Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Hematological parameters are crucial factors in disease severity and chronic condition pathogenesis. We aimed to evaluate the hematological factors in different severity stages of COVID-19 at different time intervals.

Methods

Serum samples were collected from 470 patients (235 men and 235 women) with a confirmed RT-qPCR COVID-19 test exhibiting moderate, severe, and critical symptoms based on WHO criteria. Samples were collected at three-time intervals, including the first: the 1st days of infection, 2nd: the one month after, and 3rd: the three months after disease onset. Total WBC, neutrophil, lymphocyte, monocyte, eosinophil, RBC counting, Hb, HCT, MCV, MCH, MCHC, hsCRP levels, G6PD deficiency, and hemoglobinopathies were determined in all patients.

Results

Total WBC, neutrophil, lymphocyte, platelet, RBC counting, Hb, HCT, MCV, MCH, and hsCRP levels were significantly changed with different disease severity (<0.0001). Also, there were significant differences between different time intervals for WBC and RBC parameters (<0.0001) except for monocytes and eosinophils. At all time intervals, there are significant changes in levels of hematological and hsCRP based on gender. Moreover, a significant correlation was observed between disease severity, age, and BMI (<0.0001).

Conclusion

Significant differences in hematological parameter and inflammatory parameter levels based on disease severity, time intervals, and gender revealed the importance of evaluating these factors in the management of infectious diseases, such as COVID-19, in patients during and post-disease times.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673299246240625084103
2024-07-09
2025-09-02
Loading full text...

Full text loading...

References

  1. CucinottaD. VanelliM. WHO declares COVID-19 a pandemic.Acta Biomed.202091115716032191675
    [Google Scholar]
  2. JafarzadehA JafarzadehS NematiM. Therapeutic potential of ginger against COVID-19: Is there enough evidence?J. Tradit. Chin. Med.Sci.202184267279
    [Google Scholar]
  3. JafarzadehA. NematiM. JafarzadehS. Contribution of STAT3 to the pathogenesis of COVID-19.Microb. Pathog.202115410483610.1016/j.micpath.2021.10483633691172
    [Google Scholar]
  4. Organization W.H. COVID-19 clinical management: living guidance, 25 January2021World Health Organization, 2021.
    [Google Scholar]
  5. Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Seminars in immunopathology; Eds.; Springer, 2017.
  6. MitraP. MisraS. SharmaP. COVID-19 pandemic in India: what lies ahead.Springer2020
    [Google Scholar]
  7. Rodriguez-MoralesA.J. Cardona-OspinaJ.A. Gutiérrez-OcampoE. Villamizar-PeñaR. Holguin-RiveraY. Escalera-AntezanaJ.P. Alvarado-ArnezL.E. Bonilla-AldanaD.K. Franco-ParedesC. Henao-MartinezA.F. Paniz-MondolfiA. Lagos-GrisalesG.J. Ramírez-VallejoE. SuárezJ.A. ZambranoL.I. Villamil-GómezW.E. Balbin-RamonG.J. RabaanA.A. HarapanH. DhamaK. NishiuraH. KataokaH. AhmadT. SahR. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis.Travel Med. Infect. Dis.20203410162310.1016/j.tmaid.2020.10162332179124
    [Google Scholar]
  8. JalilA.T. ShanshoolM.T. DilfyS.H. SalehM.M. SuleimanA.A. Hematological and serological parameters for detection of COVID-19.J. Microbiol. Biotechnol. Food Sci.2022114e4229
    [Google Scholar]
  9. KhartabilT.A. RusscherH. van der VenA. de RijkeY.B. A summary of the diagnostic and prognostic value of hemocytometry markers in COVID-19 patients.Crit. Rev. Clin. Lab. Sci.202057641543110.1080/10408363.2020.177473632568604
    [Google Scholar]
  10. WangC. DengR. GouL. FuZ. ZhangX. ShaoF. WangG. FuW. XiaoJ. DingX. LiT. XiaoX. LiC. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters.Ann. Transl. Med.20208959310.21037/atm‑20‑339132566620
    [Google Scholar]
  11. TaneriP.E. Gómez-OchoaS.A. LlanajE. RaguindinP.F. RojasL.Z. Roa-DíazZ.M. SalvadorD.Jr GroothofD. MinderB. Kopp-HeimD. HautzW.E. EisengaM.F. FrancoO.H. GlisicM. MukaT. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis.Eur. J. Epidemiol.202035876377310.1007/s10654‑020‑00678‑532816244
    [Google Scholar]
  12. FanB.E. Hematologic parameters in patients with COVID-19 infection: A reply.Am. J. Hematol.2020958E215
    [Google Scholar]
  13. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  14. TajS. kashifA. Arzinda FatimaS. ImranS. LoneA. AhmedQ. Role of hematological parameters in the stratification of COVID-19 disease severity.Ann. Med. Surg.202162687210.1016/j.amsu.2020.12.03533437468
    [Google Scholar]
  15. JinJ.M. BaiP. HeW. WuF. LiuX.F. HanD.M. LiuS. YangJ.K. Gender differences in patients with COVID-19: Focus on severity and mortality.Front. Public Health2020815210.3389/fpubh.2020.0015232411652
    [Google Scholar]
  16. HalpinS. O’ConnorR. SivanM. Long COVID and chronic COVID syndromes.J. Med. Virol.20219331242124310.1002/jmv.2658733034893
    [Google Scholar]
  17. Sharif-zakM. Abbasi-jorjandiM. AsadikaramG. GhoreshiZ. Rezazadeh-JabalbarziM. afsharipurA. RashidinejadH. KhajepourF. JafarzadehA. ArefiniaN. KheyrkhahA. AbolhassaniM. CCR2 and DPP9 expression in the peripheral blood of COVID-19 patients: Influences of the disease severity and gender.Immunobiology2022227215218410.1016/j.imbio.2022.15218435131543
    [Google Scholar]
  18. Sharif-zakM. Abbasi-JorjandiM. AsadikaramG. Influence of disease severity and gender on HLA-C methylation in COVID-19 patients.Iran. J. Sci. Technol. Transac. A.202246513091316
    [Google Scholar]
  19. Al-SaadiE.A.K.D. AbdulnabiM.A. Hematological changes associated with COVID-19 infection.J. Clin. Lab. Anal.2022361e2406410.1002/jcla.2406434783405
    [Google Scholar]
  20. ZhangL. HuangB. XiaH. FanH. ZhuM. ZhuL. ZhangH. TaoX. ChengS. ChenJ. Retrospective analysis of clinical features in 134 coronavirus disease 2019 cases.Epidemiol. Infect.2020148e19910.1017/S095026882000201032878654
    [Google Scholar]
  21. MartensR.J.H. van AdrichemA.J. MattheijN.J.A. BrouwerC.G. van TwistD.J.L. BroerseJ.J.C.R. Magro-ChecaC. van DongenC.M.P. MostardR.L.M. RamiroS. LandewéR.B.M. LeersM.P.G. Hemocytometric characteristics of COVID-19 patients with and without cytokine storm syndrome on the sysmex XN-10 hematology analyzer.Clin. Chem. Lab. Med.202159478379310.1515/cclm‑2020‑152933554540
    [Google Scholar]
  22. ChanJ.F.W. ZhangA.J. YuanS. PoonV.K.M. ChanC.C.S. LeeA.C.Y. ChanW.M. FanZ. TsoiH.W. WenL. LiangR. CaoJ. ChenY. TangK. LuoC. CaiJ.P. KokK.H. ChuH. ChanK.H. SridharS. ChenZ. ChenH. ToK.K.W. YuenK.Y. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: Implications for disease pathogenesis and transmissibility.Clin. Infect. Dis.2020719ciaa32510.1093/cid/ciaa32532215622
    [Google Scholar]
  23. MacleanA. KamalA. AdisheshM. AlnafakhR. TempestN. HapangamaD.K. Human uterine biopsy: research value and common pitfalls.Int. J. Reprod. Med.20202020927536010.1155/2020/9275360
    [Google Scholar]
  24. QinC. ZhouL. HuZ. ZhangS. YangS. TaoY. XieC. MaK. ShangK. WangW. TianD.S. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China.Clin. Infect. Dis.2020711576276810.1093/cid/ciaa24832161940
    [Google Scholar]
  25. HuL. ChenS. FuY. GaoZ. LongH. RenH. ZuoY. WangJ. LiH. XuQ. YuW. LiuJ. ShaoC. HaoJ. WangC. MaY. WangZ. YanagiharaR. DengY. Risk factors associated with clinical outcomes in 323 coronavirus disease 2019 (COVID-19) hospitalized patients in Wuhan, China.Clin. Infect. Dis.202071162089209810.1093/cid/ciaa53932361738
    [Google Scholar]
  26. LiuJ. LiS. LiuJ. LiangB. WangX. WangH. LiW. TongQ. YiJ. ZhaoL. XiongL. GuoC. TianJ. LuoJ. YaoJ. PangR. ShenH. PengC. LiuT. ZhangQ. WuJ. XuL. LuS. WangB. WengZ. HanC. ZhuH. ZhouR. ZhouH. ChenX. YeP. ZhuB. WangL. ZhouW. HeS. HeY. JieS. WeiP. ZhangJ. LuY. WangW. ZhangL. LiL. ZhouF. WangJ. DittmerU. LuM. HuY. YangD. ZhengX. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients.EBioMedicine20205510276310.1016/j.ebiom.2020.10276332361250
    [Google Scholar]
  27. WuC. ChenX. CaiY. XiaJ. ZhouX. XuS. HuangH. ZhangL. ZhouX. DuC. ZhangY. SongJ. WangS. ChaoY. YangZ. XuJ. ZhouX. ChenD. XiongW. XuL. ZhouF. JiangJ. BaiC. ZhengJ. SongY. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China.JAMA Intern. Med.2020180793494310.1001/jamainternmed.2020.099432167524
    [Google Scholar]
  28. NarasarajuT. YangE. SamyR.P. NgH.H. PohW.P. LiewA.A. PhoonM.C. van RooijenN. ChowV.T. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis.Am. J. Pathol.2011179119921010.1016/j.ajpath.2011.03.01321703402
    [Google Scholar]
  29. FischerK. HoffmannP. VoelklS. MeidenbauerN. AmmerJ. EdingerM. GottfriedE. SchwarzS. RotheG. HovesS. RennerK. TimischlB. MackensenA. Kunz-SchughartL. AndreesenR. KrauseS.W. KreutzM. Inhibitory effect of tumor cell–derived lactic acid on human T cells.Blood200710993812381910.1182/blood‑2006‑07‑03597217255361
    [Google Scholar]
  30. SchmiedelB.J. SinghD. MadrigalA. Valdovino-GonzalezA.G. WhiteB.M. Zapardiel-GonzaloJ. Impact of genetic polymorphisms on human immune cell gene expression.Cell201817561701171510.1016/j.cell.2018.10.022
    [Google Scholar]
  31. LauE.S. McNeillJ.N. PaniaguaS.M. LiuE.E. WangJ.K. BassettI.V. SelvaggiC.A. LubitzS.A. FoulkesA.S. HoJ.E. Sex differences in inflammatory markers in patients hospitalized with COVID-19 infection: Insights from the MGH COVID-19 patient registry.PLoS One2021164e025077410.1371/journal.pone.025077433909684
    [Google Scholar]
  32. BeliceT. DemirI. YükselA. Role of neutrophil-lymphocyte-ratio in the mortality of males diagnosed with COVID-19.Iran. J. Microbiol.202012319419710.18502/ijm.v12i3.323532685114
    [Google Scholar]
  33. ThomasT. StefanoniD. DzieciatkowskaM. IssaianA. NemkovT. HillR.C. FrancisR.O. HudsonK.E. BuehlerP.W. ZimringJ.C. HodE.A. HansenK.C. SpitalnikS.L. D’AlessandroA. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients.J. Proteome Res.202019114455446910.1021/acs.jproteome.0c0060633103907
    [Google Scholar]
  34. ZhengX. ChenJ. DengL. FangZ. ChenG. YeD. Clinical features and risk factors for the severity of inpatients with COVID-19: A retrospective cohort study.SSRN2020356246010.2139/ssrn.3562460
    [Google Scholar]
  35. de la RicaR. BorgesM. ArandaM. del CastilloA. SociasA. PayerasA. RialpG. SociasL. MasmiquelL. Gonzalez-FreireM. Low albumin levels are associated with poorer outcomes in a case series of COVID-19 patients in Spain: a retrospective cohort study.Microorganisms202088110610.3390/microorganisms808110632722020
    [Google Scholar]
  36. LvZ. WangW. QiaoB. CuiX. FengY. ChenL. MaQ. LiuX. The prognostic value of general laboratory testing in patients with COVID-19.J. Clin. Lab. Anal.2021352e2366810.1002/jcla.2366833314316
    [Google Scholar]
  37. DjakpoD.K. WangZ. ZhangR. ChenX. ChenP. AntoineM.M.L.K. Blood routine test in mild and common 2019 coronavirus (COVID-19) patients.Biosci. Rep.2020408BSR2020081710.1042/BSR2020081732725148
    [Google Scholar]
  38. GrauM. IbershoffL. ZacherJ. BrosJ. TomschiF. DieboldK.F. PredelH.G. BlochW. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters.J. Cell. Mol. Med.202226103022303010.1111/jcmm.1732035419946
    [Google Scholar]
  39. GuanW-j. NiZ-y. HuY. LiangW-h. OuC-q. HeJ-x. Clinical characteristics of 2019 novel coronavirus infection in China.MedRxiv202010.1101/2020.02.06.20020974
    [Google Scholar]
  40. BhattacharjeeS. BanerjeeM. Immune thrombocytopenia secondary to COVID-19: A systematic review.SN Compr. Clin. Med.20202112048205810.1007/s42399‑020‑00521‑832984764
    [Google Scholar]
  41. XuP. ZhouQ. XuJ. Mechanism of thrombocytopenia in COVID-19 patients.Ann. Hematol.20209961205120810.1007/s00277‑020‑04019‑032296910
    [Google Scholar]
  42. LippiG. PlebaniM. HenryB.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis.Clin. Chim. Acta202050614514810.1016/j.cca.2020.03.02232178975
    [Google Scholar]
  43. LévesqueV. MillaireÉ. CorsilliD. Rioux-MasséB. CarrierF.M. Severe immune thrombocytopenic purpura in critical COVID-19.Int. J. Hematol.2020112574675010.1007/s12185‑020‑02931‑932613314
    [Google Scholar]
  44. ColemanJ.R. MooreE.E. KelherM.R. SamuelsJ.M. CohenM.J. SauaiaA. BanerjeeA. SillimanC.C. PeltzE.D. Female platelets have distinct functional activity compared with male platelets: Implications in transfusion practice and treatment of trauma-induced coagulopathy.J. Trauma Acute Care Surg.20198751052106010.1097/TA.000000000000239831162329
    [Google Scholar]
  45. XiongQ. XuM. LiJ. LiuY. ZhangJ. XuY. DongW. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study.Clin. Microbiol. Infect.2021271899510.1016/j.cmi.2020.09.02332979574
    [Google Scholar]
  46. SykesD.L. HoldsworthL. JawadN. GunasekeraP. MoriceA.H. CrooksM.G. Post-COVID-19 symptom burden: What is long-COVID and how should we manage it?Lung2021199211311910.1007/s00408‑021‑00423‑z33569660
    [Google Scholar]
  47. MolloyE.J. BearerC.F. COVID-19 in children and altered inflammatory responses.Nature Publishing Group2020340341
    [Google Scholar]
  48. ZhaoM. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies.Int. J. Antimicrob. Agents202055610598210.1016/j.ijantimicag.2020.10598232305588
    [Google Scholar]
  49. MichaudM. BalardyL. MoulisG. GaudinC. PeyrotC. VellasB. CesariM. NourhashemiF. Proinflammatory cytokines, aging, and age-related diseases.J. Am. Med. Dir. Assoc.2013141287788210.1016/j.jamda.2013.05.00923792036
    [Google Scholar]
  50. SanadaF. TaniyamaY. MuratsuJ. OtsuR. ShimizuH. RakugiH. MorishitaR. Source of chronic inflammation in aging.Front. Cardiovasc. Med.201851210.3389/fcvm.2018.0001229564335
    [Google Scholar]
  51. FerrucciL. FabbriE. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty.Nat. Rev. Cardiol.201815950552210.1038/s41569‑018‑0064‑230065258
    [Google Scholar]
  52. KoelmanL. Pivovarova-RamichO. PfeifferA.F.H. GruneT. AleksandrovaK. Cytokines for evaluation of chronic inflammatory status in ageing research: Reliability and phenotypic characterisation.Immun. Ageing20191611110.1186/s12979‑019‑0151‑131139232
    [Google Scholar]
  53. MeftahiG.H. JangraviZ. SahraeiH. BahariZ. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”.Inflamm. Res.202069982583910.1007/s00011‑020‑01372‑832529477
    [Google Scholar]
  54. de SiqueiraJ.V.V. AlmeidaL.G. ZicaB.O. BrumI.B. BarcelóA. de Siqueira GalilA.G. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review.Obes. Res. Clin. Pract.202014539840310.1016/j.orcp.2020.07.00532736969
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673299246240625084103
Loading
/content/journals/cmc/10.2174/0109298673299246240625084103
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chronic condition; COVID-19; hcCRP; Hematological parameters; RBC; WBC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test