Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Microbial infections are mostly caused by Gram-positive as well as Gram-negative bacteria affecting millions of people worldwide. There is an urgent need to explore existing molecules or discover new chemical entities (NCEs) against bacterial infection.

Objective

The main objective of the current investigation is to explore recently US-FDA-approved drugs (2019-2023) against various targets of Gram-positive and Gram-negative bacteria using high-performance computational studies.

Aim

The current study aims to find out the potential drugs of recently US-FDA-approved drugs as repurposing candidates against bacterial infections.

Methods

The targets of Gram-positive and Gram-negative bacteria were identified using literature studies whereas ligands were selected from the FDA-approved drug lists of the last 5 years. Further, the drugs and targets were prepared through the LigPrep and Protein Preparation Wizard modules of Schrödinger (release 2023-1) respectively. The GlideDock and Desmond modules of Schrödinger were used for the molecular docking study and molecular dynamics simulation respectively.

Results

A total of 202 drugs were found in the FDA lists which were approved in the last five years. Out of them, 77 drugs were selected for docking study based on their properties. A total of 21 drugs have shown energetically favored binding conformation of drugs in the active site of bacterial targets. The interaction of these drugs was studied in detail using molecular dynamics (MD) simulation. The MD simulation results have shown stable dynamic conformation of triclabendazole (anti-helminthic) with topoisomerase II of gram-negative bacteria whereas solriamfetol (for obstructive sleep apnea) has shown stable dynamic conformation in the active site of restriction endonuclease of Gram-positive bacteria.

Conclusion

The identified drugs can be repurposed against Gram-positive and Gram-negative bacterial infections. However, further experimental studies are required to confirm their antibacterial potential.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673296749240207115303
2024-02-14
2025-10-26
Loading full text...

Full text loading...

References

  1. DoronS. GorbachS.L. Bacterial infections: Overview.International Encyclopedia of Public Health.Elsevier200827328210.1016/B978‑012373960‑5.00596‑7
    [Google Scholar]
  2. RajputA. thakurA. SharmaS. KumarM. aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance.Nucleic Acids Res.201846D1D894D90010.1093/nar/gkx115729156005
    [Google Scholar]
  3. KhanF. PhamD.T.N. KimY.M. Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria.Appl. Microbiol. Biotechnol.202010451955197610.1007/s00253‑020‑10360‑131970432
    [Google Scholar]
  4. NaveedM. ChaudhryZ. BukhariS.A. MeerB. AshrafH. Antibiotics resistance mechanism.Antibiotics and Antimicrobial Resistance Genes in the Environment.Elsevier202029231210.1016/B978‑0‑12‑818882‑8.00019‑X
    [Google Scholar]
  5. SpeerB.S. ShoemakerN.B. SalyersA.A. Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance.Clin. Microbiol. Rev.19925438739910.1128/CMR.5.4.3871423217
    [Google Scholar]
  6. BalsalobreL. BlancoA. AlarcónT. Beta-Lactams.Antibiotic Drug Resistance.Wiley2019577210.1002/9781119282549.ch3
    [Google Scholar]
  7. AmraeiS. EslamiG. TaherpourA. HashemiA. The role of ACT and FOX genes in Klebsiella pneumoniae strains isolated from hospitalized patients.Micro. Nano. Bio. Aspects2022121825
    [Google Scholar]
  8. ShalabyM.A.W. DoklaE.M.E. SeryaR.A.T. AbouzidK.A.M. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective.Eur. J. Med. Chem.202019911231210.1016/j.ejmech.2020.11231232442851
    [Google Scholar]
  9. SpinlerJ.K. HaidacherS.J. HochK.M. LunaR.A. HaagA.M. Discerning strain-specific β-lactam drug resistance by clonal isolates of multi-drug resistant Pseudomonas aeruginosa using selected reaction monitoring.Int. J. Mass Spectrom.2019438364310.1016/j.ijms.2018.12.013
    [Google Scholar]
  10. World Health Organization.Antimicrobial resistanceAvailable from: https://www.google.com/search?client=firefox-b-d&q=World+Health+Organization.+Antimicrobial+resistance (Accessed on 8th August, 2023).
  11. EnvironmentU.N. Antimicrobial resistance: a global threatAvailable from: https://www.unep.org/explore-topics/chemicals-waste/what-we-do/emerging-issues/antimicrobial-resistance-global-threat (Accessed on 8th August, 2023).
  12. SibilioP. BiniS. FisconG. SponzielloM. ConteF. PecceV. DuranteC. PaciP. FalconeR. NorataG.D. FarinaL. VerrientiA. In silico drug repurposing in COVID-19: A network-based analysis.Biomed. Pharmacother.202114211195410.1016/j.biopha.2021.11195434358753
    [Google Scholar]
  13. ClinicalTrials.govLemborexant augmentation of naltrexone for alcohol craving and sleep2023Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05458609 (Accessed on August 20, 2023)
  14. MohamedA. ChilingerianJ.N. BaliP. ObonyoM. DebnathA. A bioluminescence-based drug screen identifies activities of fexinidazole and its metabolites against helicobacter pylori. Antibiotics20221111160510.3390/antibiotics1111160536421252
    [Google Scholar]
  15. ReleaseS. 2023-4: Force Fields.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  16. LoganN.A. Bacillus and other aerobic endospore-forming bacteria.Manual of Clinical Microbiology.Wiley2011381402
    [Google Scholar]
  17. MarculescuC.E. BerbariE.F. CockerillF.R.III OsmonD.R. Unusual aerobic and anaerobic bacteria associated with prosthetic joint infections.Clin. Orthop. Relat. Res.2006451451556310.1097/01.blo.0000229317.43631.8116906072
    [Google Scholar]
  18. AppelbaumP.C. Antimicrobial resistance in Streptococcus pneumoniae: an overview.Clin. Infect. Dis.1992151778310.1093/clinids/15.1.771617076
    [Google Scholar]
  19. Cerdeño-TárragaA.M. EfstratiouA. DoverL.G. HoldenM.T. PallenM. BentleyS.D. BesraG.S. ChurcherC. JamesK.D. De ZoysaA. ChillingworthT. CroninA. DowdL. FeltwellT. HamlinN. HolroydS. JagelsK. MouleS. QuailM.A. RabbinowitschE. RutherfordK.M. thomsonN.R. UnwinL. WhiteheadS. BarrellB.G. ParkhillJ. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129.Nucleic Acids Res.200331226516652310.1093/nar/gkg87414602910
    [Google Scholar]
  20. KoehlerT.M. Bacillus anthracis physiology and genetics.Mol. Aspects Med.200930638639610.1016/j.mam.2009.07.00419654018
    [Google Scholar]
  21. NagarajaT.G. Gram-negative, non-spore-forming anaerobes.Veterinary Microbiology.Wiley202229430810.1002/9781119650836.ch33
    [Google Scholar]
  22. AlageediN. M. MubarakK. I. Detection of multidrug resistance (MDR) and pattern of resistance among clinical Pseudomonas aeruginosa isolates.2023020014
    [Google Scholar]
  23. SmegoR.A. FreanJ. KoornhofH.J. YersiniosisI. Yersiniosis I: Microbiological and clinicoepidemiological aspects of plague and non-plague Yersinia infections.Eur. J. Clin. Microbiol. Infect. Dis.199918111510.1007/s10096005021910192708
    [Google Scholar]
  24. McClellandM. SandersonK.E. SpiethJ. CliftonS.W. LatreilleP. CourtneyL. PorwollikS. AliJ. DanteM. DuF. HouS. LaymanD. LeonardS. NguyenC. ScottK. HolmesA. GrewalN. MulvaneyE. RyanE. SunH. FloreaL. MillerW. StonekingT. NhanM. WaterstonR. WilsonR.K. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2.Nature2001413685885285610.1038/3510161411677609
    [Google Scholar]
  25. ReleaseS. 2023-4: LigPrep.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  26. Release.New York, NYSchrödinger, LLC2021
    [Google Scholar]
  27. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  28. Schrödinger Release 2021-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021 ; Impact, Schrödinger, LLC, New York, NY. New York, NYPrime, Schrödinger, LLC2021
    [Google Scholar]
  29. SahayarayanJ.J. RajanK.S. VidhyavathiR. NachiappanM. PrabhuD. AlfarrajS. ArokiyarajS. DanielA.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches.Saudi J. Biol. Sci.202128140040710.1016/j.sjbs.2020.10.02333424323
    [Google Scholar]
  30. ReleaseS. 2023-4: Glide.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  31. ReleaseS. 2023-4: SiteMap.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  32. ZhouZ. FeltsA.K. FriesnerR.A. LevyR.M. Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets.J. Chem. Inf. Model.20074741599160810.1021/ci700034617585856
    [Google Scholar]
  33. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  34. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.103293625835573
    [Google Scholar]
  35. BrandsdalB. O. ÖsterbergF. AlmlöfM. FeierbergI. LuzhkovV. B. ÅqvistJ. Free energy calculations and ligand binding.Adv. Protein. Chem.20036612315810.1016/S0065‑3233(03)66004‑3
    [Google Scholar]
  36. HuangN. KalyanaramanC. BernackiK. JacobsonM.P. Molecular mechanics methods for predicting protein-ligand binding.Phys. Chem. Chem. Phys.20068445166517710.1039/B608269F17203140
    [Google Scholar]
  37. WangS. SunX. CuiW. YuanS. MM/PB(GB)SA benchmarks on soluble proteins and membrane proteins.Front. Pharmacol.202213101835110.3389/fphar.2022.101835136532746
    [Google Scholar]
  38. LambertiV.E. FosdickL.D. JessupE.R. SchaubleC.J.C. A hands-on introduction to molecular dynamics.J. Chem. Educ.200279560110.1021/ed079p601
    [Google Scholar]
  39. LinertW. BridgeM. OhtakiH. Solvation.Comprehensive Coordination Chemistry II.Elsevier200359761010.1016/B0‑08‑043748‑6/01159‑2
    [Google Scholar]
  40. DasmahapatraU. KumarC.K. DasS. SubramanianP.T. MuraliP. IsaacA.E. RamanathanK. MmB. ChandaK. In-silico molecular modelling, MM/GBSA binding free energy and molecular dynamics simulation study of novel pyrido fused imidazo[4,5-c]quinolines as potential anti-tumor agents.Front Chem.20221099136910.3389/fchem.2022.99136936247684
    [Google Scholar]
  41. GuptaS. BajajV. Applications of computer-aided approaches to determine urease inhibitory activities of flavonoids analogous.Orient. J. Chem.20183442017202510.13005/ojc/3404040
    [Google Scholar]
  42. ReleaseS. Prime.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  43. YuZ. JacobsonM.P. FriesnerR.A. What role do surfaces play in GB models? A new-generation of surface-generalized born model based on a novel gaussian surface for biomolecules.J. Comput. Chem.2006271728910.1002/jcc.2030716261581
    [Google Scholar]
  44. Schrödinger Release 2023-4: Desmond molecular dynamics system.Shaw ResearchMaestro-Desmond Interoperability Tools, SchrödingerNew York, NY2023
    [Google Scholar]
  45. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  46. HooverW.G. Canonical dynamics: Equilibrium phase-space distributions.Phys. Rev. A Gen. Phys.19853131695169710.1103/PhysRevA.31.16959895674
    [Google Scholar]
  47. ZhongN. Management and prevention of SARS in China.Philos. Trans. R. Soc. Lond. B. Biol. Sci.200435914471115111610.1098/rstb.2004.149115306397
    [Google Scholar]
  48. KalibaevaG. FerrarioM. CiccottiG. Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial.Mol. Phys.2003101676577810.1080/0026897021000044025
    [Google Scholar]
  49. FadakaA.O. ArulebaR.T. SibuyiN.R.S. KleinA. MadieheA.M. MeyerM. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: A computational-aided approach.J. Biomol. Struct. Dyn.20224083416342710.1080/07391102.2020.184719733200673
    [Google Scholar]
  50. YuceM. CicekE. InanT. DagA.B. KurkcuogluO. SungurF.A. Repurposing of FDA -approved drugs against active site and potential allosteric drug-binding sites of COVID -19 main protease.Proteins202189111425144110.1002/prot.2616434169568
    [Google Scholar]
  51. ShaikhN. LinthoiR.K. SwamyK.V. KarthikeyanM. VyasR. Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets.J. Biomol. Struct. Dyn.20221936134605
    [Google Scholar]
  52. SrisongkramT. WeerapreeyakulN. Drug repurposing against kras mutant g12c: A machine learning, molecular docking, and molecular dynamics study.Int. J. Mol. Sci.202224166910.3390/ijms2401066936614109
    [Google Scholar]
  53. MatondoA. DenderaW. IsamuraB.K. NgboluaK.N. MamboH.V.S. MuzomweM. MudogoV. In silico drug repurposing of anticancer drug 5-FU and analogues against sars-cov-2 main protease: molecular docking, molecular dynamics simulation, pharmacokinetics and chemical reactivity studies.Adv. Appl. Bioinform. Chem.202215597710.2147/AABC.S36611135996620
    [Google Scholar]
  54. SohrabyF. BagheriM. AryapourH. Performing an in silico repurposing of existing drugs by combining virtual screening and molecular dynamics simulation.Methods Mol Biol20191903234310.1007/978‑1‑4939‑8955‑3_2
    [Google Scholar]
  55. ChittepuV.C.S.R. KalhotraP. Osorio-GallardoT. Gallardo-VelázquezT. Osorio-RevillaG. Repurposing of FDA-Approved NSAIDs for DPP-4 inhibition as an alternative for diabetes mellitus treatment: Computational and in vitro study.Pharmaceutics201911523810.3390/pharmaceutics1105023831108878
    [Google Scholar]
  56. SharmaN. SinghA. SharmaR. KumarA. Repurposing of auranofin against bacterial infections: An in silico and in vitro study.Curr. Computeraided Drug Des.202117568770110.2174/13862073MTA4iMjM1032679020
    [Google Scholar]
  57. RanaR. SharmaR. KumarA. Repurposing of fluvastatin against candida albicans cyp450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy: An in silico and in vitro study.Curr. Mol. Med.201919750652410.2174/156652401966619052009464431109273
    [Google Scholar]
  58. GargA. SinghA. KumarA. Selective estrogen receptor modulators against Gram-positive and Gram-negative bacteria: an experimental study.Future Microbiol.20211613987100110.2217/fmb‑2020‑031034406075
    [Google Scholar]
  59. KapoorY. SharmaR. KumarA. Repurposing of existing drugs for the bacterial infections: An in silico and in vitro study.Infect. Disord. Drug Targets202020218219710.2174/22123989OTQ3xNjArTcVY30474540
    [Google Scholar]
  60. AlaviM. AshengrophM. Interaction of zincite, alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol with virulence factors of Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Staphylococcus aureus.Expert Rev. Anti Infect. Ther.202312010.1080/14787210.2023.223812337461145
    [Google Scholar]
  61. GuoX. LinY. HeF. JinY. ChenS. LiT. WuC. ZhangL. ChenX. Identification of active compounds of traditional chinese medicine derived from maxing shigan decoction for COVID-19 treatment: A meta-analysis and in silico study.Expert Rev. Anti Infect. Ther.202321887188910.1080/14787210.2023.223889937481738
    [Google Scholar]
  62. GuptaM. SharmaR. KumarA. Docking techniques in pharmacology: How much promising?Comput. Biol. Chem.20187621021710.1016/j.compbiolchem.2018.06.00530067954
    [Google Scholar]
  63. GuptaM. SharmaR. KumarA. Docking techniques in toxicology: An overview.Curr. Bioinform.202015660061010.2174/1574893614666191003125540
    [Google Scholar]
  64. MiyachiroM. M. Contreras-MartelC. DessenA. Penicillin-binding proteins (pbps) and bacterial cell.Wall Elongation Complexes2019273289
    [Google Scholar]
  65. PrzepioraT. FigajD. BoguckaA. Fikowicz-KroskoJ. CzajkowskiR. Hugouvieux-Cotte-PattatN. Skorko- GlonekJ. The periplasmic oxidoreductase DsbA Is required for virulence of the phytopathogen Dickeya solani. Int. J. Mol. Sci.202223269710.3390/ijms2302069735054882
    [Google Scholar]
  66. HelgesenE. SætreF. SkarstadK. Topoisomerase IV tracks behind the replication fork and the SeqA complex during DNA replication in Escherichia coli.Sci. Rep.202111147410.1038/s41598‑020‑80043‑433436807
    [Google Scholar]
  67. GingoldE.B. The use of restriction endonucleases.Nucleic Acids.New JerseyHumana Press217224
    [Google Scholar]
  68. HevenerK.E. YunM.K. QiJ. KerrI.D. BabaogluK. HurdleJ.G. BalakrishnaK. WhiteS.W. LeeR.E. Structural studies of pterin-based inhibitors of dihydropteroate synthase.J. Med. Chem.201053116617710.1021/jm900861d19899766
    [Google Scholar]
  69. BrunkE. RothlisbergerU. Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states.Chem. Rev.2015115126217626310.1021/cr500628b25880693
    [Google Scholar]
  70. AdcockS.A. McCammonJ.A. Molecular dynamics: Survey of methods for simulating the activity of proteins.Chem. Rev.200610651589161510.1021/cr040426m16683746
    [Google Scholar]
  71. SharmaA. Isaac Newton, Leonhard Euler and IF=ma.Phys. Essays201427350350910.4006/0836‑1398‑27.3.503
    [Google Scholar]
  72. NowakowskiM. RosuH.C. Newton’s laws of motion in the form of a Riccati equation.Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics200265404760210.1103/PhysRevE.65.04760212006083
    [Google Scholar]
  73. MajumderR. MandalM. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach.J. Biomol. Struct. Dyn.202240269671110.1080/07391102.2020.181778732897138
    [Google Scholar]
  74. CotestaS. StahlM. The environment of amide groups in protein–ligand complexes: H-bonds and beyond.J. Mol. Model.200612443644410.1007/s00894‑005‑0067‑x16344948
    [Google Scholar]
  75. ChenY. ShoichetB.K. Molecular docking and ligand specificity in fragment-based inhibitor discovery.Nat. Chem. Biol.20095535836410.1038/nchembio.15519305397
    [Google Scholar]
  76. KazmiS.R. JunR. YuM.S. JungC. NaD. In silico approaches and tools for the prediction of drug metabolism and fate: A review.Comput. Biol. Med.2019106546410.1016/j.compbiomed.2019.01.00830682640
    [Google Scholar]
  77. AbrahamM.H. IbrahimA. ZissimosA.M. ZhaoY.H. ComerJ. ReynoldsD.P. Application of hydrogen bonding calculations in property based drug design.Drug Discov. Today20027201056106310.1016/S1359‑6446(02)02478‑912546895
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673296749240207115303
Loading
/content/journals/cmc/10.2174/0109298673296749240207115303
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test