Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Methamphetamine (MA) is well recognized as a psychostimulant that can cause neurotoxicity and neurodegeneration, which is associated with cognitive decline, has been confirmed experimentally.

Objective

The research aimed to investigate the neuroprotective properties of europinidin (Eu) in rodents affected by methamphetamine (MA)-induced cognitive impairments and hippocampal alterations. This was achieved by inhibiting lipid peroxidation and pro-inflammatory markers.

Methods

Rats were exposed to cognitive impairment produced by MA. The Morris water maze (MWM) is utilized to evaluate behavioral parameters. Biochemical tests were conducted on malondialdehyde (MDA), catalase (CAT), interleukins-1β (IL-1β), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and the expression of neurotransmitters (Norepinephrine [NE], dopamine [DA], glutamate, and gamma-aminobutyric acid [GABA]) as well as cAMP response element-binding protein (CREB), IL-6, brain-derived neurotrophic factor (BDNF), and caspase 3 proteins. An investigation was carried out using docking methodology to ascertain whether Eu interacts with relevant molecular targets.

Results

Significant decline in the transfer latency and there were significant changes in the amount of SOD, GSH, CAT, and MDA and alterations in levels of IL-6, IL-1β, CREB, TNF-α, BDNF, and Caspase 3 proteins expression. Furthermore, considerably restored level of neurotransmitters (NE, DA, Glutamate, and GABA) were observed in the Eu-treated rats compared to the MA-induced rats. Eu had a favorable affinity towards BDNF with docking scores of -9.486 kcal/mol.

Conclusion

The experiment found that administering Eu to rats improved cognitive abilities by changing antioxidant enzymes, reducing cytokines, and modifying neurotransmitter levels, compared to rats in the control group treated with MA.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673307759240614114201
2024-06-27
2025-09-02
Loading full text...

Full text loading...

References

  1. ElkashefA. VocciF. HansonG. WhiteJ. WickesW. TiihonenJ. Pharmacotherapy of methamphetamine addiction: An update.Subst. Abus.2008293314910.1080/0889707080221855419042205
    [Google Scholar]
  2. KimB. YunJ. ParkB. Methamphetamine-induced neuronal damage: Neurotoxicity and neuroinflammation.Biomol. Ther.202028538138810.4062/biomolther.2020.04432668144
    [Google Scholar]
  3. ShinE.J. DangD.K. TranT.V. TranH.Q. JeongJ.H. NahS.Y. JangC.G. YamadaK. NabeshimaT. KimH.C. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors.Arch. Pharm. Res.201740440342810.1007/s12272‑017‑0897‑y28243833
    [Google Scholar]
  4. NaritaM. AokiK. TakagiM. YajimaY. SuzukiT. Implication of brain-derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by methamphetamine.Neuroscience2003119376777510.1016/S0306‑4522(03)00099‑X12809697
    [Google Scholar]
  5. MotaghinejadM. TaheriP. KeshavarziS. EbadiM. MotevalianM. Neuroprotective effects of forced exercise and bupropion on chronic methamphetamine-induced cognitive impairment via modulation of camp response element-binding protein/brain-derived neurotrophic factor signaling pathway, oxidative stress, and inflammatory biomarkers in rats.Adv. Biomed. Res.20187115110.4103/abr.abr_11_1830662880
    [Google Scholar]
  6. GonçalvesJ. MartinsT. FerreiraR. MilhazesN. BorgesF. RibeiroC.F. MalvaJ.O. MacedoT.R. SilvaA.P. Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain.Ann. N. Y. Acad. Sci.20081139110311110.1196/annals.1432.04318991854
    [Google Scholar]
  7. Hadizadeh-BazazM. VaeziG. khaksariM. HojatiV. Curcumin attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against methamphetamine neurotoxicity in male Wistar rats: Histological and biochemical changes.Neurotoxicology20218420821710.1016/j.neuro.2021.03.01133819551
    [Google Scholar]
  8. RezaeianL. KhaksariM. RafaieeR. MoghaddamK.H. Neuroprotective effects of berberine hydrochloride on methamphetamine-induced cognitive dysfunction: Immunohistochemical and behavioral studies in rats.Basic Clin. Neurosci.202213444345410.32598/bcn.2021.1444.236561238
    [Google Scholar]
  9. CadetJ.L. KrasnovaI.N. Molecular bases of methamphetamine-induced neurodegeneration.Int. Rev. Neurobiol.20098810111910.1016/S0074‑7742(09)88005‑719897076
    [Google Scholar]
  10. DavidsonC. GowA.J. LeeT.H. EllinwoodE.H. Methamphetamine neurotoxicity: Necrotic and apoptotic mechanisms and relevance to human abuse and treatment.Brain Res. Brain Res. Rev.200136112210.1016/S0165‑0173(01)00054‑611516769
    [Google Scholar]
  11. SeidenL.S. SabolK.E. Methamphetamine and methylenedioxymethamphetamine neurotoxicity: Possible mechanisms of cell destruction.NIDA Res. Monogr.19961632512768809863
    [Google Scholar]
  12. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  13. DemirY. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis.J. Pharm. Pharmacol.201971101576158310.1111/jphp.1314431347707
    [Google Scholar]
  14. ÇağlayanC. TaslimiP. DemirY. KüçüklerS. KandemirF.M. Gulçinİ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes.J. Biochem. Mol. Toxicol.20193310e2238110.1002/jbt.2238131454121
    [Google Scholar]
  15. CaglayanC. DemirY. KucuklerS. TaslimiP. KandemirF.M. Gulçinİ. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach.J. Food Biochem.2019432e1272010.1111/jfbc.1272031353640
    [Google Scholar]
  16. ShaerzadehF. StreitW.J. HeysieattalabS. KhoshboueiH. Methamphetamine neurotoxicity, microglia, and neuroinflammation.J. Neuroinflammation201815134110.1186/s12974‑018‑1385‑030541633
    [Google Scholar]
  17. BrownJ.M. YamamotoB.K. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress.Pharmacol. Ther.2003991455310.1016/S0163‑7258(03)00052‑412804698
    [Google Scholar]
  18. KrasnovaI.N. CadetJ.L. Methamphetamine toxicity and messengers of death.Brain Res. Brain Res. Rev.200960237940710.1016/j.brainresrev.2009.03.00219328213
    [Google Scholar]
  19. KeshavarziS. KermanshahiS. KaramiL. MotaghinejadM. MotevalianM. SadrS. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways.Neurotoxicology201972748410.1016/j.neuro.2019.02.00430742852
    [Google Scholar]
  20. KrasnovaI.N. ChiflikyanM. JustinovaZ. McCoyM.T. LadenheimB. JayanthiS. QuinteroC. BrannockC. BarnesC. AdairJ.E. LehrmannE. KobeissyF.H. GoldM.S. BeckerK.G. GoldbergS.R. CadetJ.L. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat.Neurobiol. Dis.20135813214310.1016/j.nbd.2013.05.00923726845
    [Google Scholar]
  21. LauroG.J. FrancisJ. Natural Food Colorants: Science And Technology1st ed.Boca RatonCRC press200034410.1201/9781482270518
    [Google Scholar]
  22. Delgado-VargasF. Paredes-LopezO. Natural colorants for food and nutraceutical usesCRC press200234410.1201/9781420031713
    [Google Scholar]
  23. JaradatN.A. Al-RamahiR. ZaidA.N. AyeshO.I. EidA.M. Ethnopharmacological survey of herbal remedies used for treatment of various types of cancer and their methods of preparations in the West Bank-Palestine.BMC Complement. Altern. Med.20161619310.1186/s12906‑016‑1070‑826955822
    [Google Scholar]
  24. SezikE. YeşiladaE. HondaG. TakaishiY. TakedaY. TanakaT. Traditional medicine in Turkey X. Folk medicine in Central Anatolia.J. Ethnopharmacol.2001752-39511510.1016/S0378‑8741(00)00399‑811297840
    [Google Scholar]
  25. BeigmohammadiM. MovafeghiA. SharafiA. JafariS. DanafarH. Cell suspension culture of Plumbago europaea L. towards production of plumbagin.Iran. J. Biotechnol.2019172465410.21859/ijb.216931457059
    [Google Scholar]
  26. AltharawiA. AlharthyK.M. AlthurwiH.N. AlbaqamiF.F. AlzareaS.I. Al-AbbasiF.A. NadeemM.S. KazmiI. Europinidin inhibits rotenone-activated parkinson’s disease in rodents by decreasing lipid peroxidation and inflammatory cytokines pathways.Molecules20222721715910.3390/molecules2721715936363986
    [Google Scholar]
  27. AlharbiK.S. Europinidin mitigates 3-NPA-induced huntington’s disease symptoms in rats: A comprehensive analysis of oxidative stress, mitochondrial enzyme complex activity, pro-inflammatory markers and neurotransmitter alterations.Biomedicines202412362510.3390/biomedicines1203062538540238
    [Google Scholar]
  28. MahdiW.A. AlGhamdiS.A. AlghamdiA.M. ImamS.S. AlshehriS. AlmanieaM.A. HajjarB.M. Al-AbbasiF.A. SayyedN. KazmiI. Effect of europinidin against alcohol-induced liver damage in rats by inhibiting the TNF-α/TGF-β/IFN-γ/NF-kB/caspase-3 signaling pathway.ACS Omega2023825226562266410.1021/acsomega.3c0131237396259
    [Google Scholar]
  29. AhmadA. Neuroprotective efficacy of europinidin in streptozotocin-induced memory impairment by modulation of oxidative stress, inflammatory mediators, and cholinesterase activity in rats.Oxid. Med. Cell. Longev.2023202311110.1155/2023/524812736760351
    [Google Scholar]
  30. MotaghinejadM. SeyedjavadeinZ. MotevalianM. AsadiM. The neuroprotective effect of lithium against high dose methylphenidate: Possible role of BDNF.Neurotoxicology201656405410.1016/j.neuro.2016.06.01027343358
    [Google Scholar]
  31. AslS.S. Non-acute effects of different doses of 3, 4- methylenedioxymethamphetamine on spatial memory in the Morris water maze in Sprague-Dawley male rats**.Neural Regen. Res.201162217151719
    [Google Scholar]
  32. SedaghatR. RoghaniM. KhaliliM. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model.Iran. J. Pharm. Res.201413122723424734075
    [Google Scholar]
  33. KhadrawyY.A. SalemA.M. El-ShamyK.A. AhmedE.K. FadlN.N. HosnyE.N. Neuroprotective and therapeutic effect of caffeine on the rat model of parkinson’s disease induced by rotenone.J. Diet. Suppl.201714555357210.1080/19390211.2016.127591628301304
    [Google Scholar]
  34. Shahid NadeemM. KhanJ.A. Al-AbbasiF.A. AlGhamdiS.A. AlghamdiA.M. SayyedN. GuptaG. KazmiI. Protective effect of hirsutidin against rotenone-induced parkinsonism via inhibition of caspase-3/interleukins-6 and 1β.ACS Omega2023814130161302510.1021/acsomega.3c0020137065035
    [Google Scholar]
  35. KöroğluZ. KizirD. KaramanM. DemirY. TürkeşC. BeydemirŞ. Protective effects of esculetin against doxorubicin-induced toxicity correlated with oxidative stress in rat liver: In vivo and in silico studies.J. Biochem. Mol. Toxicol.2024384e2370210.1002/jbt.2370238567888
    [Google Scholar]
  36. DemirY. Exploring esculetin's protective role: Countering doxorubicin-induced oxidative stress in rat heart.J. Lab. Anim. Sci. Pract.2024414452
    [Google Scholar]
  37. BhangaleJ.O. AcharyaS.R. Anti-parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves.Adv. Pharmacol. Sci.201620161910.1155/2016/943610626884755
    [Google Scholar]
  38. AlımZ. KılıçD. DemirY. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: In vitro inhibition and molecular modeling studies.Arch. Physiol. Biochem.2019125538739510.1080/13813455.2018.147064629741961
    [Google Scholar]
  39. SeverB. AltıntopM.D. DemirY. PekdoğanM. ÇiftçiA.G. BeydemirŞ. ÖzdemirA. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives.J. Mol. Struct.2021122412944610.1016/j.molstruc.2020.129446
    [Google Scholar]
  40. SağlıkB.N. ÇevikU.A. OsmaniyeD. LeventS. ÇavuşoğluB.K. DemirY. IlgınS. ÖzkayY. KoparalA.S. BeydemirŞ. KaplancıklıZ.A. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives.Bioorg. Chem.20199110315310.1016/j.bioorg.2019.10315331382057
    [Google Scholar]
  41. SeverB. AltıntopM.D. DemirY. ÇiftçiA.G. BeydemirŞ. ÖzdemirA. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds.Bioorg. Chem.202010210411010.1016/j.bioorg.2020.10411032739480
    [Google Scholar]
  42. GuptaM. SharmaR. KumarA. Docking techniques in toxicology: An overview.Curr. Bioinform.202015660061010.2174/1574893614666191003125540
    [Google Scholar]
  43. NavyashreeV. KantK. KumarA. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach.J. Biomol. Struct. Dyn.20213941404141610.1080/07391102.2020.173160332072856
    [Google Scholar]
  44. GuptaM. SharmaR. KumarA. Docking techniques in pharmacology: How much promising?Comput. Biol. Chem.20187621021710.1016/j.compbiolchem.2018.06.00530067954
    [Google Scholar]
  45. YangX. WangY. LiQ. ZhongY. ChenL. DuY. HeJ. LiaoL. XiongK. YiC. YanJ. The main molecular mechanisms underlying methamphetamine- induced neurotoxicity and implications for pharmacological treatment.Front. Mol. Neurosci.20181118610.3389/fnmol.2018.0018629915529
    [Google Scholar]
  46. CoxB.M. CopeZ.A. ParsegianA. FlorescoS.B. Aston-JonesG. SeeR.E. Chronic methamphetamine self-administration alters cognitive flexibility in male rats.Psychopharmacology2016233122319232710.1007/s00213‑016‑4283‑027037939
    [Google Scholar]
  47. MizoguchiH. YamadaK. Methamphetamine use causes cognitive impairment and altered decision-making.Neurochem. Int.201912410611310.1016/j.neuint.2018.12.01930611760
    [Google Scholar]
  48. Glasner-EdwardsS. MooneyL.J. Marinelli-CaseyP. HillhouseM. AngA. RawsonR. Anxiety disorders among methamphetamine dependent adults: Association with post-treatment functioning.Am. J. Addict.201019538539010.1111/j.1521‑0391.2010.00061.x20716300
    [Google Scholar]
  49. McKetinR. LubmanD.I. LeeN.M. RossJ.E. SladeT.N. Major depression among methamphetamine users entering drug treatment programs.Med. J. Aust.2011195S3S51S5510.5694/j.1326‑5377.2011.tb03266.x21806520
    [Google Scholar]
  50. NordahlT.E. SaloR. LeamonM. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review.J. Neuropsychiatry Clin. Neurosci.200315331732510.1176/jnp.15.3.31712928507
    [Google Scholar]
  51. ZwebenJ.E. CohenJ.B. ChristianD. GallowayG.P. SalinardiM. ParentD. IguchiM. Psychiatric symptoms in methamphetamine users.Am. J. Addict.200413218119010.1080/1055049049043605515204668
    [Google Scholar]
  52. LaVoieM.J. CardJ.P. HastingsT.G. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity.Exp. Neurol.20041871475710.1016/j.expneurol.2004.01.01015081587
    [Google Scholar]
  53. RiddleE.L. FleckensteinA.E. HansonG.R. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity.AAPS J.200682E413E41810.1007/BF0285491416808044
    [Google Scholar]
  54. RamirezS.H. PotulaR. FanS. EidemT. PapuganiA. ReichenbachN. DykstraH. WekslerB.B. RomeroI.A. CouraudP.O. PersidskyY. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells.J. Cereb. Blood Flow Metab.200929121933194510.1038/jcbfm.2009.11219654589
    [Google Scholar]
  55. RothmanR.B. BaumannM.H. DerschC.M. RomeroD.V. RiceK.C. CarrollF.I. PartillaJ.S. Amphetamine- type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin.Synapse2001391324110.1002/1098‑2396(20010101)39:1<32::AID‑SYN5>3.0.CO;2‑311071707
    [Google Scholar]
  56. VolkowN.D. ChangL. WangG.J. FowlerJ.S. YeeL.M. FranceschiD. SedlerM.J. GatleyS.J. HitzemannR. DingY.S. LoganJ. WongC. MillerE.N. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers.Am. J. Psychiatry2001158337738210.1176/appi.ajp.158.3.37711229977
    [Google Scholar]
  57. GlicksteinS.B. SchmaussC. Effect of methamphetamine on cognition and repetitive motor behavior of mice deficient for dopamine D2 and D3 receptors.Ann. N. Y. Acad. Sci.20041025111011810.1196/annals.1316.01415542707
    [Google Scholar]
  58. PanenkaW.J. ProcyshynR.M. LecomteT. MacEwanG.W. FlynnS.W. HonerW.G. BarrA.M. Methamphetamine use: A comprehensive review of molecular, preclinical and clinical findings.Drug Alcohol Depend.2013129316717910.1016/j.drugalcdep.2012.11.01623273775
    [Google Scholar]
  59. KohnoM. LinkJ. DennisL.E. McCreadyH. HuckansM. HoffmanW.F. LoftisJ.M. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies.Pharmacol. Biochem. Behav.2019179344210.1016/j.pbb.2019.01.00730695700
    [Google Scholar]
  60. DemirY. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.Drug Dev. Res.202081562863610.1002/ddr.2166732232985
    [Google Scholar]
  61. DemirY. ÖzaslanM.S. DuranH.E. KüfrevioğluÖ.İ. BeydemirŞ. Inhibition effects of quinones on aldose reductase: Antidiabetic properties.Environ. Toxicol. Pharmacol.20197010319510.1016/j.etap.2019.10319531125830
    [Google Scholar]
  62. LiY.H. WangH.J. QiaoD.F. Effect of methamphetamine on the microglial cells and activity of nitric oxide synthases in rat striatum.J. South. Med.200828101789179118971173
    [Google Scholar]
  63. TocharusJ. KhonthunC. ChongthammakunS. GovitrapongP. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines.J. Pineal Res.201048434735210.1111/j.1600‑079X.2010.00761.x20374443
    [Google Scholar]
  64. LoftisJ.M. JanowskyA. Neuroimmune basis of methamphetamine toxicity.Int. Rev. Neurobiol.201411816519710.1016/B978‑0‑12‑801284‑0.00007‑525175865
    [Google Scholar]
  65. SekineY. OuchiY. SugiharaG. TakeiN. YoshikawaE. NakamuraK. IwataY. TsuchiyaK.J. SudaS. SuzukiK. KawaiM. TakebayashiK. YamamotoS. MatsuzakiH. UekiT. MoriN. GoldM.S. CadetJ.L. Methamphetamine causes microglial activation in the brains of human abusers.J. Neurosci.200828225756576110.1523/JNEUROSCI.1179‑08.200818509037
    [Google Scholar]
  66. ZengQ. XiongQ. ZhouM. TianX. YueK. LiY. ShuX. RuQ. Resveratrol attenuates methamphetamine-induced memory impairment via inhibition of oxidative stress and apoptosis in mice.J. Food Biochem.2021452e1362210.1111/jfbc.1362233502009
    [Google Scholar]
  67. AziziS. KheirandishR. DabiriS. LakzaeeM. Adverse effects of methamphetamine on vital organs of male rats: Histopathological and immunohistochemical investigations.Iran. J. Basic Med. Sci.202326554955737051094
    [Google Scholar]
  68. ZhangS. JinY. LiuX. YangL. GeZ. WangH. LiJ. ZhengJ. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons.Brain Res.2014158211110.1016/j.brainres.2014.07.04025091639
    [Google Scholar]
  69. RoshaniS. Hatami NematiH. SadeghianR. KhoshsiratH.A. Short- and long-term administration of buprenorphine improved gene expression of P2X4 and GABAA receptors in the hippocampus of methamphetamine rats.Heliyon2022811e1143210.1016/j.heliyon.2022.e1143236444255
    [Google Scholar]
  70. MoratallaR. Ares-SantosS. GranadoN. Neurotoxicity of Methamphetamine. Handbook of Neurotoxicity. KostrzewaR.M. New York, NYSpringer New York20142207223010.1007/978‑1‑4614‑5836‑4_123
    [Google Scholar]
  71. KrasnovaI.N. JustinovaZ. CadetJ.L. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways.Psychopharmacology (Berl.)2016233101945196210.1007/s00213‑016‑4235‑826873080
    [Google Scholar]
  72. WuJ. ZhuD. ZhangJ. LiG. LiuZ. SunJ. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway.Biochem. Biophys. Res. Commun.2015465336837310.1016/j.bbrc.2015.08.00526271595
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673307759240614114201
Loading
/content/journals/cmc/10.2174/0109298673307759240614114201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test