Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Atherosclerosis remains a major challenge to global healthcare despite decades of research and constant trials of novel therapeutic approaches. One feature that makes atherosclerosis treatment so elusive is an insufficient understanding of its origins and the early stages of the pathological process, which limits our means of effective prevention of the disease. Macrovascular pericytes are cells with distinct shapes that are located in the arterial wall of larger vessels and are in many aspects similar to microvascular pericytes that maintain the functionality of small vessels and capillaries. This cell type combines the residual contractile function of smooth muscle cells with a distinct stellar shape that allows these cells to make numerous contacts between themselves and the adjacent endothelial layer. Moreover, pericytes can take part in the immune defense and are able to take up lipids in the course of atherosclerotic lesion development. In growing atherosclerotic plaques, the morphology and function of pericytes change dramatically due to phagocytic and synthetic phenotypes that are actively involved in lipid accumulation and extracellular matrix synthesis. In this review, we summarize our knowledge of this less-studied cell type and its role in atherosclerosis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673295675240826070754
2024-09-02
2025-10-23
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/23/CMC-32-23-02.html?itemId=/content/journals/cmc/10.2174/0109298673295675240826070754&mimeType=html&fmt=ahah

References

  1. Alarcon-MartinezL. YemisciM. DalkaraT. Pericyte morphology and function.Histol. Histopathol.202136663364310.14670/HH‑18‑31433595091
    [Google Scholar]
  2. CaporarelloN. D’AngeliF. CambriaM.T. CandidoS. GiallongoC. SalmeriM. LombardoC. LongoA. GiurdanellaG. AnfusoC.D. LupoG. Pericytes in microvessels: From “mural” function to brain and retina regeneration.Int. J. Mol. Sci.20192024635110.3390/ijms2024635131861092
    [Google Scholar]
  3. SandowS.L. WilsonS.M. LeoM.D. Editorial: The role of pericytes in physiology and pathophysiology.Front. Physiol.202314130603110.3389/fphys.2023.130603137929215
    [Google Scholar]
  4. LoeschA. Vasa vasorum in saphenous vein for CABG: A review of morphological characteristics.Rev. Bras. Cir. Cardiovasc.2023386e2023004510.21470/1678‑9741‑2023‑004537797088
    [Google Scholar]
  5. SiekmannA.F. Biology of vascular mural cells.Development202315016dev20027110.1242/dev.20027137642459
    [Google Scholar]
  6. DessallesC.A. BabataheriA. BarakatA.I. Pericyte mechanics and mechanobiology.J. Cell Sci.20211346jcs24022610.1242/jcs.24022633753399
    [Google Scholar]
  7. LiP. FanH. Pericyte loss in diseases.Cells20231215193110.3390/cells1215193137566011
    [Google Scholar]
  8. AlkayedN.J. CipollaM.J. Vascular biology.Stroke20215272440244110.1161/STROKEAHA.121.03355634078110
    [Google Scholar]
  9. ChouY.H. PanS.Y. ShihH.M. LinS.L. Update of pericytes function and their roles in kidney diseases.J. Formos. Med. Assoc20232300297810.1016/j.jfma.2023.08.002
    [Google Scholar]
  10. van SplunderH. VillacampaP. Martínez-RomeroA. GrauperaM. Pericytes in the disease spotlight.Trends Cell Biol2023S0962-89242300111310.1016/j.tcb.2023.06.001
    [Google Scholar]
  11. van DijkC.G.M. NieuweboerF.E. PeiJ.Y. XuY.J. BurgisserP. van MulligenE. el AzzouziH. DunckerD.J. VerhaarM.C. ChengC. The complex mural cell: Pericyte function in health and disease.Int. J. Cardiol.2015190758910.1016/j.ijcard.2015.03.25825918055
    [Google Scholar]
  12. CuervoH. MühlederS. García-GónzalezI. BeneditoR. Notch-mediated cellular interactions between vascular cells.Curr. Opin. Cell Biol.20238510225410.1016/j.ceb.2023.10225437832167
    [Google Scholar]
  13. ChenC. WangJ. LiuC. HuJ. LiuL. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies.Biomed. Pharmacother.202316611530610.1016/j.biopha.2023.11530637572633
    [Google Scholar]
  14. HattoriY. The multiple roles of pericytes in vascular formation and microglial functions in the brain.Life (Basel)20221211183510.3390/life1211183536362989
    [Google Scholar]
  15. JiangZ. ZhouJ. LiL. LiaoS. HeJ. ZhouS. ZhouY. Pericytes in the tumor microenvironment.Cancer Lett.202355621607410.1016/j.canlet.2023.21607436682706
    [Google Scholar]
  16. BrandlS. ReindlM. Blood–brain barrier breakdown in neuroinflammation: Current in vitro models.Int. J. Mol. Sci.202324161269910.3390/ijms24161269937628879
    [Google Scholar]
  17. NakisliS. LagaresA. NielsenC.M. CuervoH. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations.Front. Physiol.202314121056310.3389/fphys.2023.121056337601628
    [Google Scholar]
  18. OrekhovA.N. BobryshevY.V. ChistiakovD.A. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells.Cardiovasc. Res.2014103443845110.1093/cvr/cvu16825016615
    [Google Scholar]
  19. JialalI. CrettazM. HachiyaH.L. KahnC.R. MosesA.C. BuzneyS.M. KingG.L. Characterization of the receptors for insulin and the insulin-like growth factors on micro- and macrovascular tissues.Endocrinology198511731222122910.1210/endo‑117‑3‑12222990869
    [Google Scholar]
  20. KingG.L. BuzneyS.M. KahnC.R. HetuN. BuchwaldS. MacdonaldS.G. RandL.I. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels.J. Clin. Invest.198371497497910.1172/JCI1108526339562
    [Google Scholar]
  21. LanghaasT. Beiträge zur normalen und pathologischen Anatomie der Arterien.Virchows Arch.186636218722610.1007/BF01927642
    [Google Scholar]
  22. BuckR.C. Intima thickening after ligature of arteries.Circ. Res.1961941842610.1161/01.RES.9.2.418
    [Google Scholar]
  23. WisslerR.W. The arterial medial cell, smooth muscle, or multifunctional mesenchyme?Circulation19673611410.1161/01.CIR.36.1.16028742
    [Google Scholar]
  24. ValtueñaJ. Martínez-GarcíaG. Ruiz-SánchezD. Garayar-CanteroM. DueñasC. HadiA. HadiS. Aguado- GarcíaÁ. Prieto de PaulaJ.M. Manchado-LópezP. Vascular obliteration because of endothelial and myointimal growth in COVID-19 patients.Int. J. Dermatol.2021601738010.1111/ijd.1530033179785
    [Google Scholar]
  25. Díaz-FloresL. GutiérrezR. GarcíaM.P. Álvarez-ArgüellesH. Díaz-FloresL.Jr MadridJ.F. Myopericytoma and arterial intimal thickening: the relationship between myopericytes and myointimal cells.J. Cutan. Pathol.2011381185786410.1111/j.1600‑0560.2011.01778.x21955312
    [Google Scholar]
  26. LozanoE. SegarraM. García-MartínezA. Hernández-RodríguezJ. CidM.C. Imatinib mesylate inhibits in vitro and ex vivo biological responses related to vascular occlusion in giant cell arteritis.Ann. Rheum. Dis.200867111581158810.1136/ard.2007.07080517584806
    [Google Scholar]
  27. WisslerR.W. The arterial medial cell, smooth muscle or multifunctional mesenchyme?J. Atheroscler. Res.19688220121310.1016/S0368‑1319(68)80056‑04232958
    [Google Scholar]
  28. PhillipsB. ClarkJ. MartineauÉ. RungtaR.L. Orai, RyR, and IP3R channels cooperatively regulate calcium signaling in brain mid-capillary pericytes.Commun. Biol.20236149310.1038/s42003‑023‑04858‑337149720
    [Google Scholar]
  29. KandzijaN. RahbarM. JonesG.D. Motta-MejiaC. ZhangW. CouchY. NeuhausA.A. KishoreU. SutherlandB.A. RedmanC. VatishM. Placental capillary pericytes release excess extracellular vesicles under hypoxic conditions inducing a pro-angiogenic profile in term pregnancy.Biochem. Biophys. Res. Commun.2023651202910.1016/j.bbrc.2023.02.01536774662
    [Google Scholar]
  30. BertrandL. ChoH.J. ToborekM. Blood–brain barrier pericytes as a target for HIV-1 infection.Brain2019142350251110.1093/brain/awy33930668645
    [Google Scholar]
  31. HarrellC.R. Simovic MarkovicB. FellabaumC. ArsenijevicA. DjonovV. VolarevicV. Molecular mechanisms underlying therapeutic potential of pericytes.J. Biomed. Sci.20182512110.1186/s12929‑018‑0423‑729519245
    [Google Scholar]
  32. WinklerE.A. BirkH. BurkhardtJ.K. ChenX. YueJ.K. GuoD. RutledgeW.C. LaskerG.F. PartowC. TihanT. ChangE.F. SuH. KimH. WalcottB.P. LawtonM.T. Reductions in brain pericytes are associated with arteriovenous malformation vascular instability.J. Neurosurg.201812961464147410.3171/2017.6.JNS1786029303444
    [Google Scholar]
  33. HsuG.C.Y. WangY. LuA.Z. Gomez-SalazarM.A. XuJ. LiD. MeyersC. NegriS. WangsiricharoenS. BroderickK. PeaultB. MorrisC. JamesA.W. TIAM1 acts as an actin organization regulator to control adipose tissue–derived pericyte cell fate.JCI Insight2023813e15914110.1172/jci.insight.15914137219951
    [Google Scholar]
  34. BaekS.H. MaiorinoE. KimH. GlassK. RabyB.A. YuanK. Single cell transcriptomic analysis reveals organ specific pericyte markers and identities.Front. Cardiovasc. Med.2022987659110.3389/fcvm.2022.87659135722109
    [Google Scholar]
  35. NirwaneA. YaoY. SMAlow/undetectable pericytes differentiate into microglia- and macrophage-like cells in ischemic brain.Cell. Mol. Life Sci.202279526410.1007/s00018‑022‑04322‑135482211
    [Google Scholar]
  36. GaoQ. WangL. WangS. HuangB. JingY. SuJ. Bone marrow mesenchymal stromal cells: Identification, classification, and differentiation.Front. Cell Dev. Biol.2022978711810.3389/fcell.2021.78711835047499
    [Google Scholar]
  37. AlakpaE.V. WestC.C. GoldieL. HarperM.M. BurgessK. UlijnR.V. DalbyM.J. A metabolomics-based approach to identify lineage guiding molecules in pericyte cultures.Methods Mol. Biol.20212235475910.1007/978‑1‑0716‑1056‑5_533576970
    [Google Scholar]
  38. ScottR.F. JonesR. DaoudA.S. ZumboO. CoulstonF. ThomasW.A. Experimental atherosclerosis in rhesus monkeys.Exp. Mol. Pathol.196771345710.1016/0014‑4800(67)90037‑84952066
    [Google Scholar]
  39. GrubbS. LauritzenM. AalkjærC. Brain capillary pericytes and neurovascular coupling.Comp. Biochem. Physiol. A Mol. Integr. Physiol.202125411089310.1016/j.cbpa.2020.11089333418051
    [Google Scholar]
  40. HeinzeC. SeniukA. SokolovM.V. HuebnerA.K. KlementowiczA.E. SzijártóI.A. SchleifenbaumJ. VitzthumH. GollaschM. EhmkeH. SchroederB.C. HübnerC.A. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure.J. Clin. Invest.2014124267568610.1172/JCI7002524401273
    [Google Scholar]
  41. AltschulR. Selected Studies on Arteriosclerosis.Springfield, EdCharles С Thomas1950
    [Google Scholar]
  42. ShenM. ZhaoS.R. KhokharY. LiL. ZhouY. LiuC. WuJ.C. Protocol to generate cardiac pericytes from human induced pluripotent stem cells.STAR Protocols20234210225610.1016/j.xpro.2023.10225637119139
    [Google Scholar]
  43. GastfriendB.D. StebbinsM.J. DuF. ShustaE.V. PalecekS.P. Differentiation of brain pericyte-like cells from human pluripotent stem cell−derived neural crest.Curr. Protoc.202111e2110.1002/cpz1.2133484491
    [Google Scholar]
  44. PuchtlerH. SweatF. TerryM.S. ConnerH.M. Investigation of staining, polarization and fluorescence-microscopic properties of myoendothelial cells.J. Microsc.19698919510410.1111/j.1365‑2818.1969.tb00653.x4184702
    [Google Scholar]
  45. ZhangZ. PayneK. PalloneT.L. Syncytial communication in descending vasa recta includes myoendothelial coupling.Am. J. Physiol. Renal Physiol.20143071F41F5210.1152/ajprenal.00178.201424785189
    [Google Scholar]
  46. CrisanM. HuardJ. ZhengB. SunB. YapS. LogarA. GiacobinoJ.P. CasteillaL. PéaultB. Purification and culture of human blood vessel-associated progenitor cells.Curr. Protoc. Stem Cell Biol. 2008.10.1002/9780470151808.sc02b02s4
    [Google Scholar]
  47. CrisanM. DeasyB. GavinaM. ZhengB. HuardJ. LazzariL. PéaultB. Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes.Methods Cell Biol.20088629530910.1016/S0091‑679X(08)00013‑718442653
    [Google Scholar]
  48. GeerJ.C. HaustM.D. Smooth muscle cells in atherosclerosis.Monogr. Atheroscler.19722011404600684
    [Google Scholar]
  49. ShenJ. ShresthaS. RaoP.N. AsatrianG. ScottM.A. NguyenV. GiacomelliP. SooC. TingK. EilberF.C. PeaultB. DryS.M. JamesA.W. Pericytic mimicry in well-differentiated liposarcoma/atypical lipomatous tumor.Hum. Pathol.201654929910.1016/j.humpath.2016.03.00827063472
    [Google Scholar]
  50. PippinJ.W. KaverinaN.V. EngD.G. KrofftR.D. GlennS.T. DuffieldJ.S. GrossK.W. ShanklandS.J. Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease.Am. J. Physiol. Renal Physiol.20153094F341F35810.1152/ajprenal.00438.201426062877
    [Google Scholar]
  51. CooksonF.B. The origin of foam cells in atherosclerosis.Br. J. Exp. Pathol.197152162695547656
    [Google Scholar]
  52. SilverM.D. WilsonG.J. LixfeldW. TrimbleA.S. MacGregorD.C. Aortocoronary bypass graft in dogs: late histological changes.Pathology19768434335110.3109/003130276091014971087972
    [Google Scholar]
  53. SchneiderF. HeszA. LusztigG. Histological investigation of aortic wall in experimental sclerosis of rabbits.Prog. Biochem. Pharmacol.197713287291144919
    [Google Scholar]
  54. ClowesA.W. CollazzoR.E. KarnovskyM.J. A morphologic and permeability study of luminal smooth muscle cells after arterial injury in the rat.Lab. Invest.1978392141150355725
    [Google Scholar]
  55. TauraS. TauraM. KummerowF.A. KamioA. TakebayashiS. Mitotic structure of aortic intimal cells induced by mechanical injury in swine.Acta Pathol. Jpn.197828455556410.1111/j.1440‑1827.1978.tb00895.x716882
    [Google Scholar]
  56. ScheckM. SiegelR.C. ParkerJ. ChangY.H. FuJ.C. Aortic aneurysm in Marfan’s syndrome: changes in the ultrastructure and composition of collagen.J. Anat.1979129Pt 3645657541247
    [Google Scholar]
  57. ZavarzinA.A. ShchelkunovS.I. Blood vessels, Histology Manual.LeningradMedgis1954452471
    [Google Scholar]
  58. O’NealR.M. Derivation of intimal smooth muscle cells in normal arteries and atherosclerotic plaques. An overview.Prog. Biochem. Pharmacol.1977136972928438
    [Google Scholar]
  59. RobertsonA.L.Jr. Transport of plasma lipoproteins and ultrastructure of human arterial intimacytes in culture.Wistar Inst. Symp. Monogr.196761151286051135
    [Google Scholar]
  60. KhavkinT.N. Development of atherosclerotic modifications of the aorta.Arkh. Patol.1950125233314772122
    [Google Scholar]
  61. ThomasW.A. FlorentinR.A. NamS.C. KimD.N. JonesR.M. LeeK.T. Preproliferative phase of atherosclerosis in swine fed cholesterol.Arch. Pathol.19688666216435701635
    [Google Scholar]
  62. LeeK.T. LeeK.J. LeeS.K. ImaiH. O’NealR.M. Poorly differentiated subendothelial cells in swine aortas.Exp. Mol. Pathol.197013111812910.1016/0014‑4800(70)90089‑45459852
    [Google Scholar]
  63. PriorJ.T. JonesD.B. Structural alterations within the aortic intima in infancy and childhood.Am. J. Pathol.195228593795112976532
    [Google Scholar]
  64. DuffG.L. McMILLANG.C. RitchieA.C. The morphology of early atherosclerotic lesions of the aorta demonstrated by the surface technique in rabbits fed cholesterol; together with a description of the anatomy of the intima of the rabbit’s aorta and the spontaneous lesions which occur in it.Am. J. Pathol.195733584587313458324
    [Google Scholar]
  65. AltschulR. Histologic analysis of arteriosclerosis.Arch. Pathol194438305312
    [Google Scholar]
  66. BranwoodA.W. Modern Concepts of the Pathogenesis of Coronary Atherosclerosis.EdinburghLivingstone1963
    [Google Scholar]
  67. TakebayashiS. KubotaI. KamioA. TakagiT. Ultrastructural aspects of human atherosclerosis; role of the foam cells and modified smooth muscle cells.J. Electron Microsc19722143013134267611
    [Google Scholar]
  68. StillW.J. O’NealR.M. Electron microscopic study of experimental atherosclerosis in the rat.Am. J. Pathol.1962401213513917233
    [Google Scholar]
  69. ShchelkunovS.I. lntima of small arteries and veins.Arkh. Biol. Nauk193537609637
    [Google Scholar]
  70. BalisJ.U. Daria HaustM. MoreR.H. Electron-microscopic studies in human atherosclerosis cellular elements in aortic fatty streaks.Exp. Mol. Pathol.19643551152510.1016/0014‑4800(64)90031‑014225069
    [Google Scholar]
  71. SachsE.S. Effects of autolysis in vitro on the fine structure of human aortic intimal cells.J. Atheroscler. Res.19677554956510.1016/S0368‑1319(67)80033‑46052592
    [Google Scholar]
  72. HaustM.D. MoreR.H. MovatH.Z. The role of smooth muscle cells in the fibrogenesis of arteriosclerosis.Am. J. Pathol.196037437738913712348
    [Google Scholar]
  73. RossR. GlomsetJ.A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis.Science197318040931332133910.1126/science.180.4093.13324350926
    [Google Scholar]
  74. PietiläK. NikkariT. Role of the arterial smooth muscle cell in the pathogenesis of atherosclerosis.Med. Biol.198361131446341723
    [Google Scholar]
  75. TabasI. 2016 russell ross memorial lecture in vascular biology.Arterioscler. Thromb. Vasc. Biol.201737218318910.1161/ATVBAHA.116.30803627979856
    [Google Scholar]
  76. NewbyA.C. An overview of the vascular response to injury: a tribute to the late Russell Ross.Toxicol. Lett.2000112-11351952910.1016/S0378‑4274(99)00212‑X10720775
    [Google Scholar]
  77. OrekhovA.N. AndreevaE.R. KrushinskyA.V. NovikovI.D. TertovV.V. NestaikoG.V. KhashimovKhA. RepinV.S. SmirnovV.N. Intimal cells and atherosclerosis. Relationship between the number of intimal cells and major manifestations of atherosclerosis in the human aorta.Am. J. Pathol.198612524024153789095
    [Google Scholar]
  78. RossR. WightT.N. StrandnessE. ThieleB. Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery.Am. J. Pathol.1984114179936691417
    [Google Scholar]
  79. GeerJ.C. Fine structure of human aortic intimal thickening and fatty streaks.Lab. Invest.19651410176417835842381
    [Google Scholar]
  80. JuchemG. WeissD.R. GanseraB. KemkesB.M. Mueller-HoeckerJ. NeesS. Pericytes in the macrovascular intima: possible physiological and pathogenetic impact.Am. J. Physiol. Heart Circ. Physiol20102982501661510.1152/ajpheart.00343.2009
    [Google Scholar]
  81. ZhangH. ZhangN. WuW. WangZ. DaiZ. LiangX. ZhangL. PengY. LuoP. ZhangJ. LiuZ. ChengQ. LiuZ. Pericyte mediates the infiltration, migration, and polarization of macrophages by CD163/MCAM axis in glioblastoma.iScience202225910491810.1016/j.isci.2022.10491836093059
    [Google Scholar]
  82. OrekhovA.N. AndreevaE.R. TertovV.V. KrushinskyA.V. Dissociated cells from different layers of adult human aortic wall.Cells Tissues Organs198411929910510.1159/0001458686730902
    [Google Scholar]
  83. OrekhovA.N. KarpovaI.I. TertovV.V. RudchenkoS.A. AndreevaE.R. KrushinskyA.V. SmirnovV.N. Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light-microscopic study of dissociated aortic cells.Am. J. Pathol.1984115117246711678
    [Google Scholar]
  84. AndreevaE.R. OrekhovA.N. SmirnovV.N. Quantitative estimation of lipid-laden cells in atherosclerotic lesions of the human aorta.Cells Tissues Organs1991141431632310.1159/0001471421660667
    [Google Scholar]
  85. RekhterM.D. AndreevaE.R. MironovA.A. OrekhovA.N. Three-dimensional cytoarchitecture of normal and atherosclerotic intima of human aorta.Am. J. Pathol.199113835695802000936
    [Google Scholar]
  86. RekhterM.D. TertovV.V. AndreevaE.R. KolpakovV.A. MironovA.A. OrekhovA.N. Lipid accumulation in the subendothelial cells of human aortic intima impairs cell-to-cell contacts: A comparative study in situ and in vitro.Cardiovasc. Pathol.199321536210.1016/1054‑8807(93)90013‑R25990523
    [Google Scholar]
  87. AndreevaE.R. PugachI.M. GordonD. OrekhovA.N. Continuous subendothelial network formed by pericyte- like cells in human vascular bed.Tissue Cell199830112713510.1016/S0040‑8166(98)80014‑19569686
    [Google Scholar]
  88. PugachI.M. AndreevaE.R. OrekhovA.N. Senescent and activated pericyte-like cells in human aorta.Atherosclerosis2000151129310.1016/S0021‑9150(00)81331‑3
    [Google Scholar]
  89. AndreevaE.R. Cellular composition of atherosclerotic lesions in human aorta.Angiol. Sosud. Khir.19995Suppl.626
    [Google Scholar]
  90. OrekhovA.N. AndreevaE.R. Cellular mechanisms of atherosclerosis: the role of subendothelilal intimak cells.Angiol. Sosud. Khir.19995Suppl.96136
    [Google Scholar]
  91. KrushinskyA.V. OrekhovA.N. SmirnovV.N. Stellate cells in the intima of human aorta. Application of alkaline dissociation method in the analysis of the vessel wall cellular content.Cells Tissues Organs1983117326626910.1159/0001457976359799
    [Google Scholar]
  92. AndreevaE.R. SerebryakovV.N. OrekhovA.N. Gap junctional communication in primary culture of cells derived from human aortic intima.Tissue Cell199527559159710.1016/S0040‑8166(05)80069‑27491628
    [Google Scholar]
  93. IvanovaE.A. BobryshevY.V. OrekhovA.N. Intimal pericytes as the second line of immune defence in atherosclerosis.World J. Cardiol.201571058359310.4330/wjc.v7.i10.58326516412
    [Google Scholar]
  94. BobryshevY.V. AndreevaE.R. MikhailovaI.A. AndrianovaI.V. MoisenovichM.M. KhapchaevS. AgapovI.I. SobeninI.A. LustaK.A. OrekhovA.N. Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta.Atherosclerosis2011219117118310.1016/j.atherosclerosis.2011.07.01621831373
    [Google Scholar]
  95. BobryshevY.V. MoisenovichM.M. PustovalovaO.L. AgapovI.I. OrekhovA.N. Widespread distribution of HLA-DR-expressing cells in macroscopically undiseased intima of the human aorta: A possible role in surveillance and maintenance of vascular homeostasis.Immunobiology2012217555856810.1016/j.imbio.2011.03.01421601938
    [Google Scholar]
  96. BobryshevY.V. LordR.S.A. RainerS. JamalO.S. MunroV.F. Vascular dendritic cells and atherosclerosis.Pathol. Res. Pract.1996192546346710.1016/S0344‑0338(96)80008‑28832751
    [Google Scholar]
  97. OrekhovA.N. AndreevaE.R. BobryshevY.V. Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions.Tissue Cell2016481253410.1016/j.tice.2015.11.00226747411
    [Google Scholar]
  98. OrekhovA.N. NikiforovN.G. ElizovaN.V. KorobovG.A. AladinskayaA.V. SobeninI.A. BobryshevY.V. Tumor necrosis factor-α and C-C motif chemokine ligand 18 associate with atherosclerotic lipid accumulation in situ and in vitro. Curr. Pharm. Des.201824242883288910.2174/138161282466618091112072630205791
    [Google Scholar]
  99. Guijarro-MuñozI. CompteM. Álvarez-CienfuegosA. Álvarez-VallinaL. SanzL. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes.J. Biol. Chem.201428942457246810.1074/jbc.M113.52116124307174
    [Google Scholar]
  100. StarkK. EckartA. HaidariS. TirniceriuA. LorenzM. von BrühlM.L. GärtnerF. KhandogaA.G. LegateK.R. PlessR. HepperI. LauberK. WalzogB. MassbergS. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs.Nat. Immunol.2013141415110.1038/ni.247723179077
    [Google Scholar]
  101. LiuR. LauridsenH.M. AmezquitaR.A. PierceR.W. Jane-witD. FangC. PelloweA.S. Kirkiles-SmithN.C. GonzalezA.L. PoberJ.S. IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium.J. Immunol.201619762400240810.4049/jimmunol.160013827534549
    [Google Scholar]
  102. PoberJ.S. MerolaJ. LiuR. ManesT.D. Antigen presentation by vascular cells.Front. Immunol.20178190710.3389/fimmu.2017.0190729312357
    [Google Scholar]
  103. LiuR. MerolaJ. ManesT.D. QinL. TietjenG.T. López-GiráldezF. BroeckerV. FangC. XieC. ChenP.M. Kirkiles-SmithN.C. Jane-WitD. PoberJ.S. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1.JCI Insight201835e9788110.1172/jci.insight.9788129515027
    [Google Scholar]
  104. OrekhovA.N. TertovV.V. KudryashovS.A. SmirnovV.N. Triggerlike stimulation of cholesterol accumulation and DNA and extracellular matrix synthesis induced by atherogenic serum or low density lipoprotein in cultured cells.Circ. Res.199066231132010.1161/01.RES.66.2.3112297806
    [Google Scholar]
  105. OrekhovA.N. AndreevaE.R. AndrianovaI.V. BobryshevY.V. Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries.Atherosclerosis2010212243644310.1016/j.atherosclerosis.2010.07.00920692661
    [Google Scholar]
  106. CorselliM. ChenC.W. CrisanM. LazzariL. PéaultB. Perivascular ancestors of adult multipotent stem cells.Arterioscler. Thromb. Vasc. Biol.20103061104110910.1161/ATVBAHA.109.19164320453168
    [Google Scholar]
  107. TangZ. WangA. YuanF. YanZ. LiuB. ChuJ.S. HelmsJ.A. LiS. Differentiation of multipotent vascular stem cells contributes to vascular diseases.Nat. Commun.20123187510.1038/ncomms186722673902
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673295675240826070754
Loading
/content/journals/cmc/10.2174/0109298673295675240826070754
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test