Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

is a widely distributed and highly pathogenic zoonotic bacterium. Sortase A represents a crucial target for the research and development of novel antibacterial drugs.

Objective

This study aims to establish quantitative structure-activity relationship models based on the chemical structures of a class of benzofuranene cyanide derivatives. The models will be used to screen new antibacterial agents and predict the properties of these molecules.

Methods

The compounds were randomly divided into a training set and a test set. A large number of descriptors were calculated using the software, and then the appropriate descriptors were selected to build the models through the heuristic method and the gene expression programming algorithm.

Results

In the heuristic method, the determination coefficient, determination coefficient of cross-validation, -test, and mean squared error values were 0.530, 0.395, 9.006, and 0.047, respectively. In the gene expression programming algorithm, the determination coefficient and the mean squared error values in the training set were 0.937 and 0.008, respectively, while in the test set, they were 0.849 and 0.035. The results showed that the minimum bond order of a C atom and the relative number of benzene rings had a significant positive contribution to the activity of compounds.

Conclusion

In this study, two quantitative structure-activity relationship models were successfully established to predict the inhibitory activity of a series of compounds targeting Sortase A, providing insights for further development of novel anti- drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673300334240821041349
2024-09-02
2025-11-01
Loading full text...

Full text loading...

References

  1. LeeA.S. de LencastreH. GarauJ. KluytmansJ. Malhotra-KumarS. PeschelA. HarbarthS. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers2018411803310.1038/nrdp.2018.3329849094
    [Google Scholar]
  2. CunyC. FriedrichA. KozytskaS. LayerF. NübelU. OhlsenK. StrommengerB. WaltherB. WielerL. WitteW. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species.Int. J. Med. Microbiol.20103002-310911710.1016/j.ijmm.2009.11.00220005777
    [Google Scholar]
  3. PatersonG.K. HarrisonE.M. HolmesM.A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol.2014221424710.1016/j.tim.2013.11.00324331435
    [Google Scholar]
  4. World Health Organization. Proportion of bloodstream infection due to methicillin-resistant. Staphylococcus aureus Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/sdg-3.d.2-amr-infect-mrsa (Accessed September 10, 2023).
    [Google Scholar]
  5. CassiniA. HögbergL.D. PlachourasD. QuattrocchiA. HoxhaA. SimonsenG.S. Colomb-CotinatM. KretzschmarM.E. DevleesschauwerB. CecchiniM. OuakrimD.A. OliveiraT.C. StruelensM.J. SuetensC. MonnetD.L. StraussR. MertensK. StruyfT. CatryB. LatourK. IvanovI.N. DobrevaE.G. Tambic AndraševicA. SoprekS. BudimirA. PaphitouN. ŽemlickováH. Schytte OlsenS. Wolff SönksenU. MärtinP. IvanovaM. LyytikäinenO. JalavaJ. CoignardB. EckmannsT. Abu SinM. HallerS. DaikosG.L. GikasA. TsiodrasS. KontopidouF. TóthÁ. HajduÁ. GuólaugssonÓ. KristinssonK.G. MurchanS. BurnsK. PezzottiP. GagliottiC. DumpisU. LiuimieneA. PerrinM. BorgM.A. de GreeffS.C. MonenJ.C.M. KoekM.B.G. ElstrømP. ZabickaD. DeptulaA. HryniewiczW. CaniçaM. NogueiraP.J. FernandesP.A. ManageiroV. PopescuG.A. SerbanR.I. SchréterováE. LitvováS. ŠtefkovicováM. KolmanJ. KlavsI. KorošecA. AracilB. AsensioA. Pérez-VázquezM. BillströmH. LarssonS. ReillyJ.S. JohnsonA. HopkinsS. Burden of AMR collaborative group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: A population-level modelling analysis.Lancet Infect. Dis.2019191566610.1016/S1473‑3099(18)30605‑430409683
    [Google Scholar]
  6. GravelandH. DuimB. van DuijkerenE. HeederikD. WagenaarJ.A. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans.Int. J. Med. Microbiol.2011301863063410.1016/j.ijmm.2011.09.00421983338
    [Google Scholar]
  7. PivaS. MariellaJ. CriccaM. GiacomettiF. BrunettiB. MondoE. De CastelliL. RomanoA. FerreroI. AmbrettiS. RoccaroM. MerialdiG. ScagliariniA. SerrainoA. PeliA. Epidemiologic case investigation on the zoonotic transmission of Staphylococcus aureus infection from goat to veterinarians.Zoonoses Public Health202168668469010.1111/zph.1283633951301
    [Google Scholar]
  8. O’TooleR.F. The interface between COVID-19 and bacterial healthcare-associated infections.Clin. Microbiol. Infect.202127121772177610.1016/j.cmi.2021.06.00134111586
    [Google Scholar]
  9. WestbladeL.F. SimonM.S. SatlinM.J. Bacterial coinfections in coronavirus disease 2019.Trends Microbiol.2021291093094110.1016/j.tim.2021.03.01833934980
    [Google Scholar]
  10. ElabbadiA. TurpinM. GerotziafasG.T. TeulierM. VoiriotG. FartoukhM. Bacterial coinfection in critically ill COVID-19 patients with severe pneumonia.Infection202149355956210.1007/s15010‑020‑01553‑x33393065
    [Google Scholar]
  11. LaiC.C. ChenS.Y. KoW.C. HsuehP.R. Increased antimicrobial resistance during the COVID-19 pandemic.Int. J. Antimicrob. Agents202157410632410.1016/j.ijantimicag.2021.10632433746045
    [Google Scholar]
  12. SegalaF.V. BavaroD.F. Di GennaroF. SalvatiF. MarottaC. SaracinoA. MurriR. FantoniM. Impact of SARS-COV-2 epidemic on antimicrobial resistance: A literature review.Viruses20211311211010.3390/v1311211034834917
    [Google Scholar]
  13. World health organization. WHO publishes list of bacteria for which new antibiotics are urgently needed.Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (Accessed September 10, 2023).
  14. CascioferroS. TotsikaM. SchillaciD. SortaseA. Sortase A: An ideal target for anti-virulence drug development.Microb. Pathog.20147710511210.1016/j.micpath.2014.10.00725457798
    [Google Scholar]
  15. SuX. YuH. WangX. ZhangC. WangH. KongX. QuY. LuanY. MengY. GuanJ. SongG. WangL. SongW. ZhaoY. Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus -induced pneumonia by targeting Sortase A.Virulence20221311434144510.1080/21505594.2022.211283135983964
    [Google Scholar]
  16. RajK.K. Ganesh KumarV. Leela MadhuriC. MathiP. Durga LakshmiR. RaviM. Sri RamuduB. Venkata RaoS.V. RamachandranD. Designing of potential inhibitors against Staphylococcus aureus sortase A: Combined analogue and structure based approach with in vitro validation.J. Mol. Graph. Model.201560899710.1016/j.jmgm.2015.05.00926119984
    [Google Scholar]
  17. KrugerR.G. OtvosB. FrankelB.A. BentleyM. DostalP. McCaffertyD.G. Analysis of the substrate specificity of the Staphylococcus aureus sortase transpeptidase SrtA.Biochemistry20044361541155110.1021/bi035920j14769030
    [Google Scholar]
  18. ZhulenkovsD. RudevicaZ. JaudzemsK. TurksM. LeonchiksA. Discovery and structure–activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase.Bioorg. Med. Chem.201422215988600310.1016/j.bmc.2014.09.01125282649
    [Google Scholar]
  19. WangL. JingS. QuH. WangK. JinY. DingY. YangL. YuH. ShiY. LiQ. WangD. Orientin mediates protection against MRSA-induced pneumonia by inhibiting Sortase A.Virulence20211212149216110.1080/21505594.2021.196213834369293
    [Google Scholar]
  20. TropshaA. IsayevO. VarnekA. SchneiderG. CherkasovA. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR.Nat. Rev. Drug Discov.202423214115510.1038/s41573‑023‑00832‑038066301
    [Google Scholar]
  21. NiaziS.K. MariamZ. Recent advances in machine-learning-based chemoinformatics: A comprehensive review.Int. J. Mol. Sci.202324141148810.3390/ijms24141148837511247
    [Google Scholar]
  22. SoaresT.A. Nunes-AlvesA. MazzolariA. RuggiuF. WeiG.W. MerzK. The (Re)-Evolution of quantitative structure-activity relationship (QSAR) studies propelled by the surge of machine learning methods.J. Chem. Inf. Model.202262225317532010.1021/acs.jcim.2c0142236437763
    [Google Scholar]
  23. SiH. LianN. YuanS. FuA. DuanY.B. ZhangK. YaoX. Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds.Eur. J. Med. Chem.200944104044405010.1016/j.ejmech.2009.04.03919482386
    [Google Scholar]
  24. ShulgaD.A. KudryavtsevK.V. Selection of promising novel fragment sized S. aureus SrtA noncovalent inhibitors based on QSAR and docking modeling studies.Molecules20212624767710.3390/molecules2624767734946760
    [Google Scholar]
  25. LeiS. HuY. YuanC. SunR. WangJ. ZhangY. ZhangY. LuD. FuL. JiangF. Discovery of sortase a covalent inhibitors with benzofuranene cyanide structures as potential antibacterial agents against Staphylococcus aureus. Eur. J. Med. Chem.202222911403210.1016/j.ejmech.2021.11403234954590
    [Google Scholar]
  26. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. CedrónF. NovoaF.J. CarballalA. MaojoV. PazosA. Fernandez-LozanoC. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.01134471498
    [Google Scholar]
  27. LüW.J. ChenY.L. MaW.P. ZhangX.Y. LuanF. LiuM.C. ChenX.G. HuZ.D. QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network.Eur. J. Med. Chem.200843356957610.1016/j.ejmech.2007.04.01118255197
    [Google Scholar]
  28. LuanF. XuX. LiuH. CordeiroM.N.D.S. Prediction of the baseline toxicity of non-polar narcotic chemical mixtures by QSAR approach.Chemosphere20139061980198610.1016/j.chemosphere.2012.10.06523177708
    [Google Scholar]
  29. FerreiraC. Gene expression programming: A new adaptive algorithm for solving problems.Complex Syst.200113287129
    [Google Scholar]
  30. JędrzejowiczJ. JędrzejowiczP. Gene expression programming as a data classification tool. A review.J. Intell. Fuzzy Syst.20193619110010.3233/JIFS‑18026
    [Google Scholar]
  31. FerreiraC. Gene expression programming: Mathematical modeling by an artificial intelligence.Studies in Computational Intelligence.Berlin, HeidelbergSpringer-Verlag2006Vol. 21
    [Google Scholar]
  32. YaoX.J. FanB.T. DoucetJ.P. PanayeA. LiuM.C. ZhangR.S. HuZ.D. Correlation between molecular structures and relative electrophoretic mobility in capillary electrophoresis: Alkylpyridines.Chin. J. Chem.200321101247125110.1002/cjoc.20030211003
    [Google Scholar]
  33. HerndonW.C. Resonance theory. VI. Bond orders.J. Am. Chem. Soc.197496257605761410.1021/ja00832a001
    [Google Scholar]
  34. SannigrahiA.B. KarT. Molecular orbital theory of bond order and valency.J. Chem. Educ.198865867467610.1021/ed065p674
    [Google Scholar]
  35. Duncan LyngdohR.H. SchaeferH.F.III KingR.B. Metal–Metal (MM) bond distances and bond orders in binuclear metal complexes of the first row transition metals titanium through zinc.Chem. Rev.201811824116261170610.1021/acs.chemrev.8b0029730543419
    [Google Scholar]
  36. Danishuddin KhanA.U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design.Drug Discov. Today20162181291130210.1016/j.drudis.2016.06.01327326911
    [Google Scholar]
  37. ErogluE. Some QSAR studies for a group of sulfonamide schiff base as carbonic anhydrase CA II inhibitors.Int. J. Mol. Sci.20089218119710.3390/ijms902018119325742
    [Google Scholar]
  38. KozelkaJ. Lone pair–π interactions in biological systems: Occurrence, function, and physical origin.Eur. Biophys. J.201746872973710.1007/s00249‑017‑1210‑128466098
    [Google Scholar]
  39. BauzáA. QuiñoneroD. DeyàP.M. FronteraA. On the importance of anion-π interactions in the mechanism of sulfide: Quinone oxidoreductase.Chem. Asian J.20138112708271310.1002/asia.20130078623907989
    [Google Scholar]
  40. SalonenL.M. EllermannM. DiederichF. Aromatic rings in chemical and biological recognition: Energetics and structures.Angew. Chem. Int. Ed.201150214808484210.1002/anie.20100756021538733
    [Google Scholar]
  41. ClementiE. Computational Aspects for Large Chemical Systems.Lecture Notes in Chemistry.Berlin, Heidelberg, New YorkSpringer-Verlag1980Vol. 19
    [Google Scholar]
  42. Ferro-CostasD. PendásÁ.M. GonzálezL. MosqueraR.A. Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules.Phys. Chem. Chem. Phys.201416209249925810.1039/C4CP00431K24709865
    [Google Scholar]
  43. HeW. ZhangY. BaoJ. DengX. BataraJ. CaseyS. GuoQ. JiangF. FuL. Synthesis, biological evaluation and molecular docking analysis of 2-phenyl-benzofuran-3- carboxamide derivatives as potential inhibitors of Staphylococcus aureus Sortase A.Bioorg. Med. Chem.20172541341135110.1016/j.bmc.2016.12.03028094221
    [Google Scholar]
  44. ZhangY. BaoJ. DengX.X. HeW. FanJ.J. JiangF.Q. FuL. Synthesis, biological evaluation and molecular docking of 2-phenyl-benzo[d]oxazole-7-carboxamide derivatives as potential Staphylococcus aureus Sortase A inhibitors.Bioorg. Med. Chem. Lett.201626164081408510.1016/j.bmcl.2016.06.07427400889
    [Google Scholar]
  45. YangB. SiH. ZhaiH. QSAR studies on the IC50 of a class of Thiazolidinone/Thiazolide based hybrids as antitrypanosomal agents.Lett. Drug Des. Discov.202118440641510.2174/1570180817999201102200015
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673300334240821041349
Loading
/content/journals/cmc/10.2174/0109298673300334240821041349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test