Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couple serves as a substrate or cofactor for many enzymes to maintain cellular redox homeostasis as well as to regulate biosynthetic metabolism. The deficiency or imbalance of NADP+/NADPH redox couple is strongly associated with cardiovascular-related pathologies. An imbalance in the NADP+/NADPH ratio can lead to either oxidative or reductive stress. Reductive stress complicates the cellular redox environment and provides new insights into the cellular redox state. Newly discovered biosynthetic enzymes and developed genetically encoded biosensors provide technical support for studying how cells maintain compartmentalized NADP(H) pools. NADP(H) plays an important role in cardiovascular pathologies. However, whether NADP(H) is injurious or protective in these diseases is uncertain, as either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. Additional study of the replicative regulatory network of NADP(H) metabolism in different compartments, and the mechanisms by which NADP(H) regulates redox state and metabolism under normal and pathological conditions, will develop the targeted and novel therapies based on NADP(H) metabolism.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673275187231121054541
2024-02-16
2025-10-23
Loading full text...

Full text loading...

References

  1. YingW. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences.Antioxid. Redox Signal.200810217920610.1089/ars.2007.167218020963
    [Google Scholar]
  2. JacksonJ.B. A review of the binding-change mechanism for proton-translocating transhydrogenase.Biochim. Biophys. Acta Bioenerg.20121817101839184610.1016/j.bbabio.2012.04.00622538293
    [Google Scholar]
  3. BuchakjianM.R. KornbluthS. The engine driving the ship: Metabolic steering of cell proliferation and death.Nat. Rev. Mol. Cell Biol.2010111071572710.1038/nrm297220861880
    [Google Scholar]
  4. YangY. SauveA.A. NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy.Biochim. Biophys. Acta. Proteins Proteomics20161864121787180010.1016/j.bbapap.2016.06.01427374990
    [Google Scholar]
  5. ZouY. WangA. ShiM. ChenX. LiuR. LiT. ZhangC. ZhangZ. ZhuL. JuZ. LoscalzoJ. YangY. ZhaoY. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors.Nat. Protoc.201813102362238610.1038/s41596‑018‑0042‑530258175
    [Google Scholar]
  6. KiriciM. The effect of AL3+ and HG2+ on glucose 6-phosphate dehydrogenase from capoeta umbla kidney.Appl. Ecol. Environ. Res.201614225326410.15666/aeer/1402_253264
    [Google Scholar]
  7. MaejimaY. KurodaJ. MatsushimaS. AgoT. SadoshimaJ. Regulation of myocardial growth and death by NADPH oxidase.J. Mol. Cell. Cardiol.201150340841610.1016/j.yjmcc.2010.12.01821215757
    [Google Scholar]
  8. CantóC. MenziesK.J. AuwerxJ. NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus.Cell Metab.2015221315310.1016/j.cmet.2015.05.02326118927
    [Google Scholar]
  9. AnilD.A. AydinB.O. DemirY. TurkmenogluB. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase.J. Mol. Struct.2022125713261310.1016/j.molstruc.2022.132613
    [Google Scholar]
  10. TokalıF.S. DemirY. Demircioğluİ.H. TürkeşC. KalayE. ŞendilK. BeydemirŞ. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors.Drug Dev. Res.202283358660434585414
    [Google Scholar]
  11. YangS. LianG. ROS and diseases: Role in metabolism and energy supply.Mol. Cell. Biochem.20204671-211210.1007/s11010‑019‑03667‑931813106
    [Google Scholar]
  12. SeverB. AltıntopM.D. DemirY. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds.Bioorg. Chem.202010210411010.1016/j.bioorg.2020.10411032739480
    [Google Scholar]
  13. AlımZ. KılıçD. DemirY. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies.Arch. Physiol. Biochem.2019125538739510.1080/13813455.2018.147064629741961
    [Google Scholar]
  14. FarleyA. McLaffertyE. HendryC. The cardiovascular system.Nurs. Stand.2012279353910.7748/ns.27.9.35.s5223240514
    [Google Scholar]
  15. DemirY. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.Drug Dev. Res.202081562863610.1002/ddr.2166732232985
    [Google Scholar]
  16. DemirY. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis.J. Pharm. Pharmacol.201971101576158310.1111/jphp.1314431347707
    [Google Scholar]
  17. FoxC.S. PencinaM.J. WilsonP.W.F. PaynterN.P. VasanR.S. D’AgostinoR.B.Sr. Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham heart study.Diabetes Care20083181582158410.2337/dc08‑002518458146
    [Google Scholar]
  18. YıldızM.L. DemirY. KüfrevioğluÖ.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes.J. Mol. Recognit.20223512e298710.1002/jmr.298736326002
    [Google Scholar]
  19. ÖzaslanM.S. BalcıN. DemirY. GürbüzM. KüfrevioğluÖ.İ. Inhibition effects of some antidepressant drugs on pentose phosphate pathway enzymes.Environ. Toxicol. Pharmacol.20197210324410.1016/j.etap.2019.10324431557707
    [Google Scholar]
  20. HeckerP.A. LeopoldJ.A. GupteS.A. RecchiaF.A. StanleyW.C. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease.Am. J. Physiol. Heart Circ. Physiol.20133044H491H50010.1152/ajpheart.00721.201223241320
    [Google Scholar]
  21. StantonR.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.IUBMB Life201264536236910.1002/iub.101722431005
    [Google Scholar]
  22. MurphyM.P. Redox modulation by reversal of the mitochondrial nicotinamide nucleotide transhydrogenase.Cell Metab.201522336336510.1016/j.cmet.2015.08.01226331603
    [Google Scholar]
  23. KampjutD. SazanovL.A. Structure and mechanism of mitochondrial proton-translocating transhydrogenase.Nature2019573777329129510.1038/s41586‑019‑1519‑231462775
    [Google Scholar]
  24. KernS.E. Price-WhelanA. NewmanD.K. Extraction and Measurement of NAD(P)+ and NAD(P)H.Methods Mol. Biol.2014114931132310.1007/978‑1‑4939‑0473‑0_2624818916
    [Google Scholar]
  25. NickelA.G. von HardenbergA. HohlM. LöfflerJ.R. KohlhaasM. BeckerJ. ReilJ.C. KazakovA. BonnekohJ. StadelmaierM. PuhlS.L. WagnerM. BogeskiI. CortassaS. KapplR. PasiekaB. LafontaineM. LancasterC.R.D. BlackerT.S. HallA.R. DuchenM.R. KästnerL. LippP. ZellerT. MüllerC. KnoppA. LaufsU. BöhmM. HothM. MaackC. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure.Cell Metab.201522347248410.1016/j.cmet.2015.07.00826256392
    [Google Scholar]
  26. L, M.G. Oncogenic activities of IDH1/2 mutations: From epigenetics to cellular signaling.Trends Cell Biol.20172710738752
    [Google Scholar]
  27. LeeJ.H. ParkJ.W. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity induces apoptosis and hypertrophy of H9c2 cardiomyocytes.Biochimie20149911011810.1016/j.biochi.2013.11.01624296260
    [Google Scholar]
  28. MaengO. KimY.C. ShinH.J. LeeJ.O. HuhT.L. KangK. KimY.S. PaikS.G. LeeH. Cytosolic NADP+-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.Biochem. Biophys. Res. Commun.2004317255856410.1016/j.bbrc.2004.03.07515063794
    [Google Scholar]
  29. BergaggioE. PivaR. Wild-Type IDH enzymes as actionable targets for cancer therapy.Cancers201911456310.3390/cancers1104056331010244
    [Google Scholar]
  30. Al-KhallafH. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight.Cell Biosci.2017713710.1186/s13578‑017‑0165‑328785398
    [Google Scholar]
  31. WiseD.R. WardP.S. ShayJ.E.S. CrossJ.R. GruberJ.J. SachdevaU.M. PlattJ.M. DeMatteoR.G. SimonM.C. ThompsonC.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.Proc. Natl. Acad. Sci.201110849196111961610.1073/pnas.111777310822106302
    [Google Scholar]
  32. JiangL. ShestovA.A. SwainP. YangC. ParkerS.J. WangQ.A. TeradaL.S. AdamsN.D. McCabeM.T. PietrakB. SchmidtS. MetalloC.M. DrankaB.P. SchwartzB. DeBerardinisR.J. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.Nature2016532759825525810.1038/nature1739327049945
    [Google Scholar]
  33. MullenA.R. WheatonW.W. JinE.S. ChenP.H. SullivanL.B. ChengT. YangY. LinehanW.M. ChandelN.S. DeBerardinisR.J. Reductive carboxylation supports growth in tumour cells with defective mitochondria.Nature2012481738138538810.1038/nature1064222101431
    [Google Scholar]
  34. JiangP. DuW. MancusoA. WellenK.E. YangX. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.Nature2013493743468969310.1038/nature1177623334421
    [Google Scholar]
  35. YangZ. ZhangH. HungH.C. KuoC.C. TsaiL.C. YuanH.S. ChouW.Y. ChangG.G. TongL. Structural studies of the pigeon cytosolic NADP+ -dependent malic enzyme.Protein Sci.200211233234110.1110/ps.3800211790843
    [Google Scholar]
  36. FernandesL.M. Al-DwairiA. SimmenR.C.M. MarjiM. BrownD.M. JewellS.W. SimmenF.A. Malic Enzyme 1 (ME1) is pro-oncogenic in ApcMin/+ mice.Sci. Rep.2018811426810.1038/s41598‑018‑32532‑w30250042
    [Google Scholar]
  37. MuraiS. AndoA. EbaraS. HirayamaM. SatomiY. HaraT. Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions.Oncogenesis201765e32910.1038/oncsis.2017.3428481367
    [Google Scholar]
  38. ZhengF.J. YeH.B. WuM.S. LianY.F. QianC.N. ZengY.X. Repressing malic enzyme 1 redirects glucose metabolism, unbalances the redox state, and attenuates migratory and invasive abilities in nasopharyngeal carcinoma cell lines.Chin. J. Cancer2012311110.5732/cjc.012.1008823114090
    [Google Scholar]
  39. YaoP. SunH. XuC. ChenT. ZouB. JiangP. DuW. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions.J. Biol. Chem.201729241171131712010.1074/jbc.M117.81030928848047
    [Google Scholar]
  40. YangM. VousdenK.H. Serine and one-carbon metabolism in cancer.Nat. Rev. Cancer2016161065066210.1038/nrc.2016.8127634448
    [Google Scholar]
  41. FanJ. YeJ. KamphorstJ.J. ShlomiT. ThompsonC.B. RabinowitzJ.D. Quantitative flux analysis reveals folate-dependent NADPH production.Nature2014510750429830210.1038/nature1323624805240
    [Google Scholar]
  42. LewisC.A. ParkerS.J. FiskeB.P. McCloskeyD. GuiD.Y. GreenC.R. VokesN.I. FeistA.M. Vander HeidenM.G. MetalloC.M. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells.Mol. Cell201455225326310.1016/j.molcel.2014.05.00824882210
    [Google Scholar]
  43. MustafaY.F. Chemotherapeutic applications of folate prodrugs: A review.Neuroquantology20211989911210.14704/nq.2021.19.8.NQ21120
    [Google Scholar]
  44. AndersonD.D. QuinteroC.M. StoverP.J. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria.Proc. Natl. Acad. Sci. USA201110837151631516810.1073/pnas.110362310821876188
    [Google Scholar]
  45. PietzkeM. MeiserJ. VazquezA. Formate metabolism in health and disease.Mol. Metab.202033233710.1016/j.molmet.2019.05.01231402327
    [Google Scholar]
  46. DuckerG.S. ChenL. MorscherR.J. GhergurovichJ.M. EspositoM. TengX. KangY. RabinowitzJ.D. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway.Cell Metab.201624464064110.1016/j.cmet.2016.09.01127732838
    [Google Scholar]
  47. LiuL. ShahS. FanJ. ParkJ.O. WellenK.E. RabinowitzJ.D. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage.Nat. Chem. Biol.201612534535210.1038/nchembio.204726999781
    [Google Scholar]
  48. LocasaleJ.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle.Nat. Rev. Cancer201313857258310.1038/nrc355723822983
    [Google Scholar]
  49. TedeschiP.M. MarkertE.K. GounderM. LinH. DvorzhinskiD. DolfiS.C. ChanL.L-Y. QiuJ. DiPaolaR.S. HirshfieldK.M. BorosL.G. BertinoJ.R. OltvaiZ.N. VazquezA. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells.Cell Death Dis.2013410e87710.1038/cddis.2013.39324157871
    [Google Scholar]
  50. Ben-SahraI. HoxhajG. RicoultS.J.H. AsaraJ.M. ManningB.D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle.Science2016351627472873310.1126/science.aad048926912861
    [Google Scholar]
  51. TedeschiP.M. VazquezA. KerriganJ.E. BertinoJ.R. Mitochondrial methylenetetrahydrofolate dehydrogenase (MTHFD2) overexpression is associated with tumor cell proliferation and is a novel target for drug development.Mol. Cancer Res.201513101361136610.1158/1541‑7786.MCR‑15‑011726101208
    [Google Scholar]
  52. MoranD.M. TruskP.B. PryK. PazK. SidranskyD. BacusS.S. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells.Mol. Cancer Ther.20141361611162410.1158/1535‑7163.MCT‑13‑064924688052
    [Google Scholar]
  53. KrupenkoS.A. KrupenkoN.I. ALDH1L1 and ALDH1L2 folate regulatory enzymes in cancer.Adv. Exp. Med. Biol.2018103212714310.1007/978‑3‑319‑98788‑0_1030362096
    [Google Scholar]
  54. TakeuchiY. NakayamaY. FukusakiE. IrinoY. Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion.Biochem. Biophys. Res. Commun.2018495176176710.1016/j.bbrc.2017.11.08829146184
    [Google Scholar]
  55. CaiW.F. ZhangC. WuY.Q. ZhuangG. YeZ. ZhangC.S. LinS.C. Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion.Cell Res.201828886586710.1038/s41422‑018‑0057‑z29934617
    [Google Scholar]
  56. CiccareseF. CiminaleV. Escaping death: Mitochondrial redox homeostasis in cancer cells.Front. Oncol.2017711710.3389/fonc.2017.0011728649560
    [Google Scholar]
  57. SmithH.Q. LiC. StanleyC.A. SmithT.J. Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point.Neurochem. Res.201944111713210.1007/s11064‑017‑2428‑029079932
    [Google Scholar]
  58. DimovasiliC. FadouloglouV.E. KefalaA. ProvidakiM. KotsifakiD. KanavourasK. SarrouI. PlaitakisA. ZaganasI. KokkinidisM. Crystal structure of glutamate dehydrogenase 2, a positively selected novel human enzyme involved in brain biology and cancer pathophysiology.J. Neurochem.2021157380281510.1111/jnc.1529633421122
    [Google Scholar]
  59. EngelP.C. Glutamate dehydrogenases: The why and how of coenzyme specificity.Neurochem. Res.201439342643210.1007/s11064‑013‑1089‑x23761034
    [Google Scholar]
  60. PlaitakisA. Kalef-EzraE. KotzamaniD. ZaganasI. SpanakiC. The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease.Biology2017641110.3390/biology601001128208702
    [Google Scholar]
  61. JinL. LiD. AlesiG.N. FanJ. KangH.B. LuZ. BoggonT.J. JinP. YiH. WrightE.R. DuongD. SeyfriedN.T. EgnatchikR. DeBerardinisR.J. MaglioccaK.R. HeC. ArellanoM.L. KhouryH.J. ShinD.M. KhuriF.R. KangS. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth.Cancer Cell201527225727010.1016/j.ccell.2014.12.00625670081
    [Google Scholar]
  62. SonJ. LyssiotisC.A. YingH. WangX. HuaS. LigorioM. PereraR.M. FerroneC.R. MullarkyE. Shyh-ChangN. KangY. FlemingJ.B. BardeesyN. AsaraJ.M. HaigisM.C. DePinhoR.A. CantleyL.C. KimmelmanA.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.Nature2013496744310110510.1038/nature1204023535601
    [Google Scholar]
  63. HongC. ZhengJ. LiX. Inhibition of GOT1 sensitizes colorectal cancer cells to 5-fluorouracil.Cancer Chemother. Pharmacol.201779483584010.1007/s00280‑017‑3282‑028314989
    [Google Scholar]
  64. PollakN. DölleC. ZieglerM. The power to reduce: Pyridine nucleotides – small molecules with a multitude of functions.Biochem. J.2007402220521810.1042/BJ2006163817295611
    [Google Scholar]
  65. PomerantzD.J. FerdinandusseS. CoganJ. CooperD.N. ReimschiselT. RobertsonA. BicanA. McGregorT. GauthierJ. MillingtonD.S. AndraeJ.L.W. TschannenM.R. HelblingD.C. DemosW.M. DenisS. WandersR.J.A. NewmanJ.N. HamidR. PhillipsJ.A.III Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant.Am. J. Med. Genet. A.2018176369269810.1002/ajmg.a.3860229388319
    [Google Scholar]
  66. OhashiK. KawaiS. MurataK. Identification and characterization of a human mitochondrial NAD kinase.Nat. Commun.201231124810.1038/ncomms226223212377
    [Google Scholar]
  67. LernerF. NiereM. LudwigA. ZieglerM. Structural and functional characterization of human NAD kinase.Biochem. Biophys. Res. Commun.20012881697410.1006/bbrc.2001.573511594753
    [Google Scholar]
  68. PollakN. NiereM. ZieglerM. NAD kinase levels control the NADPH concentration in human cells.J. Biol. Chem.200728246335623357110.1074/jbc.M70444220017855339
    [Google Scholar]
  69. BradshawP. Cytoplasmic and mitochondrial NADPH-coupled redox systems in the regulation of aging.Nutrients201911350410.3390/nu1103050430818813
    [Google Scholar]
  70. AgledalL. NiereM. ZieglerM. The phosphate makes a difference: cellular functions of NADP.Redox Rep.201015121010.1179/174329210X1265050662312220196923
    [Google Scholar]
  71. HoutenS.M. DenisS. te BrinkeH. JongejanA. van KampenA.H.C. BradleyE.J. BaasF. HennekamR.C.M. MillingtonD.S. YoungS.P. FrazierD.M. Gucsavas-CalikogluM. WandersR.J.A. Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia.Hum. Mol. Genet.201423185009501610.1093/hmg/ddu21824847004
    [Google Scholar]
  72. VerdinE. NAD+ in aging, metabolism, and neurodegeneration.Science201535062651208121310.1126/science.aac485426785480
    [Google Scholar]
  73. SunF. DaiC. XieJ. HuX. Biochemical issues in estimation of cytosolic free NAD/NADH ratio.PLoS One201275e3452510.1371/journal.pone.003452522570687
    [Google Scholar]
  74. LowryO.H. PassonneauJ.V. SchulzD.W. RockM.K. The measurement of pyridine nucleotides by enzymatic cycling.J. Biol. Chem.1961236102746275510.1016/S0021‑9258(19)61729‑114466981
    [Google Scholar]
  75. LuW. WangL. ChenL. HuiS. RabinowitzJ.D. Extraction and quantitation of nicotinamide adenine dinucleotide redox cofactors.Antioxid. Redox Signal.201828316717910.1089/ars.2017.701428497978
    [Google Scholar]
  76. XieW. XuA. YeungE.S. Determination of NAD(+) and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis.Anal. Chem.20098131280128410.1021/ac802249m19178345
    [Google Scholar]
  77. ChenW.W. FreinkmanE. WangT. BirsoyK. SabatiniD.M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism.Cell2016166513241337.e1110.1016/j.cell.2016.07.04027565352
    [Google Scholar]
  78. CameronW.D. BuiC.V. HutchinsonA. LoppnauP. GräslundS. RocheleauJ.V. Apollo-NADP+: A spectrally tunable family of genetically encoded sensors for NADP+.Nat. Methods201613435235810.1038/nmeth.376426878383
    [Google Scholar]
  79. BilanD.S. BelousovV.V. Genetically encoded probes for NAD+/NADH monitoring.Free Radic. Biol. Med.2016100324210.1016/j.freeradbiomed.2016.06.01827387770
    [Google Scholar]
  80. ZhaoY. YangY. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD+/NADH sensors.Free Radic. Biol. Med.2016100435210.1016/j.freeradbiomed.2016.05.02727261194
    [Google Scholar]
  81. LowryO.H. RobertsN.R. KapphahnJ.I. The fluorometric measurement of pyridine nucleotides.J. Biol. Chem.195722421047106410.1016/S0021‑9258(18)64996‑813405933
    [Google Scholar]
  82. BlackerT.S. SewellM.D.E. SzabadkaiG. DuchenM.R. Metabolic profiling of live cancer tissues using nad(P)h fluorescence lifetime imaging.Methods Mol. Biol.2019192836538710.1007/978‑1‑4939‑9027‑6_1930725465
    [Google Scholar]
  83. ZhaoY. HuQ. ChengF. SuN. WangA. ZouY. HuH. ChenX. ZhouH.M. HuangX. YangK. ZhuQ. WangX. YiJ. ZhuL. QianX. ChenL. TangY. LoscalzoJ. YangY. SoNar, a Highly Responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents.Cell Metab.201521577778910.1016/j.cmet.2015.04.00925955212
    [Google Scholar]
  84. TaoR. ZhaoY. ChuH. WangA. ZhuJ. ChenX. ZouY. ShiM. LiuR. SuN. DuJ. ZhouH.M. ZhuL. QianX. LiuH. LoscalzoJ. YangY. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism.Nat. Methods201714772072810.1038/nmeth.430628581494
    [Google Scholar]
  85. GoodmanR.P. CalvoS.E. MoothaV.K. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.J. Biol. Chem.2018293207508751610.1074/jbc.TM117.00025829514978
    [Google Scholar]
  86. QiangG. YangX. XuanQ. ShiL. ZhangH. ChenB. LiX. ZuM. ZhouD. GuoJ. YangH. ZhangL. DuG. Salvianolic acid a prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and streptozotocin-induced diabetic rats.Am. J. Chin. Med.20144251183119810.1142/S0192415X1450074825183303
    [Google Scholar]
  87. SchwingerR.H.G. Pathophysiology of heart failure.Cardiovasc. Diagn. Ther.202111126327610.21037/cdt‑20‑30233708498
    [Google Scholar]
  88. WangJ.J.C. RauC. AvetisyanR. RenS. RomayM.C. StolinG. GongK.W. WangY. LusisA.J. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model.PLoS Genet.2016127e100603810.1371/journal.pgen.100603827385019
    [Google Scholar]
  89. NewsholmeP. CruzatV.F. KeaneK.N. CarlessiR. de BittencourtP.I.H.Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes.Biochem. J.2016473244527455010.1042/BCJ20160503C27941030
    [Google Scholar]
  90. AkkiA. ZhangM. MurdochC. BrewerA. ShahA.M. NADPH oxidase signaling and cardiac myocyte function.J. Mol. Cell. Cardiol.2009471152210.1016/j.yjmcc.2009.04.00419374908
    [Google Scholar]
  91. PandayA. SahooM.K. OsorioD. BatraS. NADPH oxidases: An overview from structure to innate immunity-associated pathologies.Cell. Mol. Immunol.201512152310.1038/cmi.2014.8925263488
    [Google Scholar]
  92. BegumR. ThotaS. AbdulkadirA. KaurG. BagamP. BatraS. NADPH oxidase family proteins: Signaling dynamics to disease management.Cell. Mol. Immunol.202219666068610.1038/s41423‑022‑00858‑135585127
    [Google Scholar]
  93. NedianiC. BorchiE. GiordanoC. BaruzzoS. PonzianiV. SebastianiM. NassiP. MugelliA. d’AmatiG. CerbaiE. NADPH oxidase-dependent redox signaling in human heart failure: Relationship between the left and right ventricle.J. Mol. Cell. Cardiol.200742482683410.1016/j.yjmcc.2007.01.00917346742
    [Google Scholar]
  94. RenY. ChenX. LiP. ZhangH. SuC. ZengZ. WuY. XieX. WangQ. HanJ. GuoS. LiuB. WangW. Si-Miao-Yong-An decoction ameliorates cardiac function through restoring the equilibrium of SOD and NOX2 in heart failure mice.Pharmacol. Res.201914610431810.1016/j.phrs.2019.10431831228552
    [Google Scholar]
  95. PengL. LiM. XuY. ZhangG. YangC. ZhouY. LiL. ZhangJ. Effect of Si-Miao-Yong-An on the stability of atherosclerotic plaque in a diet-induced rabbit model.J. Ethnopharmacol.2012143124124810.1016/j.jep.2012.06.03022750436
    [Google Scholar]
  96. GupteS.A. LevineR.J. GupteR.S. YoungM.E. LionettiV. LabinskyyV. FloydB.C. OjaimiC. BellomoM. WolinM.S. RecchiaF.A. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.J. Mol. Cell. Cardiol.200641234034910.1016/j.yjmcc.2006.05.00316828794
    [Google Scholar]
  97. AssadR.S. AtikF.A. OliveiraF.S. Fonseca-AlanizM.H. AbduchM.C.D. SilvaG.J.J. FavaroG.G. KriegerJ.E. StolfN.A.G. Reversible pulmonary trunk banding. VI: Glucose-6-phosphate dehydrogenase activity in rapid ventricular hypertrophy in young goats.J. Thorac. Cardiovasc. Surg.2011142511081113.e1, 1113.e110.1016/j.jtcvs.2011.08.00721907360
    [Google Scholar]
  98. GupteR.S. VijayV. MarksB. LevineR.J. SabbahH.N. WolinM.S. RecchiaF.A. GupteS.A. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart.J. Card. Fail.200713649750610.1016/j.cardfail.2007.04.00317675065
    [Google Scholar]
  99. KatoT. NiizumaS. InuzukaY. KawashimaT. OkudaJ. TamakiY. IwanagaY. NarazakiM. MatsudaT. SogaT. KitaT. KimuraT. ShioiT. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure.Circ. Heart Fail.20103342043010.1161/CIRCHEARTFAILURE.109.88847920176713
    [Google Scholar]
  100. MontezanoA.C. Dulak-LisM. TsiropoulouS. HarveyA. BrionesA.M. TouyzR.M. Oxidative stress and human hypertension: Vascular mechanisms, biomarkers, and novel therapies.Can. J. Cardiol.201531563164110.1016/j.cjca.2015.02.00825936489
    [Google Scholar]
  101. SpencerN.Y. EngelhardtJ.F. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies.Biochemistry201453101551156410.1021/bi401719r24555469
    [Google Scholar]
  102. ChenF. HaighS. BarmanS. FultonD.J.R. From form to function: the role of Nox4 in the cardiovascular system.Front. Physiol.2012341210.3389/fphys.2012.0041223125837
    [Google Scholar]
  103. GimenezM. SchicklingB.M. LopesL.R. MillerF.J.Jr Nox1 in cardiovascular diseases: Regulation and pathophysiology.Clin. Sci.2016130315116510.1042/CS2015040426678171
    [Google Scholar]
  104. MatsunoK. YamadaH. IwataK. JinD. KatsuyamaM. MatsukiM. TakaiS. YamanishiK. MiyazakiM. MatsubaraH. Yabe-NishimuraC. Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1-deficient mice.Circulation2005112172677268510.1161/CIRCULATIONAHA.105.57370916246966
    [Google Scholar]
  105. ForteM. NocellaC. De FalcoE. PalmerioS. SchironeL. ValentiV. FratiG. CarnevaleR. SciarrettaS. The pathophysiological role of NOX2 in hypertension and organ damage.High Blood Press. Cardiovasc. Prev.201623435536410.1007/s40292‑016‑0175‑y27915400
    [Google Scholar]
  106. ForgioneM.A. LoscalzoJ. HolbrookM. MelduniR. PalmisanoJ. MaxwellC. BaldwinC. VitaJ.A. The A376G(A+) variant of the glucose-6-phosphate dehydrogenase gene is associated with endothelial dysfunction in African Americans.J. Am. Coll. Cardiol.2003416Suppl. 124910.1016/S0735‑1097(03)81741‑2
    [Google Scholar]
  107. SeverB. AltıntopM.D. DemirY. YılmazN. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines.Chem. Biol. Interact.202134510957610.1016/j.cbi.2021.10957634252406
    [Google Scholar]
  108. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  109. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.196719534424822
    [Google Scholar]
  110. LeopoldJ.A. CapA. ScribnerA.W. StantonR.C. LoscalzoJ. Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability.FASEB J.200115101771177310.1096/fj.00‑0893fje11481225
    [Google Scholar]
  111. LeopoldJ.A. ZhangY.Y. ScribnerA.W. StantonR.C. LoscalzoJ. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide.Arterioscler. Thromb. Vasc. Biol.200323341141710.1161/01.ATV.0000056744.26901.BA12615686
    [Google Scholar]
  112. DoreM.P. ParodiG. PortogheseM. PesG.M. The controversial role of glucose-6-phosphate dehydrogenase deficiency on cardiovascular disease: A narrative review.Oxid. Med. Cell. Longev.2021202111910.1155/2021/552925634007401
    [Google Scholar]
  113. TirapelliC.R. Oxidative stress and vascular disease.Curr. Hypertens. Rev.202116316210.2174/15734021160320112714240133475055
    [Google Scholar]
  114. TürkeşC. DemirY. BeydemirŞ. Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I.J. Biomol. Struct. Dyn.2022401778510.1080/07391102.2020.180692732783605
    [Google Scholar]
  115. HulsmansM. Van DoorenE. HolvoetP. Mitochondrial reactive oxygen species and risk of atherosclerosis.Curr. Atheroscler. Rep.201214326427610.1007/s11883‑012‑0237‑022350585
    [Google Scholar]
  116. VictorV. ApostolovaN. HeranceR. Hernandez-MijaresA. RochaM. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy.Curr. Med. Chem.200916354654466710.2174/09298670978987826519903143
    [Google Scholar]
  117. YuE.P.K. BennettM.R. The role of mitochondrial DNA damage in the development of atherosclerosis.Free Radic. Biol. Med.201610022323010.1016/j.freeradbiomed.2016.06.01127320189
    [Google Scholar]
  118. WangY. WangG.Z. RabinovitchP.S. TabasI. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.Circ. Res.2014114342143310.1161/CIRCRESAHA.114.30215324297735
    [Google Scholar]
  119. DorighelloG.G. PaimB.A. KiihlS.F. FerreiraM.S. CatharinoR.R. VercesiA.E. OliveiraH.C.F. Correlation between mitochondrial reactive oxygen and severity of atherosclerosis.Oxid. Med. Cell. Longev.2016201611010.1155/2016/784368526635912
    [Google Scholar]
  120. BeydemirŞ. DemirY. Antiepileptic drugs: Impacts on human serum paraoxonase-1.J. Biochem. Mol. Toxicol.2017316e2188910.1002/jbt.2188928032682
    [Google Scholar]
  121. DemirY. KöksalZ. The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1).Pharmacol. Rep.201971354554910.1016/j.pharep.2019.02.01231109643
    [Google Scholar]
  122. GálvezS. GadalP. On the function of the NADP-dependent isocitrate dehydrogenase isoenzymes in living organisms.Plant Sci.1995105111410.1016/0168‑9452(94)04041‑E
    [Google Scholar]
  123. GavelR. MishraS.P. KhannaS. KhannaR. ShahA.G. Analysis of isocitrate dehydrogenase -2 (IDH-2) activity in human serum as a biomarker in chemotherapy patients of breast carcinoma: A case-control study.J. Clin. Diagn. Res.2017115BC05BC0828658749
    [Google Scholar]
  124. AhmadinejadF. Geir MøllerS. Hashemzadeh-ChaleshtoriM. BidkhoriG. JamiM.S. Molecular mechanisms behind free radical scavengers function against oxidative stress.Antioxidants2017635110.3390/antiox603005128698499
    [Google Scholar]
  125. MuehlfelderM. Arias-LozaP.A. FritzemeierK.H. PelzerT. Both estrogen receptor subtypes, ERα and ERβ, prevent aldosterone-induced oxidative stress in VSMC via increased NADPH bioavailability.Biochem. Biophys. Res. Commun.2012423485085610.1016/j.bbrc.2012.06.05322713467
    [Google Scholar]
  126. YangY. AgoT. ZhaiP. AbdellatifM. SadoshimaJ. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7.Circ. Res.2011108330531310.1161/CIRCRESAHA.110.22843721183740
    [Google Scholar]
  127. YuF.X. ChaiT.F. HeH. HagenT. LuoY. Thioredoxin-interacting protein (Txnip) gene expression: Sensing oxidative phosphorylation status and glycolytic rate.J. Biol. Chem.201028533258222583010.1074/jbc.M110.10829020558747
    [Google Scholar]
  128. AdluriR.S. ThirunavukkarasuM. ZhanL. AkitaY. SamuelS.M. OtaniH. HoY.S. MaulikG. MaulikN. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: A study using thioredoxin 1 transgenic mice.J. Mol. Cell. Cardiol.201150123924710.1016/j.yjmcc.2010.11.00221074540
    [Google Scholar]
  129. CalleraG.E. TouyzR.M. TostesR.C. YogiA. HeY. MalkinsonS. SchiffrinE.L. Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src.Hypertension200545477377910.1161/01.HYP.0000154365.30593.d315699470
    [Google Scholar]
  130. CachofeiroV. MianaM. de las HerasN. Martín-FernándezB. BallesterosS. Fernández-TresguerresJ. LaheraV. Aldosterone and the vascular system.J. Steroid Biochem. Mol. Biol.20081093-533133510.1016/j.jsbmb.2008.03.00518400490
    [Google Scholar]
  131. KeidarS. KaplanM. PavlotzkyE. ColemanR. HayekT. HamoudS. AviramM. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone.Circulation2004109182213222010.1161/01.CIR.0000127949.05756.9D15123520
    [Google Scholar]
  132. LassègueB. San MartínA. GriendlingK.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system.Circ. Res.2012110101364139010.1161/CIRCRESAHA.111.24397222581922
    [Google Scholar]
  133. RayR. ShahA.M. NADPH oxidase and endothelial cell function.Clin. Sci.2005109321722610.1042/CS2005006716104842
    [Google Scholar]
  134. SchröderK. NADPH oxidases in redox regulation of cell adhesion and migration.Antioxid. Redox Signal.201420132043205810.1089/ars.2013.563324070031
    [Google Scholar]
  135. GrayS.P. Di MarcoE. KennedyK. ChewP. OkabeJ. El-OstaA. CalkinA.C. BiessenE.A.L. TouyzR.M. CooperM.E. SchmidtH.H.H.W. Jandeleit-DahmK.A.M. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling.Arterioscler. Thromb. Vasc. Biol.201636229530710.1161/ATVBAHA.115.30701226715682
    [Google Scholar]
  136. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.30932628209797
    [Google Scholar]
  137. SongQ. ZhangY. hanX. ZhangY. ZhangX. GaoY. ZhangJ. ChuL. ZhaoS. Potential mechanisms underlying the protective effects of salvianic acid A against atherosclerosis in vivo and in vitro.Biomed. Pharmacother.201910994595610.1016/j.biopha.2018.10.14730551549
    [Google Scholar]
  138. GuzikT.J. ChenW. GongoraM.C. GuzikB. LobH.E. MangalatD. HochN. DikalovS. RudzinskiP. KapelakB. SadowskiJ. HarrisonD.G. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease.J. Am. Coll. Cardiol.200852221803180910.1016/j.jacc.2008.07.06319022160
    [Google Scholar]
  139. FultonD.J.R. BarmanS.A. Clarity on the Isoform-Specific Roles of NADPH Oxidases and NADPH Oxidase-4 in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.201636457958110.1161/ATVBAHA.116.30709627010024
    [Google Scholar]
  140. Di MarcoE. GrayS.P. KennedyK. SzyndralewiezC. LyleA.N. LassègueB. GriendlingK.K. CooperM.E. SchmidtH.H.H.W. Jandeleit-DahmK.A.M. NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis.Free Radic. Biol. Med.20169755656710.1016/j.freeradbiomed.2016.07.01327445103
    [Google Scholar]
  141. TakacI. SchröderK. ZhangL. LardyB. AnilkumarN. LambethJ.D. ShahA.M. MorelF. BrandesR.P. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4.J. Biol. Chem.201128615133041331310.1074/jbc.M110.19213821343298
    [Google Scholar]
  142. NishimuraA. AgoT. KurodaJ. ArimuraK. TachibanaM. NakamuraK. WakisakaY. SadoshimaJ. IiharaK. KitazonoT. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia.J. Cereb. Blood Flow Metab.20163661143115410.1177/0271678X1560645626661159
    [Google Scholar]
  143. VendrovA.E. MadamanchiN.R. NiuX.L. MolnarK.C. RungeM. SzyndralewiezC. PageP. RungeM.S. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis.J. Biol. Chem.201028534265452655710.1074/jbc.M110.14391720558727
    [Google Scholar]
  144. GreenD.E. MurphyT.C. KangB.Y. KleinhenzJ.M. SzyndralewiezC. PageP. SutliffR.L. HartC.M. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation.Am. J. Respir. Cell Mol. Biol.201247571872610.1165/rcmb.2011‑0418OC22904198
    [Google Scholar]
  145. CannizzoB. QuesadaI. MilitelloR. AmayaC. MiatelloR. CruzadoM. CastroC. Tempol attenuates atherosclerosis associated with metabolic syndrome via decreased vascular inflammation and NADPH-2 oxidase expression.Free Radic. Res.201448552653310.3109/10715762.2014.88929524490696
    [Google Scholar]
  146. MozaffarianD. BenjaminE.J. GoA.S. ArnettD.K. BlahaM.J. CushmanM. DasS.R. de FerrantiS. DesprésJ.P. FullertonH.J. HowardV.J. HuffmanM.D. IsasiC.R. JiménezM.C. JuddS.E. KisselaB.M. LichtmanJ.H. LisabethL.D. LiuS. MackeyR.H. MagidD.J. McGuireD.K. MohlerE.R.III MoyC.S. MuntnerP. MussolinoM.E. NasirK. NeumarR.W. NicholG. PalaniappanL. PandeyD.K. ReevesM.J. RodriguezC.J. RosamondW. SorlieP.D. SteinJ. TowfighiA. TuranT.N. ViraniS.S. WooD. YehR.W. TurnerM.B. Heart disease and stroke statistics—2016 update.Circulation20161334e38e36010.1161/CIR.000000000000035026673558
    [Google Scholar]
  147. ChouchaniE.T. PellV.R. GaudeE. AksentijevićD. SundierS.Y. RobbE.L. LoganA. NadtochiyS.M. OrdE.N.J. SmithA.C. EyassuF. ShirleyR. HuC.H. DareA.J. JamesA.M. RogattiS. HartleyR.C. EatonS. CostaA.S.H. BrookesP.S. DavidsonS.M. DuchenM.R. Saeb-ParsyK. ShattockM.J. RobinsonA.J. WorkL.M. FrezzaC. KriegT. MurphyM.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.Nature2014515752743143510.1038/nature1390925383517
    [Google Scholar]
  148. ZhuJ. WangY. ChaiX. QianK. ZhangL. PengP. ChenP. CaoJ. QinZ. ShengR. XieH. Exogenous NADPH ameliorates myocardial ischemia–reperfusion injury in rats through activating AMPK/mTOR pathway.Acta Pharmacol. Sin.202041453554510.1038/s41401‑019‑0301‑131776448
    [Google Scholar]
  149. ZahaV.G. QiD. SuK.N. PalmeriM. LeeH.Y. HuX. WuX. ShulmanG.I. RabinovitchP.S. RussellR.R.III YoungL.H. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia.J. Mol. Cell. Cardiol.20169110411310.1016/j.yjmcc.2015.12.03226746142
    [Google Scholar]
  150. KusterG.M. PimentelD.R. AdachiT. IdoY. BrennerD.A. CohenR.A. LiaoR. SiwikD.A. ColucciW.S. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras.Circulation200511191192119810.1161/01.CIR.0000157148.59308.F515723974
    [Google Scholar]
  151. MohammadiF. SoltaniA. GhahremanlooA. JavidH. HashemyS.I. The thioredoxin system and cancer therapy: A review.Cancer Chemother. Pharmacol.201984592593510.1007/s00280‑019‑03912‑431367788
    [Google Scholar]
  152. TrevelinS.C. dos SantosC.X. FerreiraR.G. de Sá LimaL. SilvaR.L. ScavoneC. CuriR. Alves-FilhoJ.C. CunhaT.M. Roxo-JúniorP. CerviM.C. LaurindoF.R.M. HothersallJ.S. CobbA.M. ZhangM. IveticA. ShahA.M. LopesL.R. CunhaF.Q. Apocynin and Nox2 regulate NF-κB by modifying thioredoxin-1 redox-state.Sci. Rep.2016613458110.1038/srep3458127698473
    [Google Scholar]
  153. HirataY. KatagiriK. NagaokaK. MorishitaT. KudohY. HattaT. NaguroI. KanoK. UdagawaT. NatsumeT. AokiJ. InadaT. NoguchiT. IchijoH. MatsuzawaA. TRIM48 Promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1.Cell Rep.20172192447245710.1016/j.celrep.2017.11.00729186683
    [Google Scholar]
  154. ReyesL.A. BoslettJ. VaradharajS. De PascaliF. HemannC. DruhanL.J. AmbrosioG. El-MahdyM. ZweierJ.L. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.Proc. Natl. Acad. Sci. USA201511237116481165310.1073/pnas.150555611226297248
    [Google Scholar]
  155. LoscalzoJ. Adaptions to hypoxia and redox stress.Circ. Res.2016119451151310.1161/CIRCRESAHA.116.30939427492841
    [Google Scholar]
  156. YuQ. LeeC.F. WangW. KaramanlidisG. KurodaJ. MatsushimaS. SadoshimaJ. TianR. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury.J. Am. Heart Assoc.201431e00055510.1161/JAHA.113.00055524470522
    [Google Scholar]
  157. MatsuiR. XuS. MaitlandK.A. HayesA. LeopoldJ.A. HandyD.E. LoscalzoJ. CohenR.A. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II.Circulation2005112225726310.1161/CIRCULATIONAHA.104.49909515998684
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673275187231121054541
Loading
/content/journals/cmc/10.2174/0109298673275187231121054541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test