532310.3389/fbioe.2023.129532338026861
    [Google Scholar]
  57. FițaA.C. SecăreanuA.A. MusucA.M. OzonE.A. SarbuI. AtkinsonI. RusuA. MatiE. AnutaV. PopA.L. The influence of the polymer type on the quality of newly developed oral immediate-release tablets containing amiodarone solid dispersions obtained by hot-melt extrusion.Molecules20222719660010.3390/molecules2719660036235137
    [Google Scholar]
  58. GattoM.S. MissaouiN.W. Lyophilization of nanoparticles, does it really work? overview of the current status and challenges.Int. J. Mol. Sci.202324181404110.3390/ijms24181404137762348
    [Google Scholar]
  59. AlloucheJ. Synthesis of organic and bioorganic nanoparticles: An overview of the preparation methods.Nanomaterials: A Danger or a Promise?SpringerLondon20122774
    [Google Scholar]
  60. AliM.E. LamprechtA. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles.Int. J. Pharm.20175161-217017710.1016/j.ijpharm.2016.11.02327845211
    [Google Scholar]
  61. OpertiM.C. BernhardtA. SincariV. JagerE. GrimmS. EngelA. HrubyM. FigdorC.G. TagitO. Industrial scale manufacturing and downstream processing of PLGA-based nanomedicines suitable for fully continuous operation.Pharmaceutics202214227610.3390/pharmaceutics1402027635214009
    [Google Scholar]
  62. DalwadiG. SunderlandB. Comparison and validation of drug loading parameters of PEGylated nanoparticles purified by a diafiltration centrifugal device and tangential flow filtration.Drug Dev. Ind. Pharm.200834121331134210.1080/0363904080209817718665978
    [Google Scholar]
  63. GuoZ. AfzaR. Moneeb KhanM. KhanS.U. KhanM.W. AliZ. BatoolS. DinF. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In vitro and in vivo analyses.Heliyon202399e2010710.1016/j.heliyon.2023.e2010737810010
    [Google Scholar]
  64. Bonilla-VidalL. ŚwitalskaM. EspinaM. WietrzykJ. GarcíaM.L. SoutoE.B. GliszczyńskaA. LópezS.E. Dually active apigenin-loaded nanostructured lipid carriers for cancer treatment.Int. J. Nanomedicine2023186979699710.2147/IJN.S42956538026534
    [Google Scholar]
  65. AnnuS.A. SartajA. QamarZ. MdS. AlhakamyN.A. BabootaS. AliJ. An insight to brain targeting utilizing polymeric nanoparticles: Effective treatment modalities for neurological disorders and brain tumor.Front. Bioeng. Biotechnol.20221078812810.3389/fbioe.2022.78812835186901
    [Google Scholar]
  66. YuanL. ChenQ. RiviereJ.E. LinZ. Pharmacokinetics and tumor delivery of nanoparticles.J. Drug Deliv. Sci. Technol.20238310440410.1016/j.jddst.2023.10440438037664
    [Google Scholar]
  67. DegobertG. AydinD. Lyophilization of nanocapsules: Instability sources, formulation and process parameters.Pharmaceutics2021138111210.3390/pharmaceutics1308111234452072
    [Google Scholar]
  68. StepanovaM. NikiforovA. TennikovaT. VlakhK.E. Polypeptide-based systems: From synthesis to application in drug delivery.Pharmaceutics20231511264110.3390/pharmaceutics1511264138004619
    [Google Scholar]
  69. FloresS.P.G. RodríguezG.S.A. LópezP.L.A. RománA.R. Development of essential oil-loaded polymeric nanocapsules as skin delivery systems: Biophysical parameters and dermatokinetics ex vivo evaluation.Molecules20232820714210.3390/molecules2820714237894621
    [Google Scholar]
  70. FrancoA.L.A. AguilarS.O.E. AriasB.A.R. GallegosP.M.A. PartidaJ. SantosA. The evolution of triamcinolone acetonide therapeutic use in retinal diseases: From off-label intravitreal injection to advanced nano-drug delivery systems.Biomedicines2023117190110.3390/biomedicines1107190137509540
    [Google Scholar]
  71. AdeyemiS.B. AkereA.M. OregeJ.I. EjeromegheneO. OregeO.B. AkoladeJ.O. Polymeric nanoparticles for enhanced delivery and improved bioactivity of essential oils.Heliyon202396e1654310.1016/j.heliyon.2023.e1654337484246
    [Google Scholar]
  72. BanikB.L. FattahiP. BrownJ.L. Polymeric nanoparticles: The future of nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168227129910.1002/wnan.136426314803
    [Google Scholar]
  73. ElmowafyM. ShalabyK. ElkomyM.H. AlsaidanO.A. GomaaH.A.M. AbdelgawadM.A. MostafaE.M. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges.Polymers2023155112310.3390/polym1505112336904364
    [Google Scholar]
  74. WangZ. GonzalezK.M. CordovaL.E. LuJ. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023155e190710.1002/wnan.190737248794
    [Google Scholar]
  75. ShreeD. PatraC.N. SahooB.M. Fabrication and applications of polymeric nanoparticles for herbal drug delivery and targeting.Curr. Tradit. Med.202395e18082220763210.2174/2215083808666220818112031
    [Google Scholar]
  76. DoanL. TranK. Relationship between the polymer blend using chitosan, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and antimicrobial activities against Staphylococcus aureus. Pharmaceutics20231510245310.3390/pharmaceutics1510245337896214
    [Google Scholar]
  77. AmgothC. PhanC. BanavothM. RompivalasaS. TangG. Polymer properties: Functionalization and surface modified nanoparticles.Role of Novel Drug Delivery Vehicles in NanobiomedicineIntechOpen2019
    [Google Scholar]
  78. FraserB. PetersA.E. SutherlandJ.M. LiangM. RebourcetD. NixonB. AitkenR.J. Biocompatible nanomaterials as an emerging technology in reproductive health; a focus on the male.Front. Physiol.20211275368610.3389/fphys.2021.75368634858208
    [Google Scholar]
  79. CaputoT.M. CusanoA.M. PrincipeS. CicatielloP. CelettiG. AlibertiA. MiccoA. RuvoM. TagliamonteM. RagoneC. MinopoliM. CarrieroM.V. BuonaguroL. CusanoA. Sorafenib-loaded PLGA carriers for enhanced drug delivery and cellular uptake in liver cancer cells.Int. J. Nanomedicine2023184121414210.2147/IJN.S41596837525693
    [Google Scholar]
  80. JiangW. GaoX. WangQ. ChenY. LiD. ZhangX. YangX. The modified exenatide microspheres: PLGA-PEG-PLGA gel and zinc-exenatide complex synergistically reduce burst release and shorten platform stage.AAPS PharmSciTech202324825110.1208/s12249‑023‑02705‑638036924
    [Google Scholar]
  81. MystekK. AndreassonB. ReidM.S. FrançonH. FagerC. LarssonP.A. SvaganA.J. WågbergL. The preparation of cellulose acetate capsules using emulsification techniques: High-shear bulk mixing and microfluidics.Nord. Pulp Paper Res. J.202338459360510.1515/npprj‑2023‑0051
    [Google Scholar]
  82. MagwazaN.M. MoreG.K. GildenhuysS. MphahleleM.J. In vitro α-glucosidase and α-amylase inhibition, cytotoxicity and free radical scavenging profiling of the 6-halogeno and mixed 6,8-dihalogenated 2-aryl-4-methyl-1,2-dihydroquinazoline 3-oxides.Antioxidants20231211197110.3390/antiox1211197138001824
    [Google Scholar]
  83. AlmomenA. BadranM. AlhowyanA.A. AlkholiefM. AlshamsanA. Imiquimod-loaded chitosan-decorated di-block and tri-block polymeric nanoparticles loaded in situ gel for the management of cervical cancer.Gels20239971310.3390/gels909071337754394
    [Google Scholar]
  84. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  85. HeJ. WangZ. WeiL. YeY. DinZ. ZhouJ. CongX. ChengS. CaiJ. Electrospray-assisted fabrication of dextran–whey protein isolation microcapsules for the encapsulation of selenium-enriched peptide.Foods2023125100810.3390/foods1205100836900527
    [Google Scholar]
  86. NetoS.F. PradaA.L. AchodL.D.R. TorquatoH.F.V. LimaC.S. Paredes-GameroE.J. Silva de MoraesM.O. LimaE.S. SosaE.H. de SouzaT.P. AmadoJ.R.R. α-amyrin-loaded nanocapsules produce selective cytotoxic activity in leukemic cells.Biomed. Pharmacother.202113911165610.1016/j.biopha.2021.11165634243603
    [Google Scholar]
  87. KaviarasiB. RajanaN. PoojaY.S. RajalakshmiA.N. SinghS.B. MehraN.K. Investigating the effectiveness of Difluprednate-Loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery.Int. J. Pharm.202364012300610.1016/j.ijpharm.2023.12300637137420
    [Google Scholar]
  88. SzczęchM. SzczepanowiczK. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method.Nanomaterials202010349610.3390/nano1003049632164194
    [Google Scholar]
  89. KumariL. ChoudhariY. PatelP. GuptaG.D. SinghD. RosenholmJ.M. BansalK.K. KurmiB.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs.Life2023135109910.3390/life1305109937240744
    [Google Scholar]
  90. SoutoE.B. SoutoS.B. CamposJ.R. SeverinoP. PashirovaT.N. ZakharovaL.Y. SilvaA.M. DurazzoA. LucariniM. IzzoA.A. SantiniA. Nanoparticle delivery systems in the treatment of diabetes complications.Molecules20192423420910.3390/molecules2423420931756981
    [Google Scholar]
  91. PulingamT. ForoozandehP. ChuahJ.A. SudeshK. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles.Nanomaterials202212357610.3390/nano1203057635159921
    [Google Scholar]
  92. SaitoY. HondaR. AkashiS. TakimotoH. NagaoM. MiuraY. HoshinoY. Polymer nanoparticles with uniform monomer sequences for sequence-specific peptide recognition.Angew. Chem. Int. Ed.20226130e20220645610.1002/anie.20220645635567515
    [Google Scholar]
  93. ReyesP.A.M. DelgadoH.M. ZaragozaZ.M.L. GómezL.G. MuñozM.N. GuerreroQ.D. Implementation of the emulsification-diffusion method by solvent displacement for polystyrene nanoparticles prepared from recycled material.RSC Advances20211142226223410.1039/D0RA07749F35424190
    [Google Scholar]
  94. MondalA. NayakA. ChakrabortyP. BanerjeeS. NandyB. Natural polymeric nanobiocomposites for anti- cancer drug delivery therapeutics: A recent update.Pharmaceutics2023158206410.3390/pharmaceutics1508206437631276
    [Google Scholar]
  95. SadhakathullahM.A.H.M. MirasolP.S. TorrasJ. ArmelinE. Advances in functionalization of bioresorbable nanomembranes and nanoparticles for their use in biomedicine.Int. J. Mol. Sci.202324121031210.3390/ijms24121031237373461
    [Google Scholar]
  96. YıldırımM. SessevmezM. PoyrazS. DüzgüneşN. Recent strategies for cancer therapy: Polymer nanoparticles carrying medicinally important phytochemicals and their cellular targets.Pharmaceutics20231511256610.3390/pharmaceutics1511256638004545
    [Google Scholar]
  97. ZhouJ. ZhangY. WangR. Controllable loading and release of nanodrugs in polymeric vesicles.Giant20221210012610.1016/j.giant.2022.100126
    [Google Scholar]
  98. Ho LeeK. IrelandM. MillerB.L. WyslouzilB.E. WinterJ.O. Synthesis of polymer nanoparticles via electrohydrodynamic emulsification-mediated self-assembly.J. Colloid Interface Sci.202158644545610.1016/j.jcis.2020.10.10833162039
    [Google Scholar]
  99. NiculescuA.G. GrumezescuA.M. Polymer-based nanosystems-A versatile delivery approach.Materials20211422681210.3390/ma1422681234832213
    [Google Scholar]
  100. DuanL. LiX. JiR. HaoZ. KongM. WenX. GuanF. MaS. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases.Polymers2023159219610.3390/polym1509219637177342
    [Google Scholar]
  101. ShakeriS. AshrafizadehM. ZarrabiA. RoghanianR. AfsharE.G. PardakhtyA. MohammadinejadR. KumarA. ThakurV.K. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics.Biomedicines2020811310.3390/biomedicines801001331941057
    [Google Scholar]
  102. JunyaprasertV.B. ThummaratiP. Innovative design of targeted nanoparticles: Polymer–drug conjugates for enhanced cancer therapy.Pharmaceutics2023159221610.3390/pharmaceutics1509221637765185
    [Google Scholar]
  103. Roig-SorianoX. SoutoE.B. ElmsmariF. GarciaM.L. EspinaM. SindreuD.F. LópezS.E. SánchezG.J.A. Nanoparticles in endodontics disinfection: State of the art.Pharmaceutics2022147151910.3390/pharmaceutics1407151935890414
    [Google Scholar]
  104. SuF. XuL. XueY. XuW. LiJ. YuB. YeS. YuanX. Immune enhancement of nanoparticle-encapsulated ginseng stem-leaf saponins on porcine epidemic diarrhea virus vaccine in mice.Vaccines20221011181010.3390/vaccines1011181036366319
    [Google Scholar]
  105. GalindoR. Sánchez-LópezE. GómaraM.J. EspinaM. EttchetoM. CanoA. HaroI. CaminsA. GarcíaM.L. Development of peptide targeted PLGA-PEGylated nanoparticles loading licochalcone-A for ocular inflammation.Pharmaceutics202214228510.3390/pharmaceutics1402028535214019
    [Google Scholar]
  106. PuricelliC. GigliottiC.L. StoppaI. SacchettiS. PanthamD. ScomparinA. RollaR. PizzimentiS. DianzaniU. BoggioE. SuttiS. Use of poly lactic-co-glycolic acid nano and micro particles in the delivery of drugs modulating different phases of inflammation.Pharmaceutics2023156177210.3390/pharmaceutics1506177237376219
    [Google Scholar]
  107. GovindarajanK. KarS. Detection of β-amyloid aggregates/plaques in 5xFAD mice by labelled native PLGA nanoparticles: Implication in the diagnosis of Alzheimer’s disease.J. Nanobiotechnology202321121610.1186/s12951‑023‑01957‑537424018
    [Google Scholar]
  108. SalatinS. BararJ. JalaliB.M. AdibkiaK. MilaniA.M. JelvehgariM. Formulation and evaluation of eudragit RL-100 nanoparticles loaded in situ forming gel for intranasal delivery of rivastigmine.Adv. Pharm. Bull.2019101202910.15171/apb.2020.00332002358
    [Google Scholar]
  109. MohantyD. GilaniS.J. ZafarA. ImamS.S. KumarL.A. AhmedM.M. JahangirM.A. BakshiV. AhmadW. EltayibE.M. Formulation and optimization of alogliptin-loaded polymeric nanoparticles: In vitro to in vivo assessment.Molecules20222714447010.3390/molecules2714447035889343
    [Google Scholar]
  110. CaggianoN.J. WilsonB.K. PriestleyR.D. Prud’hommeR.K. Development of an in vitro release assay for low-density cannabidiol nanoparticles prepared by flash nanoprecipitation.Mol. Pharm.20221951515152510.1021/acs.molpharmaceut.2c0004135412842
    [Google Scholar]
  111. SabzevarT.V. SharifiT. MoghaddamM.M. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents.Ther. Deliv.201910852755010.4155/tde‑2019‑004431496433
    [Google Scholar]
  112. PereiraE.D. da Silva DutraL. PaivaT.F. de CarvalhoA.L.L. RochaH.V.A. PintoJ.C. In vitro release and in vivo pharmacokinetics of praziquantel loaded in different polymer particles.Materials2023169338210.3390/ma1609338237176262
    [Google Scholar]
  113. KankalaR.K. ZhangY.S. WangS.B. LeeC.H. ChenA.Z. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications.Adv. Healthc. Mater.2017616170043310.1002/adhm.20170043328752598
    [Google Scholar]
  114. ReverchonE. AdamiR. CaputoG. De MarcoI. Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results.J. Supercrit. Fluids2008471708410.1016/j.supflu.2008.06.002
    [Google Scholar]
  115. LévaiG. MartínÁ. MoroA. MatiasA.A. GonçalvesV.S.S. BronzeM.R. DuarteC.M.M. Rodríguez-RojoS. CoceroM.J. Production of encapsulated quercetin particles using supercritical fluid technologies.Powder Technol.201731714215310.1016/j.powtec.2017.04.041
    [Google Scholar]
  116. FuC. WeiR. XuP. LuoS. ZhangC. KankalaR.K. WangS. JiangX. WeiX. ZhangL. ChenA. YangR. Supercritical fluid-assisted fabrication of diselenide-bridged polymeric composites for improved indocyanine green-guided photodynamic therapy.Chem. Eng. J.202140712710810.1016/j.cej.2020.127108
    [Google Scholar]
  117. TakahashiC. In-situ observation of preparation of PLGA polymeric nanoparticles using liquid cell transmission electron microscopy.Mater. Today Commun.20233510617610.1016/j.mtcomm.2023.106176
    [Google Scholar]
  118. SakhiM. KhanA. KhanI. Ahmad KhanS. Irum KhanS. Ali KhattakM. UddinM.N. KaziM. NasirF. Effect of polymeric stabilizers on the size and stability of PLGA paclitaxel nanoparticles.Saudi Pharm. J.202331910169710.1016/j.jsps.2023.10169737559864
    [Google Scholar]
  119. SharifyradM. GohariS. FathiM. DanafarH. HosseiniM-J. MostafaviH. ManjiliH.K. The efficacy and neuroprotective effects of edaravone-loaded mPEG-b-PLGA polymeric nanoparticles on human neuroblastoma SH-SY5Y cell line as in vitro model of ischemia.J. Drug Deliv. Sci. Technol.20227310337810.1016/j.jddst.2022.103378
    [Google Scholar]
  120. Yurtdaş-KırımlıoğluG. GörgülüŞ. GüleçK. KıyanH.T. Nanoarchitectonics of PLGA based polymeric nanoparticles with oseltamivir phosphate for lung cancer therapy: In vitro-in vivo evaluation.J. Drug Deliv. Sci. Technol.20226710299610.1016/j.jddst.2021.102996
    [Google Scholar]
  121. RafieiP. HaddadiA. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.Mater. Sci. Eng. C201910410995010.1016/j.msec.2019.10995031499976
    [Google Scholar]
  122. SanejaA. KumarR. MintooM.J. DubeyR.D. SangwanP.L. MondheD.M. PandaA.K. GuptaP.N. Gemcitabine and betulinic acid co-encapsulated PLGA−PEG polymer nanoparticles for improved efficacy of cancer chemotherapy.Mater. Sci. Eng. C20199876477110.1016/j.msec.2019.01.02630813082
    [Google Scholar]
  123. MalekpourM.R. HosseindoostS. MadaniF. KamaliM. khosravaniM. AdabiM. Combination nanochemotherapy of brain tumor using polymeric nanoparticles loaded with doxorubicin and paclitaxel: An in vitro and in vivo study.Eur. J. Pharm. Biopharm.202319317518610.1016/j.ejpb.2023.11.00237926270
    [Google Scholar]
  124. ÖzdalZ.D. GültekinY. Vuralİ. TakkaS. Development and characterization of polymeric nanoparticles containing ondansetron hydrochloride as a hydrophilic drug.J. Drug Deliv. Sci. Technol.20227410359910.1016/j.jddst.2022.103599
    [Google Scholar]
  125. DahiyaP. ZafarA. AhmadF.J. KhalidM. AliA. Development of Forskolin and rutin-loaded polymeric nanoparticles for enhancement of topical ocular delivery: Optimization, in vitro, ex vivo, and toxicity evaluation.J. Drug Deliv. Sci. Technol.20238210429210.1016/j.jddst.2023.104292
    [Google Scholar]
  126. FengC. YuanX. ChuK. ZhangH. JiW. RuiM. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy.Int. J. Biol. Macromol.201912570071010.1016/j.ijbiomac.2018.12.00330521927
    [Google Scholar]
  127. AntonioE. dos Reis Antunes JuniorO. MarcanoR.G.D.J.V. DiedrichC. da Silva SantosJ. MachadoC.S. KhalilN.M. MainardesR.M. Chitosan modified poly (lactic acid) nanoparticles increased the ursolic acid oral bioavailability.Int. J. Biol. Macromol.202117213314210.1016/j.ijbiomac.2021.01.04133450338
    [Google Scholar]
  128. TraegerA. VoelkerS. Shkodra-PulaB. KretzerC. SchubertS. GottschaldtM. SchubertU.S. WerzO. Improved bioactivity of the natural product 5-lipoxygenase inhibitor hyperforin by encapsulation into polymeric nanoparticles.Mol. Pharm.202017381081610.1021/acs.molpharmaceut.9b0105131967843
    [Google Scholar]
  129. ToledoC. GambaroR.C. PadulaG. VelaM.E. CastroG.R. ChainC.Y. IslanG.A. Binary medical nanofluids by combination of polymeric eudragit nanoparticles for vehiculization of tobramycin and resveratrol: Antimicrobial, hemotoxicity and protein corona studies.J. Pharm. Sci.202111041739174810.1016/j.xphs.2021.01.00533428918
    [Google Scholar]
  130. FernandesT. PatelV. AranhaC. VelhalS. MominM. MulkutkarM. SawarkarS. pH-triggered polymeric nanoparticles in gel for preventing vaginal transmission of HIV and unintended pregnancy.Eur. J. Pharm. Biopharm.202319121923410.1016/j.ejpb.2023.09.00137669727
    [Google Scholar]
  131. CastroB.F.M. FulgêncioG.O. DomingosL.C. CottaO.A.L. Silva-CunhaA. FialhoS.L. Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration.J. Drug Deliv. Sci. Technol.20206010191210.1016/j.jddst.2020.101912
    [Google Scholar]
  132. AbdellatifA.A.H. TolbaN.S. AlsharidahM. Al RugaieO. BouazzaouiA. SaleemI. MaswadehH. AliA.T. PEG-4000 formed polymeric nanoparticles loaded with cetuximab downregulate p21 & stathmin-1 gene expression in cancer cell lines.Life Sci.202229512040310.1016/j.lfs.2022.12040335176277
    [Google Scholar]
  133. TingC.W. ChouY.H. HuangS.Y. ChiangW.H. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy.Colloids Surf. B Biointerfaces202120811204810.1016/j.colsurfb.2021.11204834419806
    [Google Scholar]
  134. AkbariE. MousazadehH. SabetZ. FattahiT. DehnadA. AkbarzadehA. AlizadehE. Dual drug delivery of trapoxin A and methotrexate from biocompatible PLGA-PEG polymeric nanoparticles enhanced antitumor activity in breast cancer cell line.J. Drug Deliv. Sci. Technol.20216110229410.1016/j.jddst.2020.102294
    [Google Scholar]
  135. ZhangL. HeY. YuM. SongC. Paclitaxel-loaded polymeric nanoparticles based on PCL–PEG–PCL: Preparation, in vitro and in vivo evaluation.J. Control. Release2011152S1e114e11610.1016/j.jconrel.2011.08.16022195789
    [Google Scholar]
  136. OhH. JeongE. LeeJ.S. KimJ. LeeD. KimB.S. SungD. KooH. ChoiW.I. TaeG. ROS-responsive PEGylated ferrocene polymer nanoparticles with improved stability for tumor-selective chemotherapy and imaging.Mater. Today Bio.20232210077410.1016/j.mtbio.2023.10077437664795
    [Google Scholar]
  137. RaspantiniG.L. LuizM.T. AbriataJ.P. EloyJ.O. VaidergornM.M. EmeryF.S. MarchettiJ.M. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization.Colloids Surf. A Physicochem. Eng. Asp.202162712714410.1016/j.colsurfa.2021.127144
    [Google Scholar]
  138. WadhwaG. KrishnaK.V. DubeyS.K. TaliyanR. Development and validation of RP-HPLC method for quantification of repaglinide in mPEG-PCL polymeric nanoparticles: QbD-driven optimization, force degradation study, and assessment of in vitro release mathematic modeling.Microchem. J.202116810649110.1016/j.microc.2021.106491
    [Google Scholar]
  139. AbriataJ.P. TurattiR.C. LuizM.T. RaspantiniG.L. TofaniL.B. do AmaralR.L.F. SwiechK. MarcatoP.D. MarchettiJ.M. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles.Mater. Sci. Eng. C20199634735510.1016/j.msec.2018.11.03530606542
    [Google Scholar]
  140. PanL. JiangD. PanL. MengZ. ZhuangY. HuangY. YeF. ShiC. ChenJ. PanJ. ICAM-1-targeted and antibacterial peptide modified polymeric nanoparticles for specific combating sepsis.Mater. Des.202222211100710.1016/j.matdes.2022.111007
    [Google Scholar]
  141. BhattacharyaS. SinghD. AichJ. Ajazuddin SheteM.B. Development and characterization of hyaluronic acid surface scaffolds Encorafenib loaded polymeric nanoparticles for colorectal cancer targeting.Mater. Today Commun.20223110375710.1016/j.mtcomm.2022.103757
    [Google Scholar]
  142. LeH.V. DulongV. PictonL. Le CerfD. Lyophilization for formulation optimization of drug-loaded thermoresponsive polyelectrolyte complex nanogels from functionalized hyaluronic acid.Pharmaceutics202315392910.3390/pharmaceutics1503092936986789
    [Google Scholar]
  143. BerdiakiA. GiataganaE.M. TzanakakisG. NikitovicD. The landscape of small leucine-rich proteoglycan impact on cancer pathogenesis with a focus on biglycan and lumican.Cancers20231514354910.3390/cancers1514354937509212
    [Google Scholar]
  144. LiL. LeeJ. ChoY.D. KimS. SeolY.J. LeeY.M. KooK.T. The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects.J. Periodontal Implant Sci.202353425926810.5051/jpis.220300015036468487
    [Google Scholar]
  145. VisanA.I. CristescuR. Polysaccharide-based coatings as drug delivery systems.Pharmaceutics2023159222710.3390/pharmaceutics1509222737765196
    [Google Scholar]
  146. AhmadianE. DizajS.M. EftekhariA. DalirE. VahediP. HasanzadehA. SamieiM. The potential applications of hyaluronic acid hydrogels in biomedicine.Drug Res.202070161110.1055/a‑0991‑758531556074
    [Google Scholar]
  147. LiuZ. ChenX. JinQ. LiM. ZhuS. ZhangY. ZhiD. ZhaoY. LiL. ZhangS. Dual functionalized hyaluronic acid micelles loading paclitaxel for the therapy of breast cancer.Front. Bioeng. Biotechnol.202311123058510.3389/fbioe.2023.123058537600308
    [Google Scholar]
  148. RezaeiG. DaghighiS.M. RaoufiM. Esfandyari-ManeshM. RahimifardM. MobarakehV.I. KamalzareS. GhahremaniM.H. AtyabiF. AbdollahiM. RezaeeF. DinarvandR. Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: An immunological link.J. Colloid Interface Sci.201955647649110.1016/j.jcis.2019.08.06031473538
    [Google Scholar]
  149. WangY. CaiR. ChenC. The nano–bio interactions of nanomedicines: Understanding the biochemical driving forces and redox reactions.Acc. Chem. Res.20195261507151810.1021/acs.accounts.9b0012631149804
    [Google Scholar]
  150. ZahidM.M.H. ZulkifliS.N. AbdullahC.C.A. LimJ. FakuraziS. WongK.K. ZakariaA.D. IsmailN. UskokovićV. MohamudR. Z AI. Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting.RSC Advances20211126161311614110.1039/D1RA01093J35481195
    [Google Scholar]
  151. SadeghiA. PourEskandarS. AskariE. AkbariM. Polymeric nanoparticles and nanogels: How do they interact with proteins?Gels20239863210.3390/gels908063237623087
    [Google Scholar]
  152. CornwellS.E. OkochaS.O. FerrariE. Multivariate analysis of protein–nanoparticle binding data reveals a selective effect of nanoparticle material on the formation of soft corona.Nanomaterials20231321290110.3390/nano1321290137947745
    [Google Scholar]
  153. SongS. SunD. WangH. WangJ. YanH. ZhaoX. FawcettJ.P. XuX. CaiD. GuJ. Full-profile pharmacokinetics, anticancer activity and toxicity of an extended release trivalent PEGylated irinotecan prodrug.Acta Pharm. Sin. B20231383444345310.1016/j.apsb.2023.01.01137655324
    [Google Scholar]
  154. MoraruC. MinceaM. MenghiuG. OstafeV. Understanding the factors influencing chitosan-based nanoparticles-protein corona interaction and drug delivery applications.Molecules20202520475810.3390/molecules2520475833081296
    [Google Scholar]
  155. WolkA. HatipogluD. CutlerA. AliM. BellL. Hua QiJ. SinghR. BatokiJ. KarleL. BonilhaV.L. WesselyO. StoehrH. HascallV. ApteA.B. Role of FGF and hyaluronan in choroidal neovascularization in sorsby fundus dystrophy.Cells20209360810.3390/cells903060832143276
    [Google Scholar]
  156. LiuK. McCueW.M. YangC. FinzelB.C. HuangX. Combinatorial synthesis of a hyaluronan based polysaccharide library for enhanced CD44 binding.Carbohydr. Polym.202330012025510.1016/j.carbpol.2022.12025536372512
    [Google Scholar]
  157. ZhangZ. TianX. LuJ.Y. BoitK. AblaevaJ. ZakusiloF.T. EmmrichS. FirsanovD. RydkinaE. BiashadS.A. LuQ. TyshkovskiyA. GladyshevV.N. HorvathS. SeluanovA. GorbunovaV. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice.Nature2023621797719620510.1038/s41586‑023‑06463‑037612507
    [Google Scholar]
  158. MichalczykM. HumeniukE. AdamczukG. PlewkoK.A. Hyaluronic acid as a modern approach in anticancer therapy-review.Int. J. Mol. Sci.202224110310.3390/ijms2401010336613567
    [Google Scholar]
  159. GoncalvesJ.P. GhebosuR.E. TanX.N.S. IannottaD. KoifmanN. WolframJ. Hyaluronic acid: An overlooked extracellular vesicle contaminant.J. Extracell. Vesicles20231291236210.1002/jev2.1236237712345
    [Google Scholar]
  160. SahaS. FanF. AlderferL. GrahamF. HallE. Hanjaya-PutraD. Synthetic hyaluronic acid coating preserves the phenotypes of lymphatic endothelial cells.Biomater. Sci.202311227346735710.1039/D3BM00873H37789798
    [Google Scholar]
  161. CirilloN. The Hyaluronan/CD44 axis: A double-edged sword in cancer.Int. J. Mol. Sci.202324211581210.3390/ijms24211581237958796
    [Google Scholar]
  162. LengY. AbdullahA. WendtM.K. CalveS. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis.Matrix Biol.201978-7923625410.1016/j.matbio.2018.08.00830130585
    [Google Scholar]
  163. BerdiakiA. NeaguM. SpyridakiI. KuskovA. PerezS. NikitovicD. Hyaluronan and reactive oxygen species signaling-novel cues from the matrix?Antioxidants202312482410.3390/antiox1204082437107200
    [Google Scholar]
  164. QadriM.M. Targeting CD44 Receptor Pathways in Degenerative Joint Diseases: Involvement of Proteoglycan-4 (PRG4).Pharmaceuticals (Basel)20231610142510.3390/ph1610142537895896
    [Google Scholar]
  165. LiaoC. WangQ. AnJ. ChenJ. LiX. LongQ. XiaoL. GuanX. LiuJ. CD44 glycosylation as a therapeutic target in oncology.Front. Oncol.20221288383110.3389/fonc.2022.88383135936713
    [Google Scholar]
  166. XieC. SchaeferL. IozzoR.V. Global impact of proteoglycan science on human diseases.iScience2023261110809510.1016/j.isci.2023.10809537867945
    [Google Scholar]
  167. MaxwellC.A. RasmussenE. ZhanF. KeatsJ.J. AdamiaS. StrachanE. CrainieM. WalkerR. BelchA.R. PilarskiL.M. BarlogieB. ShaughnessyJ.Jr ReimanT. RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma.Blood200410441151115810.1182/blood‑2003‑11‑407915105292
    [Google Scholar]
  168. TongeJ.J. NotleyS.V. DunningM.J. López-GuajardoA. MedcalfJ.D. HeldinP. PanoutsosG. GadA.K.B. Hyaluronan nanoscale clustering and Hyaluronan synthase 2 expression are linked to the invasion of child fibroblasts and infantile fibrosarcoma in vitro and in vivo.Sci. Rep.20221211983510.1038/s41598‑022‑21952‑436400790
    [Google Scholar]
  169. LazrakA. SongW. YuZ. ZhangS. NelloreA. HoopesC.W. WoodworthB.A. MatalonS. Low molecular weight hyaluronan inhibits lung epithelial ion channels by activating the calcium-sensing receptor.Matrix Biol.2023116678410.1016/j.matbio.2023.02.00236758905
    [Google Scholar]
  170. TarulloS.E. HeY. DaughtersC. KnutsonT.P. HenzlerC.M. PriceM.A. ShanleyR. WitschenP. TolgC. KasparR.E. HallstromC. GittsovichL. SulcinerM.L. ZhangX. ForsterC.L. LangeC.A. ShatsO. DeslerM. CowanK.H. YeeD. SchwertfegerK.L. TurleyE.A. McCarthyJ.B. NelsonA.C. Receptor for hyaluronan-mediated motility ( RHAMM ) defines an invasive niche associated with tumor progression and predicts poor outcomes in breast cancer patients.J. Pathol.2023260328930310.1002/path.608237186300
    [Google Scholar]
  171. GolzA.C. BergemannC. HildebrandtF. EmmertS. NebeB. ReblH. Selective adhesion inhibition and hyaluronan envelope reduction of dermal tumor cells by cold plasma-activated medium.Cell Adhes. Migr.202317111910.1080/19336918.2023.226064237743639
    [Google Scholar]
  172. Gerardo-RamírezM. GiamV. BeckerD. GrothM. HartmannN. MorrisonH. May-SimeraH.L. RadsakM.P. MarquardtJ.U. GalleP.R. HerrlichP. StraubB.K. HartmannM. Deletion of Cd44 inhibits metastasis formation of liver cancer in Nf2-mutant mice.Cells2023129125710.3390/cells1209125737174657
    [Google Scholar]
  173. IvanovaE.L. CostaB. EisemannT. LohrS. BoskovicP. EichwaldV. MecklerJ. JugoldM. RousseauO.V. PeterzielH. AngelP. CD44 expressed by myeloid cells promotes glioma invasion.Front. Oncol.20221296978710.3389/fonc.2022.96978735992852
    [Google Scholar]
  174. JohnsonL.A. JacksonD.G. Hyaluronan and its receptors: Key mediators of immune cell entry and trafficking in the lymphatic system.Cells2021108206110.3390/cells1008206134440831
    [Google Scholar]
  175. StanlyT.A. FritzscheM. BanerjiS. ShresthaD. SchneiderF. EggelingC. JacksonD.G. The cortical actin network regulates avidity-dependent binding of hyaluronan by the lymphatic vessel endothelial receptor LYVE-1.J. Biol. Chem.2020295155036505010.1074/jbc.RA119.01199232034091
    [Google Scholar]
  176. ColemanK. ChiaramontiM. HaddadB. RanzenbergerR. HenningH. Al KhashaliH. RayR. DarweeshB. GuthrieJ. HeylD. EvansH.G. Phosphorylation of IGFBP-3 by casein kinase 2 blocks its interaction with hyaluronan, enabling HA-CD44 signaling leading to increased NSCLC cell survival and cisplatin resistance.Cells202312340510.3390/cells1203040536766747
    [Google Scholar]
  177. SuzukiH. GotoN. TanakaT. OuchidaT. KanekoM.K. KatoY. Development of a novel anti-CD44 variant 8 monoclonal antibody c44Mab-94 against gastric carcinomas.Antibodies20231234510.3390/antib1203004537489367
    [Google Scholar]
  178. ZhangR. QiF. ShaoS. LiG. FengY. Human colorectal cancer-derived carcinoma associated fibroblasts promote CD44-mediated adhesion of colorectal cancer cells to endothelial cells by secretion of HGF.Cancer Cell Int.201919119210.1186/s12935‑019‑0914‑y31367190
    [Google Scholar]
  179. Poothakulath KrishnanR. PandiarD. RamaniP. RamalingamK. JayaramanS. Utility of CD44/CD24 in the outcome and prognosis of oral squamous cell carcinoma: A systematic review.Cureus2023158e4289910.7759/cureus.4289937664387
    [Google Scholar]
  180. Khalili NajafabadB. AttaranN. BaratiM. MohammadiZ. MahmoudiM. SazgarniaA. Cobalt ferrite nanoparticle for the elimination of CD133+CD44+ and CD44+CD24−, in breast and skin cancer stem cells, using non-ionizing treatments.Heliyon2023910e1989310.1016/j.heliyon.2023.e1989337810832
    [Google Scholar]
  181. XuX.H. LiuY. LiD.J. HuJ. SuJ. HuangQ. LuM.Q. YiF. BaoD. FuY.Z. Effect of shRNA-mediated gene silencing of Bmi-1 expression on chemosensitivity of CD44 + nasopharyngeal carcinoma cancer stem-like cells.Technol. Cancer Res. Treat.2016155NP27NP3910.1177/153303461559946126294655
    [Google Scholar]
  182. MadsenK.L. GerkeO. CarlsenH.P.F. OlsenB.B. Cisplatin-resistant CD44+ lung cancer cells are sensitive to auger electrons.Int. J. Mol. Sci.20222313713110.3390/ijms2313713135806135
    [Google Scholar]
  183. HarrisE.N. BakerE. Role of the hyaluronan receptor, stabilin-2/HARE, in health and disease.Int. J. Mol. Sci.20202110350410.3390/ijms2110350432429122
    [Google Scholar]
  184. SiddiquiL. HasanN. MishraP.K. GuptaN. SinghA.T. MadaanA. JaggiM. SaadS. EkielskiA. IqbalZ. KesharwaniP. TalegaonkarS. CD44 mediated colon cancer targeting mutlifaceted lignin nanoparticles: Synthesis, in vitro characterization and in vivo efficacy studies.Int. J. Pharm.202364312327010.1016/j.ijpharm.2023.12327037499773
    [Google Scholar]
  185. JungH. MokH. Mixed micelles for targeted and efficient doxorubicin delivery to multidrug-resistant breast cancer cells.Macromol. Biosci.201616574875810.1002/mabi.20150038126806493
    [Google Scholar]
  186. MoX. WuF. LiY. CaiX. Hyaluronic acid-functionalized halloysite nanotubes for targeted drug delivery to CD44-overexpressing cancer cells.Mater. Today Commun.20212810268210.1016/j.mtcomm.2021.102682
    [Google Scholar]
  187. WangX.Y. LinC. ChangW.J. HuangY.H. MiF.L. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells.Int. J. Biol. Macromol.202222112113410.1016/j.ijbiomac.2022.08.16436049568
    [Google Scholar]
  188. ChenQ. LiX. XieY. HuW. ChengZ. ZhongH. ZhuH. Azo modified hyaluronic acid based nanocapsules: CD44 targeted, UV-responsive decomposition and drug release in liver cancer cells.Carbohydr. Polym.202126711815210.1016/j.carbpol.2021.11815234119127
    [Google Scholar]
  189. SoleymaniM. VelashjerdiM. ShaterabadiZ. BaratiA. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.Carbohydr. Polym.202023711613010.1016/j.carbpol.2020.11613032241421
    [Google Scholar]
  190. SoleymaniM. VelashjerdiM. AsgariM. Preparation of hyaluronic acid-decorated mixed nanomicelles for targeted delivery of hydrophobic drugs to CD44-overexpressing cancer cells.Int. J. Pharm.202159212005210.1016/j.ijpharm.2020.12005233159986
    [Google Scholar]
  191. Uma MaheswariR.T. AjithkumarV. VaralakshmiP. RajanM. CD44 tagged hyaluronic acid - chitosan liposome carrier for the delivery of berberine and doxorubicin into lung cancer cells.Int. J. Biol. Macromol.2023253Pt 212659910.1016/j.ijbiomac.2023.12659937652327
    [Google Scholar]
  192. YangH.Y. JangM.S. SunX.S. LiuC.L. LeeJ.H. LiY. FuY. CD44-mediated tumor homing of hyaluronic acid nanogels for hypoxia-activated photodynamic therapy against tumor.Colloids Surf. B Biointerfaces202322811339510.1016/j.colsurfb.2023.11339537327654
    [Google Scholar]
  193. MesratiM.H. TajudinA.A. MasarudinM.J. AlamassiM.N. AbuhamadA.Y. SyahirA. Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells.OpenNano20231210016610.1016/j.onano.2023.100166
    [Google Scholar]
  194. NishaR. KumarP. KumarU. MishraN. MauryaP. SinghP. TabassumH. Alka SinghS. GuleriaA. SarafS.A. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma.Int. J. Pharm.202262212184810.1016/j.ijpharm.2022.12184835613653
    [Google Scholar]
  195. ThummaratiP. SuksiriworapongJ. SakchaisriK. NawrothT. LangguthP. RoongsawangB. JunyaprasertV.B. Comparative study of dual delivery of gemcitabine and curcumin using CD44 targeting hyaluronic acid nanoparticles for cancer therapy.J. Drug Deliv. Sci. Technol.20227710388310.1016/j.jddst.2022.103883
    [Google Scholar]
  196. LiangY. WangY. WangL. LiangZ. LiD. XuX. ChenY. YangX. ZhangH. NiuH. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer.Bioact. Mater.20216243344610.1016/j.bioactmat.2020.08.01932995671
    [Google Scholar]
  197. JingP. LuoY. WangL. TanJ. ChenY. ChenY. ZhangS. An oligomeric hyaluronic acid-GX1 molecular target drug with polyvalent targeting to CD44 and VEGF receptors.Biomater. Adv.202314421321710.1016/j.bioadv.2022.21321736502748
    [Google Scholar]
  198. WangT. YuY. WangB. JiangT. MengX. ZhaoX. Photothermal hyaluronic acid composite hydrogel targeting cancer stem cells for inhibiting recurrence and metastasis of breast cancer.Int. J. Biol. Macromol.202325212635810.1016/j.ijbiomac.2023.12635837598824
    [Google Scholar]
  199. WangY. MaS. LiuX. WeiY. XuH. LiangZ. HuY. LianX. HuangD. Hyaluronic acid mediated Fe3O4 nanocubes reversing the EMT through targeted cancer stem cell.Colloids Surf. B Biointerfaces202322211307110.1016/j.colsurfb.2022.11307136473370
    [Google Scholar]
  200. CanoE.E. MadroñalH.M. SánchezC.P. FranzosoS.J. SchwartzS.Jr AbasoloI. RománS.J. AguilarM.R. Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways.Mater. Sci. Eng. C202112411202410.1016/j.msec.2021.11202433947532
    [Google Scholar]
  201. TanS. YamashitaA. GaoS.J. KurisawaM. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells.Acta Biomater.20199432032910.1016/j.actbio.2019.05.04031125725
    [Google Scholar]
  202. ChengX. HuT. LiC. ShiS. XuY. JiaC. TangR. Acid-sensitive and L61-crosslinked hyaluronic acid nanogels for overcoming tumor drug-resistance.Int. J. Biol. Macromol.2021188112310.1016/j.ijbiomac.2021.08.00434364934
    [Google Scholar]
  203. HouL. TianC. ChenD. YuanY. YanY. HuangQ. ZhangH. ZhangZ. Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy.Eur. J. Pharm. Sci.201914010507110.1016/j.ejps.2019.10507131525433
    [Google Scholar]
  204. QiuL. XuJ. AhmedK.S. ZhuM. ZhangY. LongM. ChenW. FangW. ZhangH. ChenJ. Stimuli-responsive, dual-function prodrug encapsulated in hyaluronic acid micelles to overcome doxorubicin resistance.Acta Biomater.202214068669910.1016/j.actbio.2021.11.05034875359
    [Google Scholar]
  205. ChenH.H. LuI.L. LiuT.I. TsaiY.C. ChiangW.H. LinS.C. ChiuH.C. Indocyanine green/doxorubicin-encapsulated functionalized nanoparticles for effective combination therapy against human MDR breast cancer.Colloids Surf. B Biointerfaces201917729430510.1016/j.colsurfb.2019.02.00130771581
    [Google Scholar]
  206. RangasamiV.K. SamantaS. PariharV.S. AsawaK. ZhuK. VargheseO.P. TeramuraY. NilssonB. HilbornJ. HarrisR.A. OommenO.P. Harnessing hyaluronic acid-based nanoparticles for combination therapy: A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization.Carbohydr. Polym.202125411729110.1016/j.carbpol.2020.11729133357860
    [Google Scholar]
  207. ParnigoniA. MorettoP. ViolaM. KarousouE. PassiA. VigettiD. Effects of hyaluronan on breast cancer aggressiveness.Cancers20231515381310.3390/cancers1515381337568628
    [Google Scholar]
  208. KimY.H. LeeS.B. ShimS. KimA. ParkJ.H. JangW.S. LeeS.J. MyungJ.K. ParkS. LeeS.J. KimM.J. Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling.Cancer Sci.201911072226223610.1111/cas.1407031102316
    [Google Scholar]
  209. LiuZ. HouP. FangJ. ZhuJ. ZhaJ. LiuR. DingY. ZuoM. LiP. CaoL. FengC. MelinoG. ShaoC. ShiY. Mesenchymal stromal cells confer breast cancer doxorubicin resistance by producing hyaluronan.Oncogene202342443221323510.1038/s41388‑023‑02837‑w37704784
    [Google Scholar]
  210. KasperM.M. EllenbogenB. LiY. SchmidtC.E. Temporal characterization of hyaluronidases after peripheral nerve injury.PLoS One2023188e028995610.1371/journal.pone.028995637616240
    [Google Scholar]
  211. KumarK. KanojiaD. BentremD.J. HwangR.F. ButcharJ.P. TridandapaniS. MunshiH.G. Targeting BET proteins decreases hyaluronidase-1 in pancreatic cancer.Cells20231211149010.3390/cells1211149037296612
    [Google Scholar]
  212. Dominguez-GutierrezP.R. KwendaE.P. DonelanW. O’MalleyP. CrispenP.L. KusmartsevS. Hyal2 expression in tumor-associated myeloid cells mediates cancer-related inflammation in bladder cancer.Cancer Res.202181364865710.1158/0008‑5472.CAN‑20‑114433239427
    [Google Scholar]
  213. SrivastavaT. ShermanL.S. BackS.A. Dysregulation of hyaluronan homeostasis during white matter injury.Neurochem. Res.202045367268310.1007/s11064‑019‑02879‑131542857
    [Google Scholar]
  214. TakasugiM. FirsanovD. TomblineG. NingH. AblaevaJ. SeluanovA. GorbunovaV. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties.Nat. Commun.2020111237610.1038/s41467‑020‑16050‑w32398747
    [Google Scholar]
  215. PalomäkiJ. KalkeK. OrpanaJ. LundL. FrejborgF. PaavilainenH. JärveläinenH. HukkanenV. Attenuated replication-competent herpes simplex virus expressing an ECM-modifying transgene hyaluronan synthase 2 of naked mole rat in oncolytic gene therapy.Microorganisms20231111265710.3390/microorganisms1111265738004669
    [Google Scholar]
  216. PriceZ.K. LokmanN.A. SugiyamaM. KoyaY. YoshiharaM. OehlerM.K. KajiyamaH. RicciardelliC. Disabled-2: A protein up-regulated by high molecular weight hyaluronan has both tumor promoting and tumor suppressor roles in ovarian cancer.Cell. Mol. Life Sci.2023801132010.1007/s00018‑023‑04972‑937815603
    [Google Scholar]
  217. BanellaS. SaraswatA. PatelA. SerajuddinA.T.M. ColomboP. PatelK. ColomboG. In vitro assessment of cisplatin/hyaluronan complex for loco-regional chemotherapy.Int. J. Mol. Sci.202324211572510.3390/ijms24211572537958708
    [Google Scholar]
  218. JinC. ZongY. The role of hyaluronan in renal cell carcinoma.Front. Immunol.202314112782810.3389/fimmu.2023.112782836936902
    [Google Scholar]
  219. SpinelliFM VitaleDL SevicI AlanizL Hyaluronan in the tumor microenvironment.Tumor MicroenvironmentSpringer20206783
    [Google Scholar]
  220. GutierrezD.P.R. KwendaE.P. DonelanW. MirandaM. DotyA. O’MalleyP. CrispenP.L. KusmartsevS. Detection of PD-L1–expressing myeloid cell clusters in the hyaluronan-enriched stroma in tumor tissue and tumor-draining lymph nodes.J. Immunol.2022208122829283610.4049/jimmunol.210002635589125
    [Google Scholar]
  221. WuJ. ShenY. ZengG. LiangY. LiaoG. SPP1+ TAM subpopulations in tumor microenvironment promote intravasation and metastasis of head and neck squamous cell carcinoma.Cancer Gene Ther.202431231132138052857
    [Google Scholar]
  222. SalmaninejadA. ValilouS.F. SoltaniA. AhmadiS. AbarghanY.J. RosengrenR.J. SahebkarA. Tumor-associated macrophages: Role in cancer development and therapeutic implications.Cell Oncol.201942559160810.1007/s13402‑019‑00453‑z31144271
    [Google Scholar]
  223. KafiliG. KabirH. KandeloosJ.A. GolafshanE. GhasemiS. MashayekhanS. TaebniaN. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling.J. Biomater. Appl.202338557760410.1177/0885328223120721638006224
    [Google Scholar]
  224. YanT. ChenX. ZhanH. YaoP. WangN. YangH. ZhangC. WangK. HuH. LiJ. SunJ. DongY. LuE. ZhengZ. ZhangR. WangX. MaJ. GaoM. YeJ. WangX. TengL. LiuH. ZhaoS. Interfering with hyaluronic acid metabolism suppresses glioma cell proliferation by regulating autophagy.Cell Death Dis.202112548610.1038/s41419‑021‑03747‑z33986244
    [Google Scholar]
  225. HeM. ZhangD. CaoY. ChiC. ZengZ. YangX. YangG. SharmaK. HuK. EnikeevM. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects.Heliyon202398e1914710.1016/j.heliyon.2023.e1914737664750
    [Google Scholar]
  226. XuW. ZhangW. ZhaoD. WangQ. ZhangM. LiQ. ZhuW. XuC. Unveiling the role of regulatory T cells in the tumor microenvironment of pancreatic cancer through single-cell transcriptomics and in vitro experiments.Front. Immunol.202314124290910.3389/fimmu.2023.124290937753069
    [Google Scholar]
  227. PiroozkhahM. GholinezhadY. PiroozkhahM. ShamsE. MojaradN.E. The molecular mechanism of actions and clinical utilities of tumor infiltrating lymphocytes in gastrointestinal cancers: A comprehensive review and future prospects toward personalized medicine.Front. Immunol.202314129889110.3389/fimmu.2023.129889138077386
    [Google Scholar]
  228. AguadoM.J. MartínC.A.F. MuñozA.A. ZarcoR.E. VelascoP.A. RamosR.A. GarcíaR.R. MartinR.J.J. IdoateM.A. Machine learning quantification of intraepithelial tumor-infiltrating lymphocytes as a significant prognostic factor in high-grade serous ovarian carcinomas.Int. J. Mol. Sci.202324221606010.3390/ijms24221606038003250
    [Google Scholar]
  229. KhanM.A. LauC.L. KrupnickA.S. Monitoring regulatory T cells as a prognostic marker in lung transplantation.Front. Immunol.202314123588910.3389/fimmu.2023.123588937818354
    [Google Scholar]
  230. GorenšekR. KresnikM. TakačI. RojkoT. SobočanM. Advances in tumour-infiltrating lymphocytes for triple-negative breast cancer management.Breast Cancer20231577378310.2147/BCTT.S39915737936879
    [Google Scholar]
  231. XiongJ. FuY. HuangJ. WangY. JinX. WanX. HuangL. HuangZ. Metabolic and senescence characteristics associated with the immune microenvironment in ovarian cancer.Front. Endocrinol.202314126552510.3389/fendo.2023.126552538075052
    [Google Scholar]
  232. YanT. YangH. XuC. LiuJ. MengY. JiangQ. LiJ. KangG. ZhouL. XiaoS. XueY. XuJ. ChenX. CheF. Inhibition of hyaluronic acid degradation pathway suppresses glioma progression by inducing apoptosis and cell cycle arrest.Cancer Cell Int.202323116310.1186/s12935‑023‑02998‑437568202
    [Google Scholar]
  233. DuT. WuZ. WuY. LiuY. SongY. MaL. CD44 is associated with poor prognosis of ccRCC and facilitates ccRCC cell migration and invasion through HAS1/MMP9.Biomedicines2023117207710.3390/biomedicines1107207737509716
    [Google Scholar]
  234. WangJ. JordanA.R. ZhuH. HasanaliS.L. ThomasE. LokeshwarS.D. MoreraD.S. AlexanderS. McDanielsJ. SharmaA. AguilarK. SarcanS. ZhuT. SolowayM.S. TerrisM.K. ThangarajuM. LopezL.E. LokeshwarV.B. Targeting hyaluronic acid synthase-3 (HAS3) for the treatment of advanced renal cell carcinoma.Cancer Cell Int.202222142110.1186/s12935‑022‑02818‑136581895
    [Google Scholar]
  235. LiN. ZhuZ. DengY. KIAA1429/VIRMA promotes breast cancer progression by m6 A-dependent cytosolic HAS2 stabilization.EMBO Rep.20232410e5550610.15252/embr.20225550637705505
    [Google Scholar]
  236. WangJ. TengF. ChaiH. ZhangC. LiangX. YangY. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2.BMC Cancer202121145610.1186/s12885‑021‑08202‑y33892667
    [Google Scholar]
  237. LuQ. GongX. JiaG. WuJ. LiuS. SongK. TianG. A pH-responsive hyaluronic acid nano-vehicle co-encapsulating doxorubicin and all-trans retinoic acid for the inhibition of hepatic stellate cell-induced tumor growth and metastasis.Mol. Med. Rep.202328214210.3892/mmr.2023.1302937326031
    [Google Scholar]
  238. SafariansG. SohrabiA. SolomonI. XiaoW. BastolaS. RajputB.W. EppersonM. RosenzweigI. TamuraK. SingerB. HuangJ. HarrisonM.J. SanazzaroT. CondroM.C. KornblumH.I. SeidlitsS.K. Glioblastoma spheroid invasion through soft, brain-like matrices depends on hyaluronic acid–CD44 interactions.Adv. Healthc. Mater.20231214220314310.1002/adhm.20220314336694362
    [Google Scholar]
  239. RiecksJ. ParnigoniA. GyőrffyB. KieselL. PassiA. VigettiD. GötteM. The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer.J. Cancer Res. Clin. Oncol.2022148123399341910.1007/s00432‑022‑04127‑635767191
    [Google Scholar]
  240. HasegawaK. SagaR. OhuchiK. KuwaharaY. TomitaK. OkumuraK. SatoT. FukumotoM. TsurugaE. HosokawaY. 4-Methylumebelliferone enhances radiosensitizing effects of radioresistant oral squamous cell carcinoma cells via hyaluronan synthase 3 suppression.Cells20221123378010.3390/cells1123378036497040
    [Google Scholar]
  241. MohammedA.I. CelentanoA. PaoliniR. LowJ.T. SilkeJ. O’ ReillyL.A. McCulloughM. CirilloN. High molecular weight hyaluronic acid drastically reduces chemotherapy-induced mucositis and apoptotic cell death.Cell Death Dis.202314745310.1038/s41419‑023‑05934‑637479691
    [Google Scholar]
  242. TsitrinaA.A. HalimaniN. AndreichenkoI.N. SabirovM. NesterchukM. DashenkovaN.O. RomanovR. BulgakovaE.V. MikaelyanA. KotelevtsevY. 4-Methylumbelliferone targets revealed by public data analysis and liver transcriptome sequencing.Int. J. Mol. Sci.2023243212910.3390/ijms2403212936768453
    [Google Scholar]
  243. DoshiM.B. LeeN. TseyangT. PonomarovaO. GoelH.L. SpearsM. LiR. ZhuL.J. AshwoodC. SiminK. JangC. MercurioA.M. WalhoutA.J.M. SpinelliJ.B. KimD. Disruption of sugar nucleotide clearance is a therapeutic vulnerability of cancer cells.Nature2023623798762563210.1038/s41586‑023‑06676‑337880368
    [Google Scholar]
  244. NiemietzI. BrownK.L. Hyaluronan promotes intracellular ROS production and apoptosis in TNFα-stimulated neutrophils.Front. Immunol.202314103246910.3389/fimmu.2023.103246936814915
    [Google Scholar]
  245. GongJ. GuanM. KimH. MoshayediN. MehtaS. Cook-WiensG. LarsonB.K. ZhouJ. PatelR. LapiteI. HickokP.V.R. TuliR. NataleR.B. HendifarA.E. Tumor hyaluronan as a novel biomarker in non-small cell lung cancer: A retrospective study.Oncotarget20221311202121410.18632/oncotarget.2830436342462
    [Google Scholar]
  246. HinnehJ.A. GillisJ.L. MahC.Y. IraniS. ShresthaR.K. RyanN.K. AtsushiE. NassarZ.D. LynnD.J. SelthL.A. KatoM. CenteneraM.M. ButlerL.M. Targeting hyaluronan-mediated motility receptor (HMMR) enhances response to androgen receptor signalling inhibitors in prostate cancer.Br. J. Cancer202312981350136110.1038/s41416‑023‑02406‑837673961
    [Google Scholar]
  247. HuaS.H. VieraM. YipG.W. BayB.H. Theranostic applications of glycosaminoglycans in metastatic renal cell carcinoma.Cancers202215126610.3390/cancers1501026636612261
    [Google Scholar]
  248. ZamlootV. EbeltN.D. SooC. JinkaS. ManuelE.R. Targeted depletion of hyaluronic acid mitigates murine breast cancer growth.Cancers20221419461410.3390/cancers1419461436230537
    [Google Scholar]
  249. InfanteJ.R. KornR.L. RosenL.S. LoRussoP. DychterS.S. ZhuJ. ManevalD.C. JiangP. ShepardH.M. FrostG. Von HoffD.D. BoradM.J. RamanathanR.K. Phase 1 trials of PEGylated recombinant human hyaluronidase PH20 in patients with advanced solid tumours.Br. J. Cancer2018118215316110.1038/bjc.2017.32728949957
    [Google Scholar]
  250. ChenJ.W.E. PedronS. ShyuP. HuY. SarkariaJ.N. HarleyB.A.C. Influence of hyaluronic acid transitions in tumor microenvironment on glioblastoma malignancy and invasive behavior.Front. Mater.201853910.3389/fmats.2018.0003930581816
    [Google Scholar]
  251. PibuelM.A. PoodtsD. DíazM. HajosS.E. LompardíaS.L. The scrambled story between hyaluronan and glioblastoma.J. Biol. Chem.202129610054910.1016/j.jbc.2021.10054933744285
    [Google Scholar]
  252. ShiJ. KanoyaR. TaniY. IshikawaS. MaedaR. SuzukiS. KawanamiF. MiyagawaN. TakahashiK. OkuT. YamamotoA. FukuzawaK. NakajimaM. IrimuraT. HigashiN. Sulfated hyaluronan binds to heparanase and blocks its enzymatic and cellular actions in carcinoma cells.Int. J. Mol. Sci.2022239505510.3390/ijms2309505535563446
    [Google Scholar]
  253. TsengV. NiK. AllawziA. ProhaskaC. Hernandez-LagunasL. ElajailiH. CaliV. MiduraR. HascallV. RaineT.B. PetracheI. HartC.M. GrayckN.E. Extracellular superoxide dismutase regulates early vascular hyaluronan remodeling in hypoxic pulmonary hypertension.Sci. Rep.202010128010.1038/s41598‑019‑57147‑731937874
    [Google Scholar]
  254. HuangG. HuangH. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system.J. Control. Release201827812212610.1016/j.jconrel.2018.04.01529649528
    [Google Scholar]
  255. KoutsakisC. TavianatouA.G. KokoretsisD. BaroutasG. KaramanosN.K. Sulfated hyaluronan modulates the functional properties and matrix effectors expression of breast cancer cells with different estrogen receptor status.Biomolecules20211112191610.3390/biom1112191634944559
    [Google Scholar]
  256. KimS. Biomedical applications of hyaluronic acid-based nanomaterials in hyperthermic cancer therapy.Pharmaceutics201911730610.3390/pharmaceutics1107030631266194
    [Google Scholar]
  257. ZhongW. PangL. FengH. DongH. WangS. CongH. ShenY. BingY. Recent advantage of hyaluronic acid for anti-cancer application: A review of “3S” transition approach.Carbohydr. Polym.202023811620410.1016/j.carbpol.2020.11620432299556
    [Google Scholar]
  258. AhmedM. Colon cancer: A clinician’s perspective in 2019.Gastroenterol. Res.202013111010.14740/gr123932095167
    [Google Scholar]
  259. SharifiF. JahangiriM. EbrahimnejadP. Synthesis of novel polymeric nanoparticles (methoxy-polyethylene glycol-chitosan/hyaluronic acid) containing 7-ethyl-10-hydroxycamptothecin for colon cancer therapy: In vitro, ex vivo and in vivo investigation.Artif. Cells Nanomed. Biotechnol.202149136738010.1080/21691401.2021.190739333851564
    [Google Scholar]
  260. kapoorD.U. GargR. GaurM. Polymeric nanoparticles approach and identification and characterization of novel biomarkers for colon cancer.Results Chem20236101167
    [Google Scholar]
  261. Gonzalez-ValdiviesoJ. VallejoR. Rodriguez-RojoS. SantosM. SchneiderJ. AriasF.J. GirottiA. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer.Biomater. Adv.202315421359510.1016/j.bioadv.2023.21359537639856
    [Google Scholar]
  262. PhatakN. BhattacharyaS. ShahD. ManthalkarL. SreelayaP. JainA. CD44 targeted delivery of hyaluronic-acid-coated polymeric nanoparticles against colorectal cancer.Nanomedicine20231823nnm-2023-014510.2217/nnm‑2023‑014537830460
    [Google Scholar]
  263. PanC. ZhangT. LiS. XuZ. PanB. XuS. JinS. LuG. YangS. XueZ. ChenP. ShenX. WangF. XuC. Hybrid nanoparticles modified by hyaluronic acid loading an HSP90 inhibitor as a novel delivery system for subcutaneous and orthotopic colon cancer therapy.Int. J. Nanomedicine2021161743175510.2147/IJN.S27580533688189
    [Google Scholar]
  264. LaiH. DingX. YeJ. DengJ. CuiS. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy.Colloids Surf. B Biointerfaces202119811145510.1016/j.colsurfb.2020.11145533243547
    [Google Scholar]
  265. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. KalbolandiM.S. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  266. FarzanM. VarshosazJ. MirianM. MinaiyanM. PezeshkiA. Hyaluronic acid-conjugated gliadin nanoparticles for targeted delivery of usnic acid in breast cancer: An in vitro / in vivo translational study.J. Drug Deliv. Sci. Technol.20238410445910.1016/j.jddst.2023.104459
    [Google Scholar]
  267. ShahriariM. TaghdisiS.M. AbnousK. RamezaniM. AlibolandiM. Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer.Int. J. Pharm.201957211883510.1016/j.ijpharm.2019.11883531726198
    [Google Scholar]
  268. XuY. LiuD. HuJ. DingP. ChenM. Hyaluronic acid-coated pH sensitive poly (β-amino ester) nanoparticles for co-delivery of embelin and TRAIL plasmid for triple negative breast cancer treatment.Int. J. Pharm.202057311863710.1016/j.ijpharm.2019.11863731550511
    [Google Scholar]
  269. GoteV. SharmaA.D. PalD. Hyaluronic acid-targeted stimuli-sensitive nanomicelles co-encapsulating paclitaxel and ritonavir to overcome multi-drug resistance in metastatic breast cancer and triple-negative breast cancer cells.Int. J. Mol. Sci.2021223125710.3390/ijms2203125733513992
    [Google Scholar]
  270. PaswanS.K. SainiT.R. JahanS. GaneshN. Designing and formulation optimization of hyaluronic acid conjugated PLGA nanoparticles of tamoxifen for tumor targeting.Pharm. Nanotechnol.20219321723510.2174/221173850966621031015580733745427
    [Google Scholar]
  271. WangY. QianJ. YangM. XuW. WangJ. HouG. JiL. SuoA. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer.Carbohydr. Polym.201922511520610.1016/j.carbpol.2019.11520631521263
    [Google Scholar]
  272. BhattacharyaS. GhoshA. MaitiS. AhirM. DebnathG.H. GuptaP. BhattacharjeeM. GhoshS. ChattopadhyayS. MukherjeeP. AdhikaryA. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer.J. Control. Release202032235737410.1016/j.jconrel.2020.03.03332243981
    [Google Scholar]
  273. AlmoustafaH.A. AlshawshM.A. ChikZ. Targeted polymeric nanoparticle for anthracycline delivery in hypoxia-induced drug resistance in metastatic breast cancer cells.Anticancer Drugs202132774575410.1097/CAD.000000000000106533675612
    [Google Scholar]
  274. WangW. ZhangX. LiZ. PanD. ZhuH. GuZ. ChenJ. ZhangH. GongQ. LuoK. Dendronized hyaluronic acid-docetaxel conjugate as a stimuli-responsive nano-agent for breast cancer therapy.Carbohydr. Polym.202126711816010.1016/j.carbpol.2021.11816034119134
    [Google Scholar]
  275. HuH. ZhangY. JiW. MeiH. WuT. HeZ. WangK. ShiC. Hyaluronic acid-coated and Olaparib-loaded PEI − PLGA nanoparticles for the targeted therapy of triple negative breast cancer.J. Microencapsul.2022391253610.1080/02652048.2021.201458634859741
    [Google Scholar]
  276. YıldırımM. AcetÖ. YetkinD. AcetB.Ö. KarakocV. OdabasıM. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer.J. Drug Deliv. Sci. Technol.20227410355210.1016/j.jddst.2022.103552
    [Google Scholar]
  277. AlmoustafaH.A. AlshawshM.A. Al-SuedeF.S.R. AlshehadeS.A. MajidA.A.M.S. ChikZ. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice.Polymers202315228410.3390/polym1502028436679166
    [Google Scholar]
  278. LuvianoG.P. GaonaM.L.A. PérezM.K. Epidemiology of ovarian cancer.Chin. Clin. Oncol.202094474710.21037/cco‑20‑3432648448
    [Google Scholar]
  279. YangB. HuangL. ZhouZ. YinS. XiM. Paclitaxel loaded hyaluronic acid polymerized nanoparticles designed for ovarian cancer therapy.J. Biomed. Nanotechnol.202319122045205910.1166/jbn.2023.3509
    [Google Scholar]
  280. PerkinsR.B. WentzensenN. GuidoR.S. SchiffmanM. Cervical cancer screening.JAMA2023330654755810.1001/jama.2023.1317437552298
    [Google Scholar]
  281. ChoiS. LeeS.H. ParkS. ParkS.H. ParkC. KeyJ. Indocyanine green-loaded PLGA nanoparticles conjugated with hyaluronic acid improve target specificity in cervical cancer tumors.Yonsei Med. J.202162111042105110.3349/ymj.2021.62.11.104234672138
    [Google Scholar]
  282. HaJ.H. KimY.J. Photodynamic and cold atmospheric plasma combination therapy using polymeric nanoparticles for the synergistic treatment of cervical cancer.Int. J. Mol. Sci.2021223117210.3390/ijms2203117233504007
    [Google Scholar]
  283. KousarK. NaseerF. AbduhM.S. KakarS. GulR. AnjumS. AhmadT. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma.Front. Pharmacol.202313107300410.3389/fphar.2022.107300436712656
    [Google Scholar]
  284. GandagliaG. LeniR. BrayF. FleshnerN. FreedlandS.J. KibelA. StattinP. Van PoppelH. La VecchiaC. Epidemiology and prevention of prostate cancer.Eur. Urol. Oncol.20214687789210.1016/j.euo.2021.09.00634716119
    [Google Scholar]
  285. JamaliB JamaliS MoghaddamV.S. FiroozraiM DavaranS AbediF. Targeted co-delivery of paclitaxel and chrysin by hyaluronate/chitosan-coated polymeric nanoparticles for prostate cancer chemotherapy.Int. J. Polym. Mater.202312381251
    [Google Scholar]
  286. NaseemM.A. Dual targeting of prostate cancer cells and tumor-associated macrophages for mitigating tumorigenesis and metastasis: hyaluronic acid functionalized polymeric nanospheres for cd44-mediated active targeting.Res. Sq.2023
    [Google Scholar]
  287. CrosbieE.J. KitsonS.J. McAlpineJ.N. MukhopadhyayA. PowellM.E. SinghN. Endometrial cancer.Lancet2022399103331412142810.1016/S0140‑6736(22)00323‑335397864
    [Google Scholar]
  288. EdwardsK. YaoS. PisanoS. FeltraccoV. BrusehaferK. SamantaS. OommenO.P. GazzeS.A. ParavatiR. MaddisonH. LiC. GonzalezD. ConlanR.S. FrancisL. Hyaluronic acid-functionalized nanomicelles enhance saha efficacy in 3d endometrial cancer models.Cancers20211316403210.3390/cancers1316403234439185
    [Google Scholar]
  289. WangY. Delivery systems for RNA interference therapy: Current technologies and limitations.Curr. Gene Ther.202020535637210.2174/156652322066620100511072633019930
    [Google Scholar]
  290. KiioT.M. ParkS. Physical properties of nanoparticles do matter.J. Pharm. Investig.2021511355110.1007/s40005‑020‑00504‑w
    [Google Scholar]
  291. EjetaF. Recent advances of microfluidic platforms for controlled drug delivery in nanomedicine.Drug Des. Devel. Ther.2021153881389110.2147/DDDT.S32458034531650
    [Google Scholar]
  292. HertigJ.B. ShahV.P. FlühmannB. MühlebachS. StemerG. SurugueJ. MossR. FrancescoD.T. Tackling the challenges of nanomedicines: Are we ready?Am. J. Health Syst. Pharm.202178121047105610.1093/ajhp/zxab04833599767
    [Google Scholar]
  293. NorouziM. AmerianM. AmerianM. AtyabiF. Clinical applications of nanomedicine in cancer therapy.Drug Discov. Today202025110712510.1016/j.drudis.2019.09.01731586642
    [Google Scholar]
  294. KumarM. KulkarniP. LiuS. ChemuturiN. ShahD.K. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.Adv. Drug Deliv. Rev.202319411470810.1016/j.addr.2023.11470836682420
    [Google Scholar]
  295. LeiC. LiuX.R. ChenQ.B. LiY. ZhouJ.L. ZhouL.Y. ZouT. Hyaluronic acid and albumin based nanoparticles for drug delivery.J. Control. Release202133141643310.1016/j.jconrel.2021.01.03333503486
    [Google Scholar]
  296. TracN. ChungE.J. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes.Exp. Biol. Med.2021246222358237110.1177/1535370221101076233957802
    [Google Scholar]
  297. PercivalS.J. MeliaM.A. AlexanderC.L. NelsonD.W. SchindelholzE.J. SpoerkeE.D. Nanoscale thin film corrosion barriers enabled by multilayer polymer clay nanocomposites.Surf. Coat. Tech.202038312522810.1016/j.surfcoat.2019.125228
    [Google Scholar]
  298. AbidJ. KhalilF.M.A. SaeedS. KhanS.U. IqbalI. khanS.U. AnthonyS. ShahzadR. KoerniatiS. NazF. Nano revolution in cardiovascular health: Nanoparticles (NPs) as tiny titans for diagnosis and therapeutics.Curr. Probl. Cardiol.202449510246610.1016/j.cpcardiol.2024.10246638369205
    [Google Scholar]
  299. WuL.P. WangD. LiZ. Grand challenges in nanomedicine.Mater. Sci. Eng. C202010611030210.1016/j.msec.2019.11030231753337
    [Google Scholar]
  300. HannonG. LysaghtJ. LiptrottN.J. MelloP.A. Immunotoxicity considerations for next generation cancer nanomedicines.Adv. Sci.2019619190013310.1002/advs.20190013331592123
    [Google Scholar]
  301. PriceL.S.L. SternS.T. DealA.M. KabanovA.V. ZamboniW.C. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics.Sci. Adv.2020629eaay924910.1126/sciadv.aay924932832614
    [Google Scholar]
  302. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  303. HareJ.I. LammersT. AshfordM.B. PuriS. StormG. BarryS.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.Adv. Drug Deliv. Rev.2017108253810.1016/j.addr.2016.04.02527137110
    [Google Scholar]
  304. ParkK. Facing the truth about nanotechnology in drug delivery.ACS Nano2013797442744710.1021/nn404501g24490875
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673302510240328050115
Loading
/content/journals/cmc/10.2174/0109298673302510240328050115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test