Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Nanotechnology has been established as a promising alternative for treating a myriad of disease-causing microorganisms that pose threats to human health. The utilization of nanoparticles (NPs) emerges as a strategy to enhance the therapeutic arsenal against these diseases, especially given the tendency of many pathogens to develop resistance to conventional medications. Notably, titanium dioxide nanoparticles (TiONPs) have garnered attention for their multifaceted biomedical applications, encompassing antibacterial, antifungal, antiviral, anticancer, antioxidant, and drug delivery properties. This review focuses on the cutting-edge potential of TiONPs against helminths, protozoa, and vectors, underscoring their pivotal role in combating these health-threatening agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673295600240725060349
2025-07-26
2025-10-03
Loading full text...

Full text loading...

References

  1. AllahverdiyevA.M. AbamorE.S. BagirovaM. RafailovichM. Antimicrobial effects of (TiO2) and (Ag2O) nanoparticles against drug-resistant bacteria and leishmania parasites.Future Microbiol.20116893394010.2217/fmb.11.7821861623
    [Google Scholar]
  2. Najahi-MissaouiW. ArnoldR.D. CummingsB.S. Safe nanoparticles: Are we there yet?Int. J. Mol. Sci.202022138510.3390/ijms2201038533396561
    [Google Scholar]
  3. do Carmo NetoJ.R. GuerraR.O. MachadoJ.R. SilvaA.C.A. da SilvaM.V. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles.Curr. Med. Chem.202229122127214110.2174/092986732866621070910585034254904
    [Google Scholar]
  4. ÇeşmeliS. Biray AvciC. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies.J. Drug Target.201927776276610.1080/1061186X.2018.152733830252540
    [Google Scholar]
  5. DambournetD. BelharouakI. AmineK. Tailored preparation methods of TiO2 anatase, rutile, brookite: Mechanism of formation and electrochemical properties.Chem. Mater.20102231173117910.1021/cm902613h
    [Google Scholar]
  6. ZhangJ. LiM. FengZ. ChenJ. LiC. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.J. Phys. Chem. B2006110292793510.1021/jp055247316471625
    [Google Scholar]
  7. SangL. ZhaoY. BurdaC. TiO2 nanoparticles as functional building blocks.Chem. Rev.2014114199283931810.1021/cr400629p25294395
    [Google Scholar]
  8. SagadevanS. ImteyazS. MuruganB. Anita LettJ. SridewiN. WeldegebriealG.K. FatimahI. OhW-C. A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications.Green Process. Synth.2022111446310.1515/gps‑2022‑0005
    [Google Scholar]
  9. ZhaoY. LiC. LiuX. GuF. JiangH. ShaoW. ZhangL. HeY. Synthesis and optical properties of TiO2 nanoparticles.Mater. Lett.2007611798310.1016/j.matlet.2006.04.010
    [Google Scholar]
  10. PeirisM.M.K. GunasekaraT.D.C.P. JayaweeraP.M. FernandoS.S.N. TiO2 nanoparticles from baker’s yeast: A potent antimicrobial.J. Microbiol. Biotechnol.201828101664167010.4014/jmb.1807.0700530178650
    [Google Scholar]
  11. AllahverdiyevA.M. AbamorE.S. BagirovaM. BaydarS.Y. AtesS.C. KayaF. KayaC. RafailovichM. Investigation of antileishmanial activities of TiO2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp. Parasitol.20131351556310.1016/j.exppara.2013.06.00123792003
    [Google Scholar]
  12. DuarteC.A. GoulartL.R. FiliceL.S.C. LimaI.L. Campos-FernándezE. DantasN.O. SilvaA.C.A. SoaresM.B.P. SantosR.R. CardosoC.M.A. FrançaL.S.A. RochaV.P.C. RibeiroA.R.L.P. PerezG. CarvalhoL.N. Alonso-GoulartV. Characterization of crystalline phase of TiO2 nanocrystals, cytotoxicity and cell internalization analysis on human adipose tissue-derived mesenchymal stem cells.Materials20201318407110.3390/ma1318407132937776
    [Google Scholar]
  13. ReisÉ.M. RezendeA.A.A. OliveiraP.F. NicolellaH.D. TavaresD.C. SilvaA.C.A. DantasN.O. SpanóM.A. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test.Food Chem. Toxicol.20169630931910.1016/j.fct.2016.08.02327562929
    [Google Scholar]
  14. Malaria eradication: benefits, future scenarios and feasibility.WHO2020158
    [Google Scholar]
  15. LoverA.A. BairdJ.K. GoslingR. PriceR.N. Malaria elimination: Time to target all species.Am. J. Trop. Med. Hyg.2018991172310.4269/ajtmh.17‑086929761762
    [Google Scholar]
  16. Su, X.-Z.; Lane, K.D.; Xia, L.; Sá, J.M.; Wellems, T.E. Plasmodium genomics and genetics: New insights into malaria pathogenesis, drug resistance, epidemiology, and evolution.Clin. Microbiol. Rev.2019324
    [Google Scholar]
  17. BrownA.C. GulerJ.L. From circulation to cultivation: Plasmodium in vivo versus in vitro. Trends Parasitol.2020361191492610.1016/j.pt.2020.08.00832958385
    [Google Scholar]
  18. World Health Organization. Global technical strategy for malaria 2016-2030, 2021 update. 2021.Available from: https://www.who.int/news-room/questions-and-answers/item/malaria?gad_source=1gclid=Cj0KCQjw7ZO0BhDYARIsAFttkCiIEt9SoIvmIWt8ZzKA--hOUnMLaIbey22rgPvotm5WELEboYBZ33saAkZOEALw_wcB(accessed on 3-7-2024)
  19. TrampuzA. JerebM. MuzlovicI. PrabhuR.M. Clinical review: Severe malaria.Crit. Care20037431532310.1186/cc218312930555
    [Google Scholar]
  20. PhillipsM.A. BurrowsJ.N. ManyandoC. van HuijsduijnenR.H. Van VoorhisW.C. WellsT.N.C. Malaria.Nat. Rev. Dis. Primers2017311705010.1038/nrdp.2017.5028770814
    [Google Scholar]
  21. GorobetsN.Yu. SedashY.V. SinghB.K. Poonam RathiP.B. An overview of currently available antimalarials.Curr. Top. Med. Chem.201717192143215728137228
    [Google Scholar]
  22. WellsT.N.C. van HuijsduijnenR.H. Van VoorhisW.C. Malaria medicines: a glass half full?Nat. Rev. Drug Discov.201514642444210.1038/nrd457326000721
    [Google Scholar]
  23. NandeA. RautS. Michalska-DomanskaM. DhobleS.J. Green synthesis of nanomaterials using plant extract: A review.Curr. Pharm. Biotechnol.202122131794181110.2174/18734316MTExeNTky133208069
    [Google Scholar]
  24. GandhiR.P. JayaseelanC. KamarajC. Radhika RajasreeS.R. MaryR.R. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum.J. Appl. Biomed.201816437838610.1016/j.jab.2018.04.001
    [Google Scholar]
  25. ZahirA.A. ChauhanI.S. BagavanA. KamarajC. ElangoG. ShankarJ. ArjariaN. RoopanS.M. RahumanA.A. SinghN. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob. Agents Chemother.20155984782479910.1128/AAC.00098‑1526033724
    [Google Scholar]
  26. AbamorE.S. AllahverdiyevA.M. BagirovaM. RafailovichM. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect.Acta Trop.2017169304210.1016/j.actatropica.2017.01.00528111133
    [Google Scholar]
  27. VarshosazJ. ArbabiB. PestehchianN. SaberiS. DelavariM. Chitosan-titanium dioxide-glucantime nanoassemblies effects on promastigote and amastigote of Leishmania major. Int. J. Biol. Macromol.2018107Pt A21222110.1016/j.ijbiomac.2017.08.17728867228
    [Google Scholar]
  28. DolatE. SalarabadiS.S. LayeghP. JaafariM.R. SazgarniaS. SazgarniaA. The effect of UV radiation in the presence of TiO2-NPs on Leishmania major promastigotes.Biochim. Biophys. Acta, Gen. Subj.20201864612955810.1016/j.bbagen.2020.12955832061714
    [Google Scholar]
  29. JebaliA. KazemiB. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis.Toxicol. In Vitro20132761896190410.1016/j.tiv.2013.06.00223806227
    [Google Scholar]
  30. SepúlvedaA.A.L. Arenas VelásquezA.M. Patiño LinaresI.A. de AlmeidaL. FontanaC.R. GarciaC. GraminhaM.A.S. Efficacy of photodynamic therapy using TiO2 nanoparticles doped with Zn and hypericin in the treatment of cutaneous Leishmaniasis caused by Leishmania amazonensis.Photodiagn. Photodyn. Ther.20203010167610.1016/j.pdpdt.2020.10167632001331
    [Google Scholar]
  31. AbamorE.S. AllahverdiyevA.M. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TiO2@AG nanoparticles – Nigella sativa oil combinations.Exp. Parasitol.201616615016310.1016/j.exppara.2016.04.00827109311
    [Google Scholar]
  32. LoperaA.A. VelásquezA.M.A. ClementinoL.C. RobledoS. MontoyaA. de FreitasL.M. BezzonV.D.N. FontanaC.R. GarciaC. GraminhaM.A.S. Solution-combustion synthesis of doped TiO 2 compounds and its potential antileishmanial activity mediated by photodynamic therapy.J. Photochem. Photobiol. B2018183647410.1016/j.jphotobiol.2018.04.01729689488
    [Google Scholar]
  33. AdánC. MagnetA. FenoyS. PablosC. del ÁguilaC. MarugánJ. Concomitant inactivation of Acanthamoeba spp. and Escherichia coli using suspended and immobilized TiO2.Water Res.201814451252110.1016/j.watres.2018.07.06030081334
    [Google Scholar]
  34. GerwigG.J. van KuikJ.A. LeeflangB.R. KamerlingJ.P. VliegenthartJ.F.G. KarrC.D. JarrollE.L. The Giardia intestinalis filamentous cyst wall contains a novel (1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study.Glycobiology200212849950510.1093/glycob/cwf05912145190
    [Google Scholar]
  35. SökmenM. DeğerliS. AslanA. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water.Exp. Parasitol.20081191444810.1016/j.exppara.2007.12.01418255065
    [Google Scholar]
  36. WangT. JiangH. WanL. ZhaoQ. JiangT. WangB. WangS. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery.Acta Biomater.20151335436310.1016/j.actbio.2014.11.01025462846
    [Google Scholar]
  37. WramC.L. HesseC.N. ZasadaI.A. Transcriptional response of Meloidogyne incognita to non-fumigant nematicides.Sci. Rep.2022121981410.1038/s41598‑022‑13815‑935697824
    [Google Scholar]
  38. ChengW. ChenZ. ZengL. YangX. HuangD. ZhaiY. CaiM. ZhengL. ThomashowL.S. WellerD.M. YuZ. ZhangJ. Control of Meloidogyne incognita in three-dimensional model systems and pot experiments by the attract-and-kill effect of furfural acetone.Plant Dis.202110582169217610.1094/PDIS‑07‑20‑1501‑RE33258435
    [Google Scholar]
  39. PuW. XiaoK. LuoS. ZhuH. YuanZ. GaoC. HuJ. Characterization of five Meloidogyne incognita effectors associated with PsoRPM3.Int. J. Mol. Sci.2022233149810.3390/ijms2303149835163425
    [Google Scholar]
  40. LianX. LiuS. JiangL. BaiX. WangY. Isolation and characterization of novel biological control agent Clostridium beijerinckii against Meloidogyne incognita. Biology (Basel)20221112172410.3390/biology1112172436552234
    [Google Scholar]
  41. WilsonA.L. CourtenayO. Kelly-HopeL.A. ScottT.W. TakkenW. TorrS.J. LindsayS.W. The importance of vector control for the control and elimination of vector-borne diseases.PLoS Negl. Trop. Dis.2020141e000783110.1371/journal.pntd.000783131945061
    [Google Scholar]
  42. AntonioC.A.T. BermudezA.N.C. CochonK.L. ReyesM.S.G.L. TorresC.D.H. LiaoS.A.S.P. OrtegaD.J.N. SilangA.V.M.C. UezonoD.R. RoxasE.A. SalamatM.S.S. Recommendations for intersectoral collaboration for the prevention and control of vector-borne diseases: Results from a modified delphi process.J. Infect. Dis.2020222Suppl. 8S726S73110.1093/infdis/jiaa40433119096
    [Google Scholar]
  43. MedeirosA.S. CostaD.M.P. BrancoM.S.D. SousaD.M.C. MonteiroJ.D. GalvãoS.P.M. AzevedoP.R.M. FernandesJ.V. JeronimoS.M.B. AraújoJ.M.G. Dengue virus in Aedes aegypti and Aedes albopictus in urban areas in the state of Rio Grande do Norte, Brazil: Importance of virological and entomological surveillance.PLoS One2018133e019410810.1371/journal.pone.019410829534105
    [Google Scholar]
  44. Liu-HelmerssonJ. StenlundH. Wilder-SmithA. RocklövJ. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.PLoS One201493e8978310.1371/journal.pone.008978324603439
    [Google Scholar]
  45. Souza-NetoJ.A. PowellJ.R. BonizzoniM. Aedes aegypti vector competence studies: A review.Infect. Genet. Evol.20196719120910.1016/j.meegid.2018.11.00930465912
    [Google Scholar]
  46. Maciel-de-FreitasR. AvendanhoF.C. SantosR. SylvestreG. AraújoS.C. LimaJ.B.P. MartinsA.J. CoelhoG.E. ValleD. Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak.PLoS One201493e9242410.1371/journal.pone.009242424676277
    [Google Scholar]
  47. ZulfaR. LoW.C. ChengP.C. MartiniM. ChuangT.W. Updating the insecticide resistance status of Aedes aegypti and Aedes albopictus in Asia: A systematic review and meta-analysis.Trop. Med. Infect. Dis.202271030610.3390/tropicalmed710030636288047
    [Google Scholar]
  48. SmithL.B. KasaiS. ScottJ.G. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases.Pestic. Biochem. Physiol.201613311210.1016/j.pestbp.2016.03.00527742355
    [Google Scholar]
  49. MuruganK. DineshD. KavithaaK. PaulpandiM. PonrajT. AlsalhiM.S. DevanesanS. SubramaniamJ. RajaganeshR. WeiH. KumarS. NicolettiM. BenelliG. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).Parasitol. Res.201611531085109610.1007/s00436‑015‑4838‑826621285
    [Google Scholar]
  50. Shyam-SundarN. KarthiS. Senthil-NathanS. NarayananK.R. SantoshkumarB. SivaneshH. ChanthiniK.M.P. Stanley-RajaV. RamasubramanianR. Abdel-MegeedA. MalafaiaG. Eco-friendly biosynthesis of TiO2 nanoparticles using Desmostachya bipinnata extract: Larvicidal and pupicidal potential against Aedes aegypti and Spodoptera litura and acute toxicity in non-target organisms.Sci. Total Environ.2023858Pt 115951210.1016/j.scitotenv.2022.15951236265619
    [Google Scholar]
  51. ThandapaniK. KathiravanM. NamasivayamE. PadiksanI.A. NatesanG. TiwariM. GiovanniB. PerumalV. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus.Environ. Sci. Pollut. Res. Int.20182511103281033910.1007/s11356‑017‑9177‑028537028
    [Google Scholar]
  52. NarayananM. DeviP.G. NatarajanD. KandasamyS. DevarayanK. AlsehliM. ElfasakhanyA. PugazhendhiA. Green synthesis and characterization of titanium dioxide nanoparticles using leaf extract of Pouteria campechiana and larvicidal and pupicidal activity on Aedes aegypti. Environ. Res.202120011133310.1016/j.envres.2021.11133334051198
    [Google Scholar]
  53. Chan-ZapataI. Canul-CancheJ. Fernández-MartínK. Martín-QuintalZ. Torres-RomeroJ.C. Lara-RiegosJ.C. Ramírez-CamachoM.A. Arana-ArgáezV.E. Immunomodulatory effects of the methanolic extract from Pouteria campechiana leaves in macrophage functions.Food Agric. Immunol.201829138639910.1080/09540105.2017.1386163
    [Google Scholar]
  54. NarayananM. VigneshwariP. NatarajanD. KandasamyS. AlsehliM. ElfasakhanyA. PugazhendhiA. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential.Environ. Res.202120011133510.1016/j.envres.2021.11133534051200
    [Google Scholar]
  55. BarabadiH. AlizadehZ. RahimiM.T. BaracA. MaraoloA.E. RobertsonL.J. MasjediA. ShahrivarF. AhmadpourE. Nanobiotechnology as an emerging approach to combat malaria: A systematic review.Nanomedicine20191822123310.1016/j.nano.2019.02.01730904586
    [Google Scholar]
  56. Pan american health organization. malaria - PAHO/WHO. highlights and detailed information of malaria, 2022.Available from: https://www.paho.org/en/malaria-champions-rethinking-process-2022(accessed on 3-7-2024)
  57. CDC - Center for Disease Control and Prevention. Malaria - About Malaria - Biology, 2022.Available from: https://www.cdc.gov/malaria/about/index.html(accessed on 3-7-2024)
  58. RajakumarG. RahumanA.A. JayaseelanC. SanthoshkumarT. MarimuthuS. KamarajC. BagavanA. ZahirA.A. KirthiA.V. ElangoG. AroraP. KarthikeyanR. ManikandanS. JoseS. Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol. Res.2014113246947910.1007/s00436‑013‑3676‑924265057
    [Google Scholar]
  59. SoniN. DhimanR.C. Larvicidal activity of Zinc oxide and titanium dioxide nanoparticles synthesis using Cuscuta reflexa extract against malaria vector (Anopheles stephensi).Egypt. J. Basic Appl. Sci.20207134235210.1080/2314808X.2020.1830236
    [Google Scholar]
  60. SoniN. DhimanR.C. Larvicidal and antibacterial activity of aqueous leaf extract of peepal (Ficus religiosa) synthesized nanoparticles.Parasite Epidemiol. Control202011e0016610.1016/j.parepi.2020.e0016632885057
    [Google Scholar]
  61. SumanT.Y. RavindranathR.R.S. ElumalaiD. KaleenaP.K. RamkumarR. PerumalP. AranganathanL. ChitrarasuP.S. Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish.Asian Pac. J. Trop. Dis.20155322423010.1016/S2222‑1808(14)60658‑7
    [Google Scholar]
  62. European centre for disease prevention and control, culex pipiens group - current known distribution: March 2022.2022Available from: https://www.ecdc.europa.eu/en/publications-data/culex-pipiens-group-current-known-distribution-march-2022(accessed on 3-7-2024)
  63. Pan american health organization. Neglected mock diseases: PAHO calls for an end to delays in treatment in the Americas, 2022.2022
  64. UdayabhanuJ. KannanV. TiwariM. NatesanG. GiovanniB. PerumalV. Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity.J. Photochem. Photobiol. B201817849650410.1016/j.jphotobiol.2017.12.00529241121
    [Google Scholar]
  65. SellesS.M.A. KouidriM. GonzálezM.G. GonzálezJ. SánchezM. González-ColomaA. SanchisJ. ElhachimiL. OlmedaA.S. TerceroJ.M. ValcárcelF. Acaricidal and repellent effects of essential oils against ticks: A review.Pathogens20211011137910.3390/pathogens1011137934832535
    [Google Scholar]
  66. OwdaM.E. ElfekyA.S. AbouzeidR.E. SalehA.K. AwadM.A. AbdellatifH.A. AhmedF.M. ElzarefA.S. Enhancement of photocatalytic and biological activities of chitosan/activated carbon incorporated with TiO2 nanoparticles.Environ. Sci. Pollut. Res. Int.20222912181891820110.1007/s11356‑021‑17019‑y34687415
    [Google Scholar]
  67. BazM.M. KhaterH.F. BaeshenR.S. SelimA. ShaheenE.S. El-SayedY.A. SalamaS.A. HegazyM.M. Novel pesticidal efficacy of Araucaria heterophylla and Commiphora molmol extracts against camel and cattle blood-sucking ectoparasites.Plants20221113168210.3390/plants1113168235807634
    [Google Scholar]
  68. ZahirA.A. RahumanA.A. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet. Parasitol.20121873-451152010.1016/j.vetpar.2012.02.00122429701
    [Google Scholar]
  69. VelayuthamK. RahumanA.A. RajakumarG. SanthoshkumarT. MarimuthuS. JayaseelanC. BagavanA. KirthiA.V. KamarajC. ZahirA.A. ElangoG. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol. Res.201211162329233710.1007/s00436‑011‑2676‑x21987105
    [Google Scholar]
  70. FerreiraM. Contemporary parasitology (Ferreira)Taylor and francis2021
    [Google Scholar]
  71. MajumderA. GhatakA. SharmaA. Microfluidic adhesion induced by subsurface microstructures.Science19793185848258261
    [Google Scholar]
  72. MarimuthuS. RahumanA.A. JayaseelanC. KirthiA.V. SanthoshkumarT. VelayuthamK. BagavanA. KamarajC. ElangoG. IyappanM. SivaC. KarthikL. RaoK.V.B. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac. J. Trop. Med.20136968268810.1016/S1995‑7645(13)60118‑223827143
    [Google Scholar]
  73. RajakumarG. RahumanA.A. RoopanS.M. ChungI.M. AnbarasanK. KarthikeyanV. Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites.Parasitol. Res.2015114257158110.1007/s00436‑014‑4219‑825403378
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673295600240725060349
Loading
/content/journals/cmc/10.2174/0109298673295600240725060349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test