Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Among the various investigated drug carriers, metal-organic frameworks (MOFs) have recently gained attention due to their ability to adsorb different drugs and compatibility with various surface modification strategies. In this study, molecular dynamic simulation was conducted to assess the effect of chitosan on the loading of cyclophosphamide into MIL-100(Fe).

Methods

The simulations provided insights into atomic interactions by determining the coefficient of diffusion as mean squared displacement (MSD), resulting in values of 1.35 and 1.25 before and after chitosan coating, respectively. Experimental analysis of the chitosan-coated MIL-100(Fe) containing cyclophosphamide (MIL-100(Fe)/CS/CP) was performed using SEM, FTIR, BET, DLS, and powder X-ray diffraction. The drug loading and release processes were evaluated using UV-spectroscopy.

Results

- studies were carried out to assess the performance of the system. The drug loading in chitosan-coated MIL-100(Fe) showed a significant increase compared to uncoated MIL-100(Fe), with payloads of 32% and 26.41%, respectively.

Conclusion

DLS analysis revealed that the presence of chitosan increased the particle size of MIL-100(Fe) from 381 to 463 nm and altered the zeta potential from 18 to -17 mV. The toxic impact of MIL-100(Fe)/CS/CP was evaluated on MCF-7 cells (human breast cancer cells) through experimental analysis. images and H&E analysis demonstrated the inhibitory effects of MIL-100(Fe)/CS/CP on tumor cells. Additionally, the drug loading of MIL-100(Fe) particles and MIL-100(Fe)/CS was simulated using the molecular dynamics software LAAMPS, providing further insights into the system's behavior and performance.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673266209231214072318
2024-01-26
2025-09-01
Loading full text...

Full text loading...

References

  1. ZhouZ. KeQ. WuM. ZhangL. JiangK. Pore space partition approach of ZIF-8 for pH responsive codelivery of ursolic acid and 5-fluorouracil.ACS Mat. Letters20235246647210.1021/acsmaterialslett.2c01097
    [Google Scholar]
  2. ZurongS. AliT. XuehuaF. Research on the synthesis of chitosan@ MIL-100 (Fe).E3S Web of Conferences.EDP Sciences2021245, 03089.10.1051/e3sconf/202124503089
    [Google Scholar]
  3. YaghiO.M. O’KeeffeM. OckwigN.W. ChaeH.K. EddaoudiM. KimJ. Reticular synthesis and the design of new materials.Nature2003423694170571410.1038/nature0165012802325
    [Google Scholar]
  4. FarhaO.K. HuppJ.T. Rational design, synthesis, purification, and activation of metal-organic framework materials.Acc. Chem. Res.20104381166117510.1021/ar100061720608672
    [Google Scholar]
  5. FarhaO.K. EryaziciI. JeongN.C. HauserB.G. WilmerC.E. SarjeantA.A. SnurrR.Q. NguyenS.T. YazaydınA.Ö. HuppJ.T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?J. Am. Chem. Soc.201213436150161502110.1021/ja305563922906112
    [Google Scholar]
  6. TranchemontagneD.J. Mendoza-CortésJ.L. O’KeeffeM. YaghiO.M. Secondary building units, nets and bonding in the chemistry of metal–organic frameworks.Chem. Soc. Rev.20093851257128310.1039/b817735j19384437
    [Google Scholar]
  7. GuC. LiF. LiB. XuJ. YangS. LuoM. LiuJ. LiuG. Rational synthesis of a porous polyhedral metal-organic framework carrier for controllable drug release.Inorg. Chem. Commun.201673262910.1016/j.inoche.2016.09.013
    [Google Scholar]
  8. WangC.Y. LiuY-Q. JiaC. ZhangM-Z. SongC-L. XuC. HaoR. QinJ-C. YangY-W. An integrated supramolecular fungicide nanoplatform based on pH-sensitive metal–organic frameworks.Chin. Chem. Lett.2023341010840010.1016/j.cclet.2023.108400
    [Google Scholar]
  9. YangJ. DaiD. ZhangX. TengL. MaL. YangY.W. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: From single to combination therapy.Theranostics202313129532310.7150/thno.8068736593957
    [Google Scholar]
  10. QuijiaC.R. LimaC. SilvaC. AlvesR.C. FremR. ChorilliM. Application of MIL-100(Fe) in drug delivery and biomedicine.J. Drug Deliv. Sci. Technol.20216110221710.1016/j.jddst.2020.102217
    [Google Scholar]
  11. WuM.X. YangY.W. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy.Adv. Mater.20172923160613410.1002/adma.20160613428370555
    [Google Scholar]
  12. LiH. LvN. LiX. LiuB. FengJ. RenX. GuoT. ChenD. Fraser StoddartJ. GrefR. ZhangJ. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery.Nanoscale20179227454746310.1039/C6NR07593B28530283
    [Google Scholar]
  13. LongJ.R. YaghiO.M. The pervasive chemistry of metal–organic frameworks.Chem. Soc. Rev.20093851213121410.1039/b903811f19384431
    [Google Scholar]
  14. NiW. JiangK. KeQ. SuJ. CaoX. ZhangL. LiC. Development of an intelligent heterojunction fenton catalyst for chemodynamic/starvation synergistic cancer therapy.J. Mater. Sci. Technol.2023141112010.1016/j.jmst.2022.10.001
    [Google Scholar]
  15. RostamniaS. AlamgholilooH. JafariM. Ethylene diamine post‐synthesis modification on open metal site Cr‐MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction.Appl. Organomet. Chem.2018328e437010.1002/aoc.4370
    [Google Scholar]
  16. HuxfordR.C. Della RoccaJ. LinW. Metal–organic frameworks as potential drug carriers.Curr. Opin. Chem. Biol.201014226226810.1016/j.cbpa.2009.12.01220071210
    [Google Scholar]
  17. KarakeçiliA. TopuzB. KorpayevS. ErdekM. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds.Mater. Sci. Eng. C201910511009810.1016/j.msec.2019.11009831546383
    [Google Scholar]
  18. HuangY. LinH. ZhangY. Synthesis of MIL-101(Fe)/SiO2 composites with improved catalytic activity for reduction of nitroaromatic compounds.J. Solid State Chem.202028312115010.1016/j.jssc.2019.121150
    [Google Scholar]
  19. Azizi VahedT. Naimi-JamalM.R. PanahiL. (Fe)MIL-100-Met@alginate: A hybrid polymer–MOF for enhancement of metformin’s bioavailability and pH-controlled release.New J. Chem.20184213111371114610.1039/C8NJ01946K
    [Google Scholar]
  20. ZhuH. ZhangQ. ZhuS. Alginate hydrogel: A shapeable and versatile platform for in situ preparation of metal–organic framework–polymer composites.ACS Appl. Mater. Interfaces2016827173951740110.1021/acsami.6b0450527315047
    [Google Scholar]
  21. JudyK.D. OliviA. BuahinK.G. DombA. EpsteinJ.I. ColvinO.M. BremH. Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas.J. Neurosurg.199582348148610.3171/jns.1995.82.3.04817861228
    [Google Scholar]
  22. LebeauB. ChouaïdC. BaudM. MasanèsM.J. FebvreM. Oral second- and third-line lomustine–etoposide–cyclophosphamide chemotherapy for small cell lung cancer.Lung Cancer201067218819310.1016/j.lungcan.2009.03.02419394109
    [Google Scholar]
  23. ShortR. GibsonJ. Protein half-lives in neonatal mice after a toxic dose of cyclophosphamide.Experientia197430439739910.1007/BF019216854837627
    [Google Scholar]
  24. GulfamM. KimJ. LeeJ.M. KuB. ChungB.H. ChungB.G. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells.Langmuir201228218216822310.1021/la300691n22568862
    [Google Scholar]
  25. KumirskaJ. WeinholdM.X. ThömingJ. StepnowskiP. Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation.Polymers2011341875190110.3390/polym3041875
    [Google Scholar]
  26. RafiqueA. Mahmood ZiaK. ZuberM. TabasumS. RehmanS. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review.Int. J. Biol. Macromol.20168714115410.1016/j.ijbiomac.2016.02.03526893051
    [Google Scholar]
  27. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan—A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  28. AliA. AhmedS. A review on chitosan and its nanocomposites in drug delivery.Int. J. Biol. Macromol.201810927328610.1016/j.ijbiomac.2017.12.07829248555
    [Google Scholar]
  29. KatiyarR.S. JhaP.K. Molecular simulations in drug delivery: Opportunities and challenges.Wiley Interdiscip. Rev. Comput. Mol. Sci.201884e135810.1002/wcms.1358
    [Google Scholar]
  30. NairA.K. ParkerE. GaudreauP. FarkasD. KrizR.D. Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study.Int. J. Plast.200824112016203110.1016/j.ijplas.2008.01.007
    [Google Scholar]
  31. PrieveD.C. RusselW.B. Simplified predictions of Hamaker constants from Lifshitz theory.J. Colloid Interface Sci.1988125111310.1016/0021‑9797(88)90048‑3
    [Google Scholar]
  32. BrownW.M. WangP. PlimptonS.J. TharringtonA.N. Implementing molecular dynamics on hybrid high performance computers – short range forces.Comput. Phys. Commun.2011182489891110.1016/j.cpc.2010.12.021
    [Google Scholar]
  33. DegrandeC. DuhrC. FuksB. GrellscheidD. MattelaerO. ReiterT. UFO–the universal Feyn Rules output.Comput. Phys. Commun.201218361201121410.1016/j.cpc.2012.01.022
    [Google Scholar]
  34. WangL.P. MartinezT.J. PandeV.S. Building force fields: An automatic, systematic, and reproducible approach.J. Phys. Chem. Lett.20145111885189110.1021/jz500737m26273869
    [Google Scholar]
  35. MayoS.L. OlafsonB.D. GoddardW.A. DREIDING: A generic force field for molecular simulations.J. Phys. Chem.199094268897890910.1021/j100389a010
    [Google Scholar]
  36. BurtchN.C. JasujaH. WaltonK.S. Water stability and adsorption in metal-organic frameworks.Chem. Rev.201411420105751061210.1021/cr500258925264821
    [Google Scholar]
  37. LindegardhN. AnnerbergA. WhiteN.J. DayN.P.J. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088621-222723610.1016/j.jchromb.2007.12.01118191623
    [Google Scholar]
  38. MartinsI. Simultaneous determination of cyclophosphamide and ifosfamide in plasma using SPE-HPLC-UV method.Lat. Am. J. Pharm.2009281
    [Google Scholar]
  39. BarickK.C. NigamS. BahadurD. Nanoscale assembly of mesoporous ZnO: A potential drug carrier.J. Mater. Chem.201020316446645210.1039/c0jm00022a
    [Google Scholar]
  40. VimalaK. ShanthiK. SundarrajS. KannanS. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet.J. Colloid Interface Sci.20174889210810.1016/j.jcis.2016.10.06727821343
    [Google Scholar]
  41. HuangJ. DengG. WangS. ZhaoT. ChenQ. YangY. YangY. ZhangJ. NanY. LiuZ. CaoK. HuangQ. AiK. A NIR‐II photoactivatable “ROS Bomb” with high‐density Cu 2 O‐supported MoS 2 nanoflowers for anticancer therapy.Adv. Sci.20231024230220810.1002/advs.202302208
    [Google Scholar]
  42. Florêncio E SilvaE. MachadoE.S. VasconcelosI.B. JuniorS.A. L DutraJ.D. FreireR.O. da CostaN.B. Are the absorption spectra of doxorubicin properly described by considering different tautomers?J. Chem. Inf. Model.202060251352110.1021/acs.jcim.9b0078531833765
    [Google Scholar]
  43. Masó-PuigdellosasA. CamposD. MéndezV. Transport properties and first-arrival statistics of random motion with stochastic reset times.Phys. Rev. E201999101214110.1103/PhysRevE.99.01214130780220
    [Google Scholar]
  44. HidalgoT. Giménez-MarquésM. BellidoE. AvilaJ. AsensioM.C. SallesF. LozanoM.V. GuillevicM. Simón-VázquezR. González-FernándezA. SerreC. AlonsoM.J. HorcajadaP. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers.Sci. Rep.2017714309910.1038/srep4309928256600
    [Google Scholar]
  45. HsuC. ChenS. ChenW. TsaiM. ChenR. Effect of the characters of chitosans used and regeneration conditions on the yield and physicochemical characteristics of regenerated products.Int. J. Mol. Sci.201516128621863410.3390/ijms1604862125898409
    [Google Scholar]
  46. LingY. ChenZ.X. ZhaiF.P. ZhouY.M. WengL.H. ZhaoD.Y. A zinc(ii) metal–organic framework based on triazole and dicarboxylate ligands for selective adsorption of hexane isomers.Chem. Commun.201147257197719910.1039/c1cc12253c21625720
    [Google Scholar]
  47. WenY. YuanY. ChenH. XuD. LinK. LiuW. Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa.Environ. Sci. Technol.201044134981498710.1021/es100507p20536147
    [Google Scholar]
  48. NasrF.H. KhoeeS. Design, characterization and in vitro evaluation of novel shell crosslinked poly(butylene adipate)-co-N-succinyl chitosan nanogels containing loteprednol etabonate: A new system for therapeutic effect enhancement via controlled drug delivery.Eur. J. Med. Chem.201510213214210.1016/j.ejmech.2015.07.04526263245
    [Google Scholar]
  49. ThompsonW. Uhlig’s corrosion handbook.Hoboken, New JerseyJohn Wiley & Sons, Inc.2011
    [Google Scholar]
  50. SeoY.K. YoonJ.W. LeeJ.S. LeeU-H. HwangY.K. JunC-H. HorcajadaP. SerreC. ChangJ-S. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology.Microporous Mesoporous Mater.201215713714510.1016/j.micromeso.2012.02.027
    [Google Scholar]
  51. ZhangC.F. QiuL-G. KeF. ZhuY-J. YuanY-P. XuG-S. JiangX. A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye.J. Mater. Chem. A Mater. Energy Sustain.2013145143291433410.1039/c3ta13030d
    [Google Scholar]
  52. AbazariR. MahjoubA.R. AtaeiF. MorsaliA. Carpenter-WarrenC.L. MehdizadehK. SlawinA.M.Z. Chitosan immobilization on bio-MOF nanostructures: A biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer.Inorg. Chem.20185721133641337910.1021/acs.inorgchem.8b0195530351060
    [Google Scholar]
  53. AverlantR. RoyerS. GiraudonJ-M. BellatJ-P. BezverkhyyI. WeberG. LamonierJ-F. Mesoporous silica‐confined manganese oxide nanoparticles as highly efficient catalysts for the low‐temperature elimination of formaldehyde.ChemCatChem20146115216110.1002/cctc.201300544
    [Google Scholar]
  54. SunK. LiL. YuX. LiuL. MengQ. WangF. ZhangR. Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs.J. Colloid Interface Sci.201748612813510.1016/j.jcis.2016.09.06827697650
    [Google Scholar]
  55. AkyüzG. lmasA. AndaçM. Evaluation of nano sized Mg@ BTC metal organic framework as a drug carrier: A long term experimental and predictive theoretical study.Res. Eng. Struct. Mater.202171135156
    [Google Scholar]
  56. YangD. XuJ. YangG. ZhouY. JiH. BiH. GaiS. HeF. YangP. Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles.Chem. Eng. J.201834436337410.1016/j.cej.2018.03.101
    [Google Scholar]
  57. LiuJ.Q. LiX.F. GuC.Y. da SilvaJ.C.S. BarrosA.L. Alves-S.Jr LiB.H. RenF. BattenS.R. SoaresT.A. A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery.Dalton Trans.20154444193701938210.1039/C5DT02171E26501793
    [Google Scholar]
  58. WangL. ZhouB.B. YuK. SuZ.H. GaoS. ChuL.L. LiuJ.R. YangG.Y. Novel antitumor agent, trilacunary Keggin-type tungstobismuthate, inhibits proliferation and induces apoptosis in human gastric cancer SGC-7901 cells.Inorg. Chem.20135295119512710.1021/ic400019r23573961
    [Google Scholar]
  59. ParkJ.H. SaravanakumarG. KimK. KwonI.C. Targeted delivery of low molecular drugs using chitosan and its derivatives.Adv. Drug Deliv. Rev.2010621284110.1016/j.addr.2009.10.00319874862
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673266209231214072318
Loading
/content/journals/cmc/10.2174/0109298673266209231214072318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test