Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The Testis Expressed Metallothionein Like Protein (TESMIN) gene encodes highly conserved, cysteine-rich, low-molecular proteins that are activated by and have an affinity for heavy metal ions. Previous literature has shown its association with cancer. Nevertheless, no thorough bioinformatics analysis of TESMIN has been done yet in lung adenocarcinoma (LUAD).

Methods

Differential expression of TESMIN between cancer and normal tissues was confirmed by analyzing databases and immunohistochemistry staining. Enrichment analysis was adopted to explore biological functions. The relationship of TESMIN with immune infiltration was evaluated by ssGSVA, with immunotherapy response predicted by TCIA and TIDE tools, with mutational traits analyzed by R software. Drug sensitivity analysis was implemented GSCA tool, pRRophetic algorithms, and CellMiner database.

Results

The results demonstrated that TESMIN expression was upregulated in tumor tissue and related to Ki67. TESMIN was associated with poor survival and significantly related to age, gender, N stage, M stage, pathological stage, and survival status. TESMIN-related genes (TRGs) were primarily involved in cell division and cancer-related enrichment pathways. TESMIN was associated with high frequencies of somatic mutations and an immunosuppressive tumor microenvironment. Interestingly, patients with elevated levels of TESMIN expression benefited more from commonly used chemotherapy drugs such as cisplatin, paclitaxel, vinorelbine, and docetaxel, whereas those with low levels of TESMIN expression showed favorable clinical responses to immunotherapy.

Conclusion

As a prognostic biomarker associated with the cell cycle and immune infiltration, TESMIN may serve as an effective target for predicting the sensitivity to immunotherapy and chemotherapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673315434240826100918
2024-09-03
2025-11-03
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  4. ChangL. RuizP. ItoT. SellersW.R. Targeting pan-essential genes in cancer: Challenges and opportunities.Cancer Cell202139446647910.1016/j.ccell.2020.12.00833450197
    [Google Scholar]
  5. YangK. LiJ. ZhaoL. SunZ. BaiC. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors.Front. Med.202216577378310.1007/s11684‑021‑0902‑135776405
    [Google Scholar]
  6. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  7. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑234385702
    [Google Scholar]
  8. SugiharaT. WadhwaR. KaulS.C. MitsuiY. A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation.Genomics199957113013610.1006/geno.1999.575610191092
    [Google Scholar]
  9. SutouS. MiwaK. MatsuuraT. KawasakiY. OhinataY. MitsuiY. Native tesmin is a 60-kilodalton protein that undergoes dynamic changes in its localization during spermatogenesis in mice.Biol. Reprod.20036851861186910.1095/biolreprod.102.00560312606435
    [Google Scholar]
  10. MatsuuraT. KawasakiY. MiwaK. SutouS. OhinataY. YoshidaF. MitsuiY. Germ cell-specific nucleocytoplasmic shuttling protein, tesmin, responsive to heavy metal stress in mouse testes.J. Inorg. Biochem.200288218319110.1016/S0162‑0134(01)00377‑411803038
    [Google Scholar]
  11. ZhangX. LiM. JiangX. MaH. FanS. LiY. YuC. XuJ. KhanR. JiangH. ShiQ. Nuclear translocation of MTL5 from cytoplasm requires its direct interaction with LIN9 and is essential for male meiosis and fertility.PLoS Genet.2021178e100975310.1371/journal.pgen.100975334388164
    [Google Scholar]
  12. KhannaS. LakheraP.C. KhandelwalS. Interplay of early biochemical manifestations by cadmium insult in sertoli–germ coculture: An in vitro study.Toxicology20112871-3465310.1016/j.tox.2011.05.01321664405
    [Google Scholar]
  13. HuangY. WuQ. TanX. Metallothionein-like 5 expression is correlated with poor prognosis and promotes proliferation of cervical squamous cell carcinoma.Bioengineered20221336955696510.1080/21655979.2022.203690135249447
    [Google Scholar]
  14. SanadaH. SekiN. MizunoK. MisonoS. UchidaA. YamadaY. MoriyaS. KikkawaN. MachidaK. KumamotoT. SuetsuguT. InoueH. Involvement of dual strands of miR-143 (miR-143-5p and miR-143-3p) and their target oncogenes in the molecular pathogenesis of lung adenocarcinoma.Int. J. Mol. Sci.20192018448210.3390/ijms2018448231514295
    [Google Scholar]
  15. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets-update.Nucleic Acids Res.201241D1D991D99510.1093/nar/gks119323193258
    [Google Scholar]
  16. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx24728407145
    [Google Scholar]
  17. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  18. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  19. LiuC.J. HuF.F. XieG.Y. MiaoY.R. LiX.W. ZengY. GuoA.Y. GSCA: An integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels.Brief. Bioinform.2023241bbac55810.1093/bib/bbac55836549921
    [Google Scholar]
  20. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  21. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The Molecular Signatures Database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.00426771021
    [Google Scholar]
  22. HanY. WangY. DongX. SunD. LiuZ. YueJ. WangH. LiT. WangC. TISCH2: Expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment.Nucleic Acids Res.202351D1D1425D143110.1093/nar/gkac95936321662
    [Google Scholar]
  23. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan- cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  24. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  25. NagyÁ. MunkácsyG. GyőrffyB. Pancancer survival analysis of cancer hallmark genes.Sci. Rep.2021111604710.1038/s41598‑021‑84787‑533723286
    [Google Scholar]
  26. HuF.F. LiuC.J. LiuL.L. ZhangQ. GuoA.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response.Brief. Bioinform.2021223bbaa17610.1093/bib/bbaa17632814346
    [Google Scholar]
  27. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  28. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  29. ReinholdW.C. SunshineM. LiuH. VarmaS. KohnK.W. MorrisJ. DoroshowJ. PommierY. CellMiner: A web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set.Cancer Res.201272143499351110.1158/0008‑5472.CAN‑12‑137022802077
    [Google Scholar]
  30. Van HiepN. SunW.L. FengP.H. LinC.W. ChenK.Y. LuoC.S. DungL.N. Van QuyetH. WuS.M. LeeK.Y. Heparin binding epidermal growth factor–like growth factor is a prognostic marker correlated with levels of macrophages infiltrated in lung adenocarcinoma.Front. Oncol.20221296389610.3389/fonc.2022.96389636439487
    [Google Scholar]
  31. YangJ. ChenZ. GongZ. LiQ. DingH. CuiY. TangL. LiS. WanL. LiY. JuS. DingC. ZhaoJ. Immune landscape and classification in lung adenocarcinoma based on a novel cell cycle checkpoints related signature for predicting prognosis and therapeutic response.Front. Genet.20221390810410.3389/fgene.2022.90810435646074
    [Google Scholar]
  32. GuidryK. VasudevarajaV. LabbeK. MohamedH. SerranoJ. GuidryB.W. DeLorenzoM. ZhangH. DengJ. SahuS. AlmonteC. MoreiraA.L. TsirigosA. PapagiannakopoulosT. PassH. SnuderlM. WongK.K. DNA methylation profiling identifies subgroups of lung adenocarcinoma with distinct immune cell composition, dna methylation age, and clinical outcome.Clin. Cancer Res.202228173824383510.1158/1078‑0432.CCR‑22‑039135802677
    [Google Scholar]
  33. WuA.A. DrakeV. HuangH.S. ChiuS. ZhengL. Reprogramming the tumor microenvironment: Tumor-induced immunosuppressive factors paralyze T cells.OncoImmunology201547e101670010.1080/2162402X.2015.101670026140242
    [Google Scholar]
  34. GrzegrzolkaJ. OlbromskiM. GomulkiewiczA. PiotrowskaA. Glatzel-PlucinskaN. RatajczakK. Sputa- GrzegrzolkaP. RzechonekA. WerynskaB. Podhorska-OkolowM. DziegielP. Role of tesmin expression in non-small cell lung cancer.Oncol. Lett.20202114810.3892/ol.2020.1230933281959
    [Google Scholar]
  35. RelliV. TrerotolaM. GuerraE. AlbertiS. Abandoning the notion of non-small cell lung cancer.Trends Mol. Med.201925758559410.1016/j.molmed.2019.04.01231155338
    [Google Scholar]
  36. UrregoD. TomczakA.P. ZahedF. StühmerW. PardoL.A. Potassium channels in cell cycle and cell proliferation.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916382013009410.1098/rstb.2013.009424493742
    [Google Scholar]
  37. LeeM.H. YangH.Y. Contributions in the domain of cancer research: Review Negative regulators of cyclin-dependent kinases and their roles in cancers.Cell. Mol. Life Sci.200158121907192210.1007/PL0000082611766887
    [Google Scholar]
  38. MatthewsH.K. BertoliC. de BruinR.A.M. Cell cycle control in cancer.Nat. Rev. Mol. Cell Biol.2022231748810.1038/s41580‑021‑00404‑334508254
    [Google Scholar]
  39. McCabeM.T. BrandesJ.C. VertinoP.M. Cancer DNA methylation: Molecular mechanisms and clinical implications.Clin. Cancer Res.200915123927393710.1158/1078‑0432.CCR‑08‑278419509173
    [Google Scholar]
  40. UribeM.L. MarroccoI. YardenY. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers (Basel)20211311274810.3390/cancers1311274834206026
    [Google Scholar]
  41. IliakiS. BeyaertR. AfoninaI.S. Polo-like kinase 1 (PLK1) signaling in cancer and beyond.Biochem. Pharmacol.202119311474710.1016/j.bcp.2021.11474734454931
    [Google Scholar]
  42. BeckJ. TurnquistC. HorikawaI. HarrisC. Targeting cellular senescence in cancer and aging: Roles of p53 and its isoforms.Carcinogenesis20204181017102910.1093/carcin/bgaa07132619002
    [Google Scholar]
  43. GalonJ. AngellH.K. BedognettiD. MarincolaF.M. The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures.Immunity2013391112610.1016/j.immuni.2013.07.00823890060
    [Google Scholar]
  44. MelssenM. SlingluffC.L.Jr. Vaccines targeting helper T cells for cancer immunotherapy.Curr. Opin. Immunol.201747859210.1016/j.coi.2017.07.00428755541
    [Google Scholar]
  45. ClericiM. ClericiE. ShearerG.M. The tumor enhancement phenomenon: Reinterpretation from a Th1/Th2 perspective.J. Natl. Cancer Inst.199688746146210.1093/jnci/88.7.4618618239
    [Google Scholar]
  46. ElenkovI.J. IezzoniD.G. DalyA. HarrisA.G. ChrousosG.P. Cytokine dysregulation, inflammation and well-being.Neuroimmunomodulation200512525526910.1159/00008710416166805
    [Google Scholar]
  47. LeeH.L. JangJ.W. LeeS.W. YooS.H. KwonJ.H. NamS.W. BaeS.H. ChoiJ.Y. HanN.I. YoonS.K. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization.Sci. Rep.201991326010.1038/s41598‑019‑40078‑830824840
    [Google Scholar]
  48. TakashimaY. KawaguchiA. KanayamaT. HayanoA. YamanakaR. Correlation between lower balance of Th2 helper T-cells and expression of PD-L1/PD-1 axis genes enables prognostic prediction in patients with glioblastoma.Oncotarget2018927190651907810.18632/oncotarget.2489729721184
    [Google Scholar]
  49. SpinnerC.A. LamsoulI. MétaisA. FebrissyC. Moog-LutzC. LutzP.G. The E3 ubiquitin ligase asb2α in t helper 2 cells negatively regulates antitumor immunity in colorectal cancer.Cancer Immunol. Res.2019781332134410.1158/2326‑6066.CIR‑18‑056231175139
    [Google Scholar]
  50. KonE. BenharI. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success.Drug Resist. Updat.201945132910.1016/j.drup.2019.07.00431382144
    [Google Scholar]
  51. PlanchardD. BesseB. GroenH.J.M. SouquetP.J. QuoixE. BaikC.S. BarlesiF. KimT.M. MazieresJ. NovelloS. RigasJ.R. UpalawannaA. D’AmelioA.M.Jr ZhangP. MookerjeeB. JohnsonB.E. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial.Lancet Oncol.201617798499310.1016/S1470‑2045(16)30146‑227283860
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673315434240826100918
Loading
/content/journals/cmc/10.2174/0109298673315434240826100918
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test