Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This review, focused on hybrid drugs, is the third in a series of reviews, where the first two reviews dealt with a) dimeric drugs, b) mutual prodrugs – codrugs. The compounds designated as hybrids are comprised of two (and sometimes three) biologically active entities, linked by metabolically stable bridges. In some cases, one of the two components of the hybrids serves as a carrier for the second component, and most frequently, the components elicit their individual biological properties, which are commonly synergistic or complementary. Due to the very large number of publications dealing with hybrid drugs, the present review is restricted to hybrids acting in the central nervous system. Future reviews will cover fields such as antimicrobial, anticancer, and antiviral hybrids, and cardiovascular active hybrids. The selected articles reviewed herein were published between the years 2000-2022 with partial coverage of the year 2023.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673305662240702071354
2024-10-28
2025-10-06
Loading full text...

Full text loading...

References

  1. NudelmanA. Dimeric drugs.Curr. Med. Chem.202229162751284510.2174/092986732866621081012415934375175
    [Google Scholar]
  2. WermuthC.G. GanellinC.R. LindbergP. MitscherL.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998).Pure Appl. Chem.19987051129114310.1351/pac199870051129
    [Google Scholar]
  3. NudelmanA. Mutual prodrugs or codrugs.Curr. Med. Chem.202330384283433910.2174/092986733066622120910265036503392
    [Google Scholar]
  4. AwaltJ.K. NguyenA.T.N. FyfeT.J. ThaiB.S. WhiteP.J. ChristopoulosA. JörgM. MayL.T. ScammellsP.J. Examining the role of the linker in bitopic N-6-substituted adenosine derivatives acting as biased adenosine A1 receptor agonists.J. Med. Chem.202265139076909510.1021/acs.jmedchem.2c0032035729775
    [Google Scholar]
  5. KohlstaedtE. KlinglerK.H.U.S. Basic substituted - an) 7-a-kyl. xanthanes or sats thereof. U.S.Patent 3,029,239, 1962.
  6. Pubchem, Fenetylline.Available from: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/8315(accessed on 27-5-2024)
  7. Wikipedia, Fenethylline.Available from:https://en.wikipedia.org/wiki/Fenethylline(accessed on 27-5-2024)
  8. JonesG.B. HuberR.S. MathewsJ.E. LiA. Target directed enediyne prodrugs: Cytotoxic estrogen conjugates.Tetrahedron Lett.199637213643364610.1016/0040‑4039(96)00662‑4
    [Google Scholar]
  9. BozorovK. ZhaoJ. AisaH.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview.Bioorg. Med. Chem.201927163511353110.1016/j.bmc.2019.07.00531300317
    [Google Scholar]
  10. XuZ. ZhaoS.J. LiuY. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships.Eur. J. Med. Chem.201918311170010.1016/j.ejmech.2019.11170031546197
    [Google Scholar]
  11. KumarS.H.M. HerrmannL. TsogoevaS.B. Structural hybridization as a facile approach to new drug candidates.Bioorg. Med. Chem. Lett.2020302312751410.1016/j.bmcl.2020.12751432860980
    [Google Scholar]
  12. ShavetaM. MishraS. SinghP. Hybrid molecules: The privileged scaffolds for various pharmaceuticals.Eur. J. Med. Chem.201612450053610.1016/j.ejmech.2016.08.03927598238
    [Google Scholar]
  13. AcevedoC.H. ScottiL. AlvesM.F. DinizM.F.F.M. ScottiM.T. Hybrid compounds in the search for alternative chemotherapeutic agents against neglected tropical diseases.Lett. Org. Chem.201916819210.2174/1570178615666180402123057
    [Google Scholar]
  14. Henriquez-FiguereoA. Morán-SerradillaC. Angulo-ElizariE. SanmartínC. PlanoD. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases.Eur. J. Med. Chem.202324611500210.1016/j.ejmech.2022.11500236493616
    [Google Scholar]
  15. Müller-SchiffmannA. StichtH. KorthC. Hybrid Compounds.BioDrugs2012261213110.2165/11597630‑000000000‑0000022239618
    [Google Scholar]
  16. ZhaoX. LiuZ. LiuH. GuoJ. LongS. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review.Eur. J. Med. Chem.202224311474510.1016/j.ejmech.2022.11474536152388
    [Google Scholar]
  17. AL ZahraniN.A. El-ShishtawyR.M. AsiriA.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review.Eur. J. Med. Chem.202020411260910.1016/j.ejmech.2020.11260932731188
    [Google Scholar]
  18. FantacuzziM. AmorosoR. CarradoriS. De FilippisB. Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy.Eur. J. Med. Chem.202223311424210.1016/j.ejmech.2022.11424235276424
    [Google Scholar]
  19. AlizadehS.R. EbrahimzadehM.A. Quercetin derivatives: Drug design, development, and biological activities, a review.Eur. J. Med. Chem.202222911406810.1016/j.ejmech.2021.11406834971873
    [Google Scholar]
  20. SinghK. KumarP. BhatiaR. MehtaV. KumarB. AkhtarM.J. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies.Eur. J. Med. Chem.202223411426910.1016/j.ejmech.2022.11426935306287
    [Google Scholar]
  21. HavrylyukD. RomanO. LesykR. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids.Eur. J. Med. Chem.201611314516610.1016/j.ejmech.2016.02.03026922234
    [Google Scholar]
  22. DuvauchelleV. MeffreP. BenfoddaZ. Recent contribution of medicinally active 2-aminothiophenes: A privileged scaffold for drug discovery.Eur. J. Med. Chem.202223811450210.1016/j.ejmech.2022.11450235696863
    [Google Scholar]
  23. VandekerckhoveS. D’hoogheM. Exploration of aziridine- and β-lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry.Bioorg. Med. Chem.201321133643364710.1016/j.bmc.2013.04.03323684232
    [Google Scholar]
  24. NoureddinS.A. El-ShishtawyR.M. Al-FootyK.O. Curcumin analogues and their hybrid molecules as multifunctional drugs.Eur. J. Med. Chem.201918211163110.1016/j.ejmech.2019.11163131479974
    [Google Scholar]
  25. WangJ. GongF. LiangT. XieZ. YangY. CaoC. GaoJ. LuT. ChenX. A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective.Eur. J. Med. Chem.202122511381510.1016/j.ejmech.2021.11381534479038
    [Google Scholar]
  26. SinglaP. SalunkeD.B. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions.Eur. J. Med. Chem.202018711190910.1016/j.ejmech.2019.11190931830636
    [Google Scholar]
  27. BrandãoP. MarquesC. BurkeA.J. PineiroM. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules.Eur. J. Med. Chem.202121111310210.1016/j.ejmech.2020.11310233421712
    [Google Scholar]
  28. KaminskyyD. KryshchyshynA. LesykR. 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry.Eur. J. Med. Chem.201714054259410.1016/j.ejmech.2017.09.03128987611
    [Google Scholar]
  29. GabaS. SainiA. SinghG. MongaV. An insight into the medicinal attributes of berberine derivatives: A review.Bioorg. Med. Chem.20213811614310.1016/j.bmc.2021.11614333848698
    [Google Scholar]
  30. ApaydınS. TörökM. Sulfonamide derivatives as multi-target agents for complex diseases.Bioorg. Med. Chem. Lett.201929162042205010.1016/j.bmcl.2019.06.04131272793
    [Google Scholar]
  31. VenepallyV. Reddy JalaR.C. An insight into the biological activities of heterocyclic–fatty acid hybrid molecules.Eur. J. Med. Chem.201714111313710.1016/j.ejmech.2017.09.06929031060
    [Google Scholar]
  32. ChoudharyS. SinghP.K. VermaH. SinghH. SilakariO. Success stories of natural product-based hybrid molecules for multi-factorial diseases.Eur. J. Med. Chem.2018151629710.1016/j.ejmech.2018.03.05729605809
    [Google Scholar]
  33. AutiP.S. GeorgeG. PaulA.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids.RSC Advances20201068413534139210.1039/D0RA06642G35516563
    [Google Scholar]
  34. GongQ. HuJ. WangP. LiX. ZhangX. A comprehensive review on β-lapachone: Mechanisms, structural modifications, and therapeutic potentials.Eur. J. Med. Chem.202121011296210.1016/j.ejmech.2020.11296233158575
    [Google Scholar]
  35. ZhangX. HeX. ChenQ. LuJ. RapposelliS. PiR. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease.Bioorg. Med. Chem.201826354355010.1016/j.bmc.2017.12.04229310862
    [Google Scholar]
  36. BlaikieL. KayG. Kong LinT.P. Current and emerging therapeutic targets of alzheimer’s disease for the design of multi-target directed ligands.MedChemComm201910122052207210.1039/C9MD00337A32206241
    [Google Scholar]
  37. MishraP. KumarA. PandaG. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018).Bioorg. Med. Chem.201927689593010.1016/j.bmc.2019.01.02530744931
    [Google Scholar]
  38. SavelieffM.G. NamG. KangJ. LeeH.J. LeeM. LimM.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade.Chem. Rev.201911921221132210.1021/acs.chemrev.8b0013830095897
    [Google Scholar]
  39. WangL. KumarR. PavlovP.F. WinbladB. Small molecule therapeutics for tauopathy in Alzheimer’s disease: Walking on the path of most resistance.Eur. J. Med. Chem.202120911291510.1016/j.ejmech.2020.11291533139110
    [Google Scholar]
  40. SinghY.P. RaiH. SinghG. SinghG.K. MishraS. KumarS. SrikrishnaS. ModiG. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease.Eur. J. Med. Chem.202121511327810.1016/j.ejmech.2021.11327833662757
    [Google Scholar]
  41. HaghighijooZ. ZamaniL. MoosaviF. EmamiS. Therapeutic potential of quinazoline derivatives for Alzheimer’s disease: A comprehensive review.Eur. J. Med. Chem.202222711394910.1016/j.ejmech.2021.11394934742016
    [Google Scholar]
  42. MalafaiaD. AlbuquerqueH.M.T. SilvaA.M.S. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review.Eur. J. Med. Chem.202121411320910.1016/j.ejmech.2021.11320933548635
    [Google Scholar]
  43. FerreiraJ.P.S. AlbuquerqueH.M.T. CardosoS.M. SilvaA.M.S. SilvaV.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR).Eur. J. Med. Chem.202122111349210.1016/j.ejmech.2021.11349233984802
    [Google Scholar]
  44. ZhangH. PengY. ZhuoL. WangY. ZengG. WangS. LongL. LiX. WangZ. Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy.Eur. J. Med. Chem.202224211469510.1016/j.ejmech.2022.11469536044812
    [Google Scholar]
  45. SangZ. WangK. DongJ. TangL. Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress.Eur. J. Med. Chem.202223811446410.1016/j.ejmech.2022.11446435635955
    [Google Scholar]
  46. MolędaZ. ZawadzkaA. CzarnockiZ. MonjasL. HirschA.K.H. BudzianowskiA. MaurinJ.K. “Clicking” fragment leads to novel dual-binding cholinesterase inhibitors.Bioorg. Med. Chem.20214211626910.1016/j.bmc.2021.11626934130217
    [Google Scholar]
  47. Le-Nhat-ThuyG. Nguyen ThiN. Pham-TheH. Dang ThiT.A. Nguyen ThiH. Nguyen ThiT.H. Nguyen HoangS. NguyenT.V. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease.Bioorg. Med. Chem. Lett.2020301812740410.1016/j.bmcl.2020.12740432717612
    [Google Scholar]
  48. KhanI. IbrarA. ZaibS. AhmadS. FurtmannN. HameedS. SimpsonJ. BajorathJ. IqbalJ. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis.Bioorg. Med. Chem.201422216163617310.1016/j.bmc.2014.08.02625257911
    [Google Scholar]
  49. SivakumarS. Ranjith KumarR. AliM.A. ChoonT.S. An atom economic synthesis and AChE inhibitory activity of novel dispiro 7-aryltetrahydro-1H-pyrrolo[1,2-c][1,3]thiazole and 4-aryloctahydroindolizine N-methylpiperidin-4-one hybrid heterocycles.Eur. J. Med. Chem.20136524024810.1016/j.ejmech.2013.04.05023721952
    [Google Scholar]
  50. FangL. ChenM. LiuZ. FangX. GouS. ChenL. Ferulic acid–carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.Bioorg. Med. Chem.201624488689310.1016/j.bmc.2016.01.01026795115
    [Google Scholar]
  51. GhobadianR. MahdaviM. NadriH. MoradiA. EdrakiN. AkbarzadehT. SharifzadehM. BukhariS.N.A. AminiM. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities.Eur. J. Med. Chem.2018155496010.1016/j.ejmech.2018.05.03129857276
    [Google Scholar]
  52. AlmansourA.I. ArumugamN. KumarR.S. KotreshaD. ManoharT.S. VenketeshS. Design, synthesis and cholinesterase inhibitory activity of novel spiropyrrolidine tethered imidazole heterocyclic hybrids.Bioorg. Med. Chem. Lett.202030212678910.1016/j.bmcl.2019.12678931753696
    [Google Scholar]
  53. AslamS. ZaibS. AhmadM. GardinerJ.M. AhmadA. HameedA. FurtmannN. GütschowM. BajorathJ. IqbalJ. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors.Eur. J. Med. Chem.20147810611710.1016/j.ejmech.2014.03.03524681070
    [Google Scholar]
  54. AbdellatifK.R.A. MoawadA. KnausE.E. Synthesis of new 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles: A search for novel nitric oxide donor anti-inflammatory agents.Bioorg. Med. Chem. Lett.201424215015502110.1016/j.bmcl.2014.09.02425304893
    [Google Scholar]
  55. GujralS.S. ShakeriA. HejaziL. RaoP.P.N. Design, synthesis and structure-activity relationship studies of 3-phenylpyrazino[1,2-a]indol-1(2H)-ones as amyloid aggregation and cholinesterase inhibitors with antioxidant activity.Eur. J. Med. Chem. Rep.2022610007510.1016/j.ejmcr.2022.100075
    [Google Scholar]
  56. WichurT. PasiekaA. GodyńJ. PanekD. GóralI. LataczG. Honkisz-OrzechowskaE. BuckiA. SiwekA. Głuch-LutwinM. KnezD. BrazzolottoX. GobecS. KołaczkowskiM. SabateR. MalawskaB. WięckowskaA. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau.Eur. J. Med. Chem.202122511378310.1016/j.ejmech.2021.11378334461507
    [Google Scholar]
  57. BrandãoP. LópezÓ. LeitzbachL. StarkH. Fernández-BolañosJ.G. BurkeA.J. PineiroM. Ugi reaction synthesis of oxindole-lactam hybrids as selective butyrylcholinesterase inhibitors.ACS Med. Chem. Lett.202112111718172510.1021/acsmedchemlett.1c0034434795859
    [Google Scholar]
  58. ReilandK.M. EckroatT.J. Selective butyrylcholinesterase inhibition by isatin dimers and 3-indolyl-3-hydroxy-2-oxindole dimers.Bioorg. Med. Chem. Lett.20227712903710.1016/j.bmcl.2022.12903736307033
    [Google Scholar]
  59. kiaY. OsmanH. KumarR.S. BasiriA. MurugaiyahV. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.Bioorg. Med. Chem.20142241318132810.1016/j.bmc.2014.01.00224461561
    [Google Scholar]
  60. KiaY. OsmanH. KumarR.S. MurugaiyahV. BasiriA. PerumalS. RazakI.A. Synthesis of new 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles: A search for novel nitric oxide donor anti-inflammatory agents.Bioorg. Med. Chem. Lett.2013232979298310.1016/j.bmcl.2013.03.02723570788
    [Google Scholar]
  61. BuemiM.R. De LucaL. ChimirriA. FerroS. GittoR. Alvarez-BuillaJ. AlajarinR. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies.Bioorg. Med. Chem.201321154575458010.1016/j.bmc.2013.05.04423777828
    [Google Scholar]
  62. AhmedaH.H. ElmegeedG.A. HashashbM.A. Abd-ElhalimaM.M. El-kadyD.S. Highlights on mechanisms of newly synthesized compounds targeting multiple systems provide a novel perspective on Alzheimer’s disease treatment.J. Chem. Pharm. Res.20157297318
    [Google Scholar]
  63. RosiniM. SimoniE. BartoliniM. CavalliA. CeccariniL. PascuN. McClymontD.W. TarozziA. BolognesiM.L. MinariniA. TumiattiV. AndrisanoV. MellorI.R. MelchiorreC. Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush.J. Med. Chem.200851154381438410.1021/jm800577j18605718
    [Google Scholar]
  64. ReggianiA.M. SimoniE. CaporasoR. MeunierJ. KellerE. MauriceT. MinariniA. RosiniM. CavalliA. In vivo characterization of ARN14140, a memantine/galantamine-based multi-target compound for Alzheimer’s disease.Sci. Rep.2016613317210.1038/srep3317227609215
    [Google Scholar]
  65. CaoZ. YangJ. XuR. SongQ. ZhangX. LiuH. QiangX. LiY. TanZ. DengY. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment.Bioorg. Med. Chem.20182651102111510.1016/j.bmc.2018.01.03029409707
    [Google Scholar]
  66. YangZ. SongQ. CaoZ. YuG. LiuZ. TanZ. DengY. Design, synthesis and evaluation of flurbiprofen-clioquinol hybrids as multitarget-directed ligands against Alzheimer’s disease.Bioorg. Med. Chem.202028711537410.1016/j.bmc.2020.11537432089390
    [Google Scholar]
  67. PratiF. BartoliniM. SimoniE. De SimoneA. PintoA. AndrisanoV. BolognesiM.L. Quinones bearing non-steroidal anti-inflammatory fragments as multitarget ligands for Alzheimer’s disease.Bioorg. Med. Chem. Lett.201323236254625810.1016/j.bmcl.2013.09.09124140444
    [Google Scholar]
  68. TeixeiraD.R.T. Mimetics of donepezil as potential hybrid drugs against Alzheimer’s disease – synthesis and biochemical evaluation.Master's thesis, University of Lisbon Repository, 2017.
    [Google Scholar]
  69. Bhawna KumarA. BhatiaM. KapoorA. KumarP. KumarS. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies.Eur. J. Med. Chem.202224211465510.1016/j.ejmech.2022.11465536037788
    [Google Scholar]
  70. PiemonteseL. TomásD. HiremathadA. CapriatiV. CandeiasE. CardosoS.M. ChavesS. SantosM.A. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates.J. Enzyme Inhib. Med. Chem.20183311212122410.1080/14756366.2018.149156430160188
    [Google Scholar]
  71. DuH. LiuX. XieJ. MaF. Novel deoxyvasicinone-donepezil hybrids as potential multitarget drug candidates for Alzheimer’s disease.ACS Chem. Neurosci.20191052397240710.1021/acschemneuro.8b0069930720268
    [Google Scholar]
  72. BowrojuS.K. PenthalaN.R. LakkanigaN.R. BalasubramaniamM. AyyadevaraS. Shmookler ReisR.J. CrooksP.A. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer’s disease.Bioorg. Med. Chem.20214511631110.1016/j.bmc.2021.11631134304133
    [Google Scholar]
  73. NerellaA. JeripothulaM. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer’s disease.Bioorg. Med. Chem. Lett.20214912821210.1016/j.bmcl.2021.12821234153471
    [Google Scholar]
  74. RizzoS. BartoliniM. CeccariniL. PiazziL. GobbiS. CavalliA. RecanatiniM. AndrisanoV. RampaA. Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238.Bioorg. Med. Chem.20101851749176010.1016/j.bmc.2010.01.07120171894
    [Google Scholar]
  75. ValenciaE.M. Herrera-ArozamenaC. de AndrésL. PérezC. Morales-GarcíaJ.A. Pérez-CastilloA. RamosE. RomeroA. ViñaD. YáñezM. LauriniE. PriclS. Rodríguez-FrancoM.I. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer’s disease.Eur. J. Med. Chem.201815653455310.1016/j.ejmech.2018.07.026
    [Google Scholar]
  76. DiasK.S.T. de PaulaC.T. dos SantosT. SouzaI.N.O. BoniM.S. GuimarãesM.J.R. da SilvaF.M.R. CastroN.G. NevesG.A. VelosoC.C. CoelhoM.M. de MeloI.S.F. GiustiF.C.V. Giusti-PaivaA. da SilvaM.L. DardenneL.E. GuedesI.A. PruccoliL. MorroniF. TarozziA. ViegasC.Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201713044045710.1016/j.ejmech.2017.02.043
    [Google Scholar]
  77. SangZ. WangK. WangH. WangH. MaQ. HanX. YeM. YuL. LiuW. Design, synthesis and biological evaluation of 2-acetyl-5- O -(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.201727225046505210.1016/j.bmcl.2017.09.05729033233
    [Google Scholar]
  78. PanW. HuK. BaiP. YuL. MaQ. LiT. ZhangX. ChenC. PengK. LiuW. SangZ. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.201626102539254310.1016/j.bmcl.2016.03.08627072909
    [Google Scholar]
  79. BrunettiL. LeuciR. CarrieriA. CattoM. OcchineriS. VinciG. GambacortaL. BaltrukevichH. ChavesS. LaghezzaA. AltomareC.D. TortorellaP.M. Amélia, S.; Fulvio, L.; Luca, P. Structure-based design of novel donepezil-like hybrids for a multitarget approach to the therapy of Alzheimer’s disease.Eur. J. Med. Chem.202223711435810.1016/j.ejmech.2022.11435835462163
    [Google Scholar]
  80. CampsP. FormosaX. GaldeanoC. GómezT. Muñoz-TorreroD. ScarpelliniM. ViaynaE. BadiaA. ClosM.V. CaminsA. PallàsM. BartoliniM. ManciniF. AndrisanoV. EstelrichJ. LizondoM. Bidon-ChanalA. LuqueF.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation.J. Med. Chem.200851123588359810.1021/jm800131318517184
    [Google Scholar]
  81. SangZ. BaiP. BanY. WangK. WuA. MiJ. HuJ. XuR. ZhuG. WangJ. ZhangJ. WangC. TanZ. TangL. Novel donepezil-chalcone-rivastigmine hybrids as potential multifunctional anti-Alzheimer’s agents: Design, synthesis, in vitro biological evaluation, in vivo and in silico studies.Bioorg. Chem.202212710600710.1016/j.bioorg.2022.10600735849893
    [Google Scholar]
  82. FangL. ShenS. LiuQ. LiuZ. ZhaoJ. Combination of NSAIDs with donepezil as multi-target directed ligands for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.20227512897610.1016/j.bmcl.2022.12897636067929
    [Google Scholar]
  83. AlonsoD. DorronsoroI. RubioL. MuñozP. García-PalomeroE. Del MonteM. Bidon-ChanalA. OrozcoM. LuqueF.J. CastroA. MedinaM. MartínezA. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE.Bioorg. Med. Chem.200513246588659710.1016/j.bmc.2005.09.02916230018
    [Google Scholar]
  84. WangJ. WangZ.M. LiX.M. LiF. WuJ.J. KongL.Y. WangX.B. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin.Bioorg. Med. Chem.201624184324433810.1016/j.bmc.2016.07.02527460699
    [Google Scholar]
  85. GabrM.T. Abdel-RaziqM.S. Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors.Bioorg. Med. Chem. Lett.201828172910291310.1016/j.bmcl.2018.07.01930017317
    [Google Scholar]
  86. MatosM.J. ViñaD. QuezadaE. PicciauC. DeloguG. OralloF. SantanaL. UriarteE. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors.Bioorg. Med. Chem. Lett.200919123268327010.1016/j.bmcl.2009.04.08519423346
    [Google Scholar]
  87. MatosM.J. ViñaD. JaneiroP. BorgesF. SantanaL. UriarteE. New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors.Bioorg. Med. Chem. Lett.201020175157516010.1016/j.bmcl.2010.07.01320659799
    [Google Scholar]
  88. MatosM.J. ViñaD. PicciauC. OralloF. SantanaL. UriarteE. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors.Bioorg. Med. Chem. Lett.200919175053505510.1016/j.bmcl.2009.07.03919628387
    [Google Scholar]
  89. XieS.S. LiuJ. TangC. PangC. LiQ. QinY. NongX. ZhangZ. GuoJ. ChengM. TangW. LiangN. JiangN. Design, synthesis and biological evaluation of rasagiline-clorgyline hybrids as novel dual inhibitors of monoamine oxidase-β and amyloid-β aggregation against Alzheimer’s disease.Eur. J. Med. Chem.202020211247510.1016/j.ejmech.2020.11247532652406
    [Google Scholar]
  90. JiangX. GuoJ. LvY. YaoC. ZhangC. MiZ. ShiY. GuJ. ZhouT. BaiR. XieY. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity.Bioorg. Med. Chem.2020281211555010.1016/j.bmc.2020.11555032503694
    [Google Scholar]
  91. YangH.L. CaiP. LiuQ.H. YangX.L. LiF. WangJ. WuJ.J. WangX.B. KongL.Y. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid- β aggregation for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201713871572810.1016/j.ejmech.2017.07.00828728104
    [Google Scholar]
  92. XieS.S. LanJ.S. WangX. WangZ.M. JiangN. LiF. WuJ.J. WangJ. KongL.Y. Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20162471528153910.1016/j.bmc.2016.02.02326917219
    [Google Scholar]
  93. HuangM. XieS.S. JiangN. LanJ.S. KongL.Y. WangX.B. Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease.Bioorg. Med. Chem. Lett.201525350851310.1016/j.bmcl.2014.12.03425542589
    [Google Scholar]
  94. ZhangC. YangK. YuS. SuJ. YuanS. HanJ. ChenY. GuJ. ZhouT. BaiR. XieY. Synthesis and evaluation of hydroxypyridinonecoumarin hybrids as multimodal monoamine oxidase B inhibitors and iron chelates against Alzheimer’s disease.Eur. J. Med. Chem.201918036738210.1016/j.ejmech.2019.07.03131325784
    [Google Scholar]
  95. GirekM. SzymańskiP. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities.Chem. Pap.201973226928910.1007/s11696‑018‑0590‑8
    [Google Scholar]
  96. GirekM. SzymańskiP. Phyto-tacrine hybrids as promising drugs to treat Alzheimer’s disease.ChemistrySelect20194195776579010.1002/slct.201803672
    [Google Scholar]
  97. RomeroA. CacabelosR. Oset-GasqueM.J. SamadiA. Marco-ContellesJ. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.20132371916192210.1016/j.bmcl.2013.02.01723481643
    [Google Scholar]
  98. SpilovskaK. KorabecnyJ. NepovimovaE. DolezalR. MezeiovaE. SoukupO. KucaK. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease.Curr. Top. Med. Chem.20171791006102610.2174/156802660566616092715272827697055
    [Google Scholar]
  99. SameemB. SaeediM. MahdaviM. ShafieeA. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease.Eur. J. Med. Chem.201712833234510.1016/j.ejmech.2016.10.06027876467
    [Google Scholar]
  100. Oset-GasqueM.J. Marco-ContellesJ.L. Tacrine-natural-product hybrids for Alzheimer’s disease therapy.Curr. Med. Chem.202027264392440010.2174/092986732566618040315172529611473
    [Google Scholar]
  101. HamulakovaS. KudlickovaZ. JanovecL. MezencevR. DecknerZ.J. ChernoffY.O. JanockovaJ. IhnatovaV. BzonekP. NovakovaN. HepnarovaV. HrabinovaM. JunD. KorabecnyJ. SoukupO. KucaK. Design and synthesis of novel tacrine-indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease.Future Med. Chem.202113978580410.4155/fmc‑2020‑018433829876
    [Google Scholar]
  102. BornsteinJ.J. EckroatT.J. HoughtonJ.L. JonesC.K. GreenK.D. Garneau-TsodikovaS. Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase.MedChemComm20112540641210.1039/c0md00256a
    [Google Scholar]
  103. ChenY. SunJ. HuangZ. LiaoH. PengS. LehmannJ. ZhangY. Design, synthesis and evaluation of tacrine–flurbiprofen–nitrate trihybrids as novel anti-Alzheimer’s disease agents.Bioorg. Med. Chem.20132192462247010.1016/j.bmc.2013.03.00523541836
    [Google Scholar]
  104. ChenY. SunJ. PengS. LiaoH. ZhangY. LehmannJ. Tacrine-flurbiprofen hybrids as multifunctional drug candidates for the treatment of Alzheimer’s disease.Arch. Pharm. (Weinheim)20133461286587110.1002/ardp.20130007424203864
    [Google Scholar]
  105. LiuZ. ZhangB. XiaS. FangL. GouS. ROS-responsive and multifunctional anti-Alzheimer prodrugs: Tacrine-ibuprofen hybrids via a phenyl boronate linker.Eur. J. Med. Chem.202121211299710.1016/j.ejmech.2020.11299733189440
    [Google Scholar]
  106. ChiouaM. BuzziE. MoraledaI. IriepaI. MajM. WnorowskiA. GiovanniniC. TramarinA. PortaliF. IsmailiL. López-AlvaradoP. BolognesiM.L. JóźwiakK. MenéndezJ.C. Marco-ContellesJ. BartoliniM. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease.Eur. J. Med. Chem.201815583984610.1016/j.ejmech.2018.06.04429958119
    [Google Scholar]
  107. LeónR. RíosC. Marco-ContellesJ. HuertasO. BarrilX. Javier LuqueF. LópezM.G. GarcíaA.G. VillarroyaM. New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties.Bioorg. Med. Chem.200816167759776910.1016/j.bmc.2008.07.00518640842
    [Google Scholar]
  108. WangY. WangF. YuJ.P. JiangF.C. GuanX.L. WangC.M. LiL. CaoH. LiM.X. ChenJ.G. Novel multipotent phenylthiazole–tacrine hybrids for the inhibition of cholinesterase activity, β-amyloid aggregation and Ca2+ overload.Bioorg. Med. Chem.201220216513652210.1016/j.bmc.2012.08.04023000296
    [Google Scholar]
  109. JiangX.Y. ChenT.K. ZhouJ.T. HeS.Y. YangH.Y. ChenY. QuW. FengF. SunH.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-Alzheimer’s disease drug discovery.ACS Med. Chem. Lett.20189317117610.1021/acsmedchemlett.7b0046329541355
    [Google Scholar]
  110. LiuW. LiuX. LiuW. GaoY. WuL. HuangY. ChenH. LiD. ZhouL. WangN. XuZ. JiangX. ZhaoQ. Discovery of novel β-carboline derivatives as selective AChE inhibitors with GSK-3β inhibitory property for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202222911409510.1016/j.ejmech.2021.11409534995924
    [Google Scholar]
  111. JeřábekJ. UliassiE. GuidottiL. KorábečnýJ. SoukupO. SepsovaV. HrabinovaM. KučaK. BartoliniM. Peña-AltamiraL.E. PetrallaS. MontiB. RobertiM. BolognesiM.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease.Eur. J. Med. Chem.201712725026210.1016/j.ejmech.2016.12.04828064079
    [Google Scholar]
  112. ViaynaE. GómezT. GaldeanoC. RamírezL. RatiaM. BadiaA. ClosM.V. VerdaguerE. JunyentF. CaminsA. PallàsM. BartoliniM. ManciniF. AndrisanoV. ArceM.P. Rodríguez-FrancoM.I. Bidon-ChanalA. LuqueF.J. CampsP. Muñoz-TorreroD. Novel huprine derivatives with inhibitory activity toward β-amyloid aggregation and formation as disease-modifying anti-Alzheimer drug candidates.ChemMedChem20105111855187010.1002/cmdc.20100032220859987
    [Google Scholar]
  113. GaldeanoC. ViaynaE. SolaI. FormosaX. CampsP. BadiaA. ClosM.V. RelatJ. RatiaM. BartoliniM. ManciniF. AndrisanoV. SalmonaM. MinguillónC. González-MuñozG.C. Rodríguez-FrancoM.I. Bidon-ChanalA. LuqueF.J. Muñoz-TorreroD. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases.J. Med. Chem.201255266166910.1021/jm200840c22185619
    [Google Scholar]
  114. MezeiovaE. HrabinovaM. HepnarovaV. JunD. JanockovaJ. MuckovaL. PrchalL. KristofikovaZ. KuceraT. GoreckiL. ChalupovaK. KunesJ. HroudovaJ. SoukupO. KorabecnyJ. HuprineY. Tryptophan heterodimers with potential implication to Alzheimer’s disease treatment.Bioorg. Med. Chem. Lett.20214312810010.1016/j.bmcl.2021.12810033984470
    [Google Scholar]
  115. CeschiM.A. Sobieski da CostaJ. DardenneL.E. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids.Eur. J. Med. Chem.201612175877210.1016/j.ejmech.2016.06.02527392529
    [Google Scholar]
  116. LiG. HongG. LiX. ZhangY. XuZ. MaoL. FengX. LiuT. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids.Eur. J. Med. Chem.201814823825410.1016/j.ejmech.2018.01.02829466774
    [Google Scholar]
  117. LinR. RaoS. LiY. ZhangL. XuL. HeY. LiuZ. ChenH. Conjugation of tacrine with genipin derivative not only enhances effects on AChE but also leads to autophagy against Alzheimer’s disease.Eur. J. Med. Chem.202121111306710.1016/j.ejmech.2020.11306733338868
    [Google Scholar]
  118. KálaiT. AltmanR. MaezawaI. BalogM. MorisseauC. PetrlovaJ. HammockB.D. JinL.W. TrudellJ.R. VossJ.C. HidegK. Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors.Eur. J. Med. Chem.20147734335010.1016/j.ejmech.2014.03.02624657571
    [Google Scholar]
  119. FangL. AppenrothD. DeckerM. KiehntopfM. RoeglerC. DeufelT. FleckC. PengS. ZhangY. LehmannJ. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates.J. Med. Chem.200851471371610.1021/jm701491k18232655
    [Google Scholar]
  120. CeschiM. PilottiR. LopesJ. DapontH. da RochaJ. AfolabiB. GuedesI. DardenneL. An Expedient Synthesis of Tacrine-Squaric Hybrids as Potent, Selective and Dual‑Binding Cholinesterase Inhibitors.J. Braz. Chem. Soc.20203185786610.21577/0103‑5053.20200019
    [Google Scholar]
  121. LopesJ.P.B. SilvaL. da Costa FranarinG. Antonio CeschiM. Seibert LüdtkeD. Ferreira DantasR. de SallesC.M.C. Paes Silva-JrF. Roberto SengerM. Alvim GuedesI. Emmanuel DardenneL. Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives.Bioorg. Med. Chem.201826205566557710.1016/j.bmc.2018.10.00330340901
    [Google Scholar]
  122. ScipioniM. KayG. MegsonI.L. Kong Thoo LinP. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s disease.MedChemComm201910576477710.1039/C9MD00048H31191867
    [Google Scholar]
  123. FangL. KrausB. LehmannJ. HeilmannJ. ZhangY. DeckerM. Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates.Bioorg. Med. Chem. Lett.20081892905290910.1016/j.bmcl.2008.03.07318406135
    [Google Scholar]
  124. FuY. MuY. LeiH. WangP. LiX. LengQ. HanL. QuX. WangZ. HuangX. Design, synthesis, and evaluation of novel tacrine-ferulic acid hybrids as multifunctional drug candidates against Alzheimer’s Disease.Molecules20162111010.3390/molecules21101338
    [Google Scholar]
  125. ChaoX. HeX. YangY. ZhouX. JinM. LiuS. ChengZ. LiuP. WangY. YuJ. TanY. HuangY. QinJ. RapposelliS. PiR. Design, synthesis and pharmacological evaluation of novel tacrine–caffeic acid hybrids as multi-targeted compounds against Alzheimer’s disease.Bioorg. Med. Chem. Lett.201222206498650210.1016/j.bmcl.2012.08.03622981331
    [Google Scholar]
  126. DigiacomoM. ChenZ. WangS. LapucciA. MacchiaM. YangX. ChuJ. HanY. PiR. RapposelliS. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD.Bioorg. Med. Chem. Lett.201525480781010.1016/j.bmcl.2014.12.08425597007
    [Google Scholar]
  127. XieS.S. LanJ.S. WangX.B. JiangN. DongG. LiZ.R. WangK.D.G. GuoP.P. KongL.Y. Multifunctional tacrine–trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties.Eur. J. Med. Chem.201593425010.1016/j.ejmech.2015.01.05825656088
    [Google Scholar]
  128. LanJ.S. XieS.S. LiS.Y. PanL.F. WangX.B. KongL.Y. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.201422216089610410.1016/j.bmc.2014.08.03525282654
    [Google Scholar]
  129. LiS.Y. WangX.B. XieS.S. JiangN. WangK.D.G. YaoH.Q. SunH.B. KongL.Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.20136963264610.1016/j.ejmech.2013.09.02424095756
    [Google Scholar]
  130. CenJ. GuoH. HongC. LvJ. YangY. WangT. FangD. LuoW. WangC. Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity.Eur. J. Med. Chem.201814412813610.1016/j.ejmech.2017.12.00529268129
    [Google Scholar]
  131. KochiA. EckroatT.J. GreenK.D. MayhoubA.S. LimM.H. Garneau-TsodikovaS. A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation.Chem. Sci. (Camb.)20134114137414510.1039/c3sc51902c
    [Google Scholar]
  132. EckroatT.J. GreenK.D. ReedR.A. BornsteinJ.J. Garneau-TsodikovaS. Investigation of the role of linker moieties in bifunctional tacrine hybrids.Bioorg. Med. Chem.201321123614362310.1016/j.bmc.2013.02.04723535563
    [Google Scholar]
  133. LiuZ. FangL. ZhangH. GouS. ChenL. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property.Bioorg. Med. Chem.20172582387239810.1016/j.bmc.2017.02.04928302511
    [Google Scholar]
  134. De LorenziE. SeghettiF. TarozziA. PruccoliL. ContardiC. SerraM. BisiA. GobbiS. VistoliG. GervasoniS. ArgentiniC. GhirardoG. GuaratoG. OrsoG. BellutiF. Di MartinoR.M.C. ZussoM. Targeting the multifaceted neurotoxicity of Alzheimer’s disease by tailored functionalisation of the curcumin scaffold.Eur. J. Med. Chem.202325211529710.1016/j.ejmech.2023.11529736996713
    [Google Scholar]
  135. KeriR.S. QuintanovaC. ChavesS. SilvaD.F. CardosoS.M. SantosM.A. New Tacrine Hybrids with Natural‐Based Cysteine Derivatives as Multitargeted Drugs for Potential Treatment of Alzheimer’s Disease.Chem. Biol. Drug Des.201687110111110.1111/cbdd.1263326256122
    [Google Scholar]
  136. LuC. ZhouQ. YanJ. DuZ. HuangL. LiX. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.20136274575310.1016/j.ejmech.2013.01.03923454517
    [Google Scholar]
  137. TeponnouG.A.K. JoubertJ. MalanS.F. Tacrine, Trolox and Tryptoline as Lead Compounds for the Design and Synthesis of Multi-target Agents for Alzheimer’s Disease Therapy.Open Med. Chem. J.2017111243710.2174/187410450171101002428567126
    [Google Scholar]
  138. do Carmo CarreirasM. IsmailiL. Marco-ContellesJ. Propargylamine-derived multi-target directed ligands for Alzheimer’s disease therapy.Bioorg. Med. Chem. Lett.202030312688010.1016/j.bmcl.2019.12688031864798
    [Google Scholar]
  139. Rodríguez-FrancoM.I. Fernández-BachillerM.I. PérezC. Hernández-LedesmaB. BartoloméB. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties.J. Med. Chem.200649245946210.1021/jm050746d16420031
    [Google Scholar]
  140. MaoF. ChenJ. ZhouQ. LuoZ. HuangL. LiX. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity.Bioorg. Med. Chem. Lett.201323246737674210.1016/j.bmcl.2013.10.03424220172
    [Google Scholar]
  141. ChufarovaN. CzarneckaK. SkibińskiR. CuchraM. MajsterekI. SzymańskiP. New tacrine–acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer’s disease.Arch. Pharm. (Weinheim)20183517180005010.1002/ardp.20180005029870588
    [Google Scholar]
  142. FancelluG. ChandK. TomásD. OrlandiniE. PiemonteseL. SilvaD.F. CardosoS.M. ChavesS. SantosM.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s Disease.J. Enzyme Inhib. Med. Chem.202035121122610.1080/14756366.2019.168923731760822
    [Google Scholar]
  143. XieS.S. WangX. JiangN. YuW. WangK.D.G. LanJ.S. LiZ.R. KongL.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease.Eur. J. Med. Chem.20159515316510.1016/j.ejmech.2015.03.04025812965
    [Google Scholar]
  144. SunQ. PengD.Y. YangS.G. ZhuX.L. YangW.C. YangG.F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.Bioorg. Med. Chem.201422174784479110.1016/j.bmc.2014.06.05725088549
    [Google Scholar]
  145. XieS.S. WangX.B. LiJ.Y. YangL. KongL.Y. Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease.Eur. J. Med. Chem.20136454055310.1016/j.ejmech.2013.03.05123685572
    [Google Scholar]
  146. Fernández-BachillerM.I. PérezC. MonjasL. RademannJ. Rodríguez-FrancoM.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties.J. Med. Chem.20125531303131710.1021/jm201460y22243648
    [Google Scholar]
  147. LiaoS. DengH. HuangS. YangJ. WangS. YinB. ZhengT. ZhangD. LiuJ. GaoG. MaJ. DengZ. Design, synthesis and evaluation of novel 5,6,7-trimethoxyflavone–6-chlorotacrine hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.20152571541154510.1016/j.bmcl.2015.02.01525724825
    [Google Scholar]
  148. SunY. ChenJ. ChenX. HuangL. LiX. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine–Homoisoflavonoid hybrids.Bioorg. Med. Chem.201321237406741710.1016/j.bmc.2013.09.05024128814
    [Google Scholar]
  149. HamulakovaS. PopracP. JomovaK. BrezovaV. LauroP. DrostinovaL. JunD. SepsovaV. HrabinovaM. SoukupO. KristianP. GazovaZ. BednarikovaZ. KucaK. ValkoM. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules.J. Inorg. Biochem.2016161526210.1016/j.jinorgbio.2016.05.00127230386
    [Google Scholar]
  150. LuoW. LiY.P. HeY. HuangS.L. TanJ.H. OuT.M. LiD. GuL.Q. HuangZ.S. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation.Bioorg. Med. Chem.201119276377010.1016/j.bmc.2010.12.02221211982
    [Google Scholar]
  151. ZhangC. DuQ.Y. ChenL.D. WuW.H. LiaoS.Y. YuL.H. LiangX.T. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer’s disease.Eur. J. Med. Chem.201611620020910.1016/j.ejmech.2016.03.07727061983
    [Google Scholar]
  152. TangH. ZhaoL.Z. ZhaoH.T. HuangS.L. ZhongS.M. QinJ.K. ChenZ.F. HuangZ.S. LiangH. Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors.Eur. J. Med. Chem.201146104970497910.1016/j.ejmech.2011.08.00221871694
    [Google Scholar]
  153. TangH. NingF.X. WeiY.B. HuangS.L. HuangZ.S. ChanA.S.C. GuL.Q. Derivatives of oxoisoaporphine alkaloids: A novel class of selective acetylcholinesterase inhibitors.Bioorg. Med. Chem. Lett.200717133765376810.1016/j.bmcl.2007.04.01517451950
    [Google Scholar]
  154. WeiS. ChenW. QinJ. HuangliY. WangL. ShenY. TangH. Multitarget-directed oxoisoaporphine derivatives: Anti-acetylcholinesterase, anti-β-amyloid aggregation and enhanced autophagy activity against Alzheimer’s disease.Bioorg. Med. Chem.201624226031603910.1016/j.bmc.2016.09.06127720328
    [Google Scholar]
  155. IpF.C.F. FuG. YangF. KangF. SunP. LingC.Y. CheungK. XieF. HuY. FuL. IpN.Y. A tacrine-tetrahydroquinoline heterodimer potently inhibits acetylcholinesterase activity and enhances neurotransmission in mice.Eur. J. Med. Chem.202122611382710.1016/j.ejmech.2021.11382734530383
    [Google Scholar]
  156. Di PietroO. Pérez-ArealesF.J. Juárez-JiménezJ. EspargaróA. ClosM.V. PérezB. LavillaR. SabatéR. LuqueF.J. Muñoz-TorreroD. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies.Eur. J. Med. Chem.20148410711710.1016/j.ejmech.2014.07.02125016233
    [Google Scholar]
  157. HepnarovaV. KorabecnyJ. MatouskovaL. JostP. MuckovaL. HrabinovaM. VykoukalovaN. KerhartovaM. KuceraT. DolezalR. NepovimovaE. SpilovskaK. MezeiovaE. PhamN.L. JunD. StaudF. KapingD. KucaK. SoukupO. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease.Eur. J. Med. Chem.201815029230610.1016/j.ejmech.2018.02.08329533874
    [Google Scholar]
  158. ShaoD. ZouC. LuoC. TangX. LiY. Synthesis and evaluation of tacrine–E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.200414184639464210.1016/j.bmcl.2004.07.00515324879
    [Google Scholar]
  159. MaoF. HuangL. LuoZ. LiuA. LuC. XieZ. LiX. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation.Bioorg. Med. Chem.201220195884589210.1016/j.bmc.2012.07.04522944335
    [Google Scholar]
  160. LangeJ.H.M. CoolenH.K.A.C. van der NeutM.A.W. BorstA.J.M. StorkB. VerveerP.C. KruseC.G. Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism.J. Med. Chem.20105331338134610.1021/jm901614b20047331
    [Google Scholar]
  161. DerabliC. BoualiaI. AbdelwahabA.B. BoulcinaR. BensouiciC. KirschG. DebacheA. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives.Bioorg. Med. Chem. Lett.201828142481248410.1016/j.bmcl.2018.05.06329887354
    [Google Scholar]
  162. PanT. XieS. ZhouY. HuJ. LuoH. LiX. HuangL. Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids.Bioorg. Med. Chem. Lett.201929162150215210.1016/j.bmcl.2019.06.05631281020
    [Google Scholar]
  163. NajafiZ. MahdaviM. SaeediM. Karimpour-RazkenariE. AsatouriR. VafadarnejadF. MoghadamF.H. KhanaviM. SharifzadehM. AkbarzadehT. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors.Eur. J. Med. Chem.20171251200121210.1016/j.ejmech.2016.11.00827863370
    [Google Scholar]
  164. HiremathadA. KeriR.S. EstevesA.R. CardosoS.M. ChavesS. SantosM.A. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease.Eur. J. Med. Chem.201814825526710.1016/j.ejmech.2018.02.02329466775
    [Google Scholar]
  165. HuangL. SuT. ShanW. LuoZ. SunY. HeF. LiX. Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids.Bioorg. Med. Chem.20122093038304810.1016/j.bmc.2012.02.05922472046
    [Google Scholar]
  166. KeriR.S. QuintanovaC. MarquesS.M. EstevesA.R. CardosoS.M. SantosM.A. Design, synthesis and neuroprotective evaluation of novel tacrine–benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease.Bioorg. Med. Chem.201321154559456910.1016/j.bmc.2013.05.02823768661
    [Google Scholar]
  167. ThiratmatrakulS. YenjaiC. WaiwutP. VajraguptaO. ReubroycharoenP. TohdaM. BoonyaratC. Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201475213010.1016/j.ejmech.2014.01.02024508831
    [Google Scholar]
  168. LanJ.S. DingY. LiuY. KangP. HouJ.W. ZhangX.Y. XieS.S. ZhangT. Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.2017139485910.1016/j.ejmech.2017.07.05528797883
    [Google Scholar]
  169. JiangN. HuangQ. LiuJ. LiangN. LiQ. LiQ. XieS.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201814628729810.1016/j.ejmech.2018.01.05529407958
    [Google Scholar]
  170. QiangX. LiY. YangX. LuoL. XuR. ZhengY. CaoZ. TanZ. DengY. DL -3- n -butylphthalide-Edaravone hybrids as novel dual inhibitors of amyloid- β aggregation and monoamine oxidases with high antioxidant potency for Alzheimer’s therapy.Bioorg. Med. Chem. Lett.201727471872210.1016/j.bmcl.2017.01.05028131710
    [Google Scholar]
  171. MacklinL.J. SchwansJ.P. Synthesis, biochemical evaluation, and molecular modeling of organophosphate-coumarin hybrids as potent and selective butyrylcholinesterase inhibitors.Bioorg. Med. Chem. Lett.2020301312721310.1016/j.bmcl.2020.12721332381396
    [Google Scholar]
  172. LiuW. WuL. LiuW. TianL. ChenH. WuZ. WangN. LiuX. QiuJ. FengX. XuZ. JiangX. ZhaoQ. Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202224211468910.1016/j.ejmech.2022.11468936007469
    [Google Scholar]
  173. HuangL. LuoZ. HeF. ShiA. QinF. LiX. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase.Bioorg. Med. Chem. Lett.201020226649665210.1016/j.bmcl.2010.09.01320880702
    [Google Scholar]
  174. HuangL. ShiA. HeF. LiX. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.Bioorg. Med. Chem.20101831244125110.1016/j.bmc.2009.12.03520056426
    [Google Scholar]
  175. JiangH. WangX. HuangL. LuoZ. SuT. DingK. LiX. Benzenediol-berberine hybrids: Multifunctional agents for Alzheimer’s disease.Bioorg. Med. Chem.201119237228723510.1016/j.bmc.2011.09.04022041172
    [Google Scholar]
  176. SuT. XieS. WeiH. YanJ. HuangL. LiX. Synthesis and biological evaluation of berberine–thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity.Bioorg. Med. Chem.201321185830584010.1016/j.bmc.2013.07.01123932451
    [Google Scholar]
  177. JiangX. ZhangZ. ZuoJ. WuC. ZhaL. XuY. WangS. ShiJ. LiuX.H. ZhangJ. TangW. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease.Eur. J. Med. Chem.202122311373510.1016/j.ejmech.2021.11373534371367
    [Google Scholar]
  178. SpatzP. SteinmüllerS.A.M. TutovA. PoetaE. MorilleauA. CarlesA. DeventerM.H. HofmannJ. StoveC.P. MontiB. MauriceT. DeckerM. Dual-acting small molecules: Subtype-selective cannabinoid receptor 2 agonist/butyrylcholinesterase inhibitor hybrids show neuroprotection in an Alzheimer’s disease mouse model.J. Med. Chem.20236696414643510.1021/acs.jmedchem.3c0054137127287
    [Google Scholar]
  179. HuangW. TangL. ShiY. HuangS. XuL. ShengR. WuP. LiJ. ZhouN. HuY. Searching for the Multi-Target-Directed Ligands against Alzheimer’s disease: Discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities.Bioorg. Med. Chem.201119237158716710.1016/j.bmc.2011.09.06122019465
    [Google Scholar]
  180. ArumugamN. AlmansourA.I. KumarR.S. KotreshaD. SaiswaroopR. VenketeshS. Dispiropyrrolidinyl-piperidone embedded indeno[1,2-b]quinoxaline heterocyclic hybrids: Synthesis, cholinesterase inhibitory activity and their molecular docking simulation.Bioorg. Med. Chem.201927122621262810.1016/j.bmc.2019.03.05830952387
    [Google Scholar]
  181. LiY. PengP. TangL. HuY. HuY. ShengR. Design, synthesis and evaluation of rivastigmine and curcumin hybrids as site-activated multitarget-directed ligands for Alzheimer’s disease therapy.Bioorg. Med. Chem.201422174717472510.1016/j.bmc.2014.07.00925082512
    [Google Scholar]
  182. SangZ. LiY. QiangX. XiaoG. LiuQ. TanZ. DengY. Multifunctional scutellarin–rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.201523466868010.1016/j.bmc.2015.01.00525614117
    [Google Scholar]
  183. WangL. WangY. TianY. ShangJ. SunX. ChenH. WangH. TanW. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors.Bioorg. Med. Chem.201725136037110.1016/j.bmc.2016.11.00227856236
    [Google Scholar]
  184. XiaoG. LiY. QiangX. XuR. ZhengY. CaoZ. LuoL. YangX. SangZ. SuF. DengY. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20172531030104110.1016/j.bmc.2016.12.01328011206
    [Google Scholar]
  185. ChenZ. DigiacomoM. TuY. GuQ. WangS. YangX. ChuJ. ChenQ. HanY. ChenJ. NesiG. SestitoS. MacchiaM. RapposelliS. PiR. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer’s disease.Eur. J. Med. Chem.201712578479210.1016/j.ejmech.2016.09.05227736684
    [Google Scholar]
  186. SangZ. WangK. ShiJ. ChengX. ZhuG. WeiR. MaQ. YuL. ZhaoY. TanZ. LiuW. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202018711195810.1016/j.ejmech.2019.11195831865014
    [Google Scholar]
  187. SestitoS. PruccoliL. RunfolaM. CitiV. MartelliA. SaccomanniG. CalderoneV. TarozziA. RapposelliS. Design and synthesis of H2S-donor hybrids: A new treatment for Alzheimer’s disease?Eur. J. Med. Chem.201918411174510.1016/j.ejmech.2019.11174531585237
    [Google Scholar]
  188. XuP. ZhangM. ShengR. MaY. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease.Eur. J. Med. Chem.201712717418610.1016/j.ejmech.2016.12.04528061347
    [Google Scholar]
  189. ChengG. XuP. ZhangM. ChenJ. ShengR. MaY. Resveratrol-maltol hybrids as multi-target-directed agents for Alzheimer’s disease.Bioorg. Med. Chem.201826225759576510.1016/j.bmc.2018.08.01130360953
    [Google Scholar]
  190. LiuX. YuC. YaoY. LaiH. YeX. XuJ. GuoJ. XiaoX. LinC. HuangZ. LinJ. YuC. ZhaD. Novel neuroprotective pyromeconic acid derivatives with concurrent anti-Aβ deposition, anti-inflammatory, and anti-oxidation properties for treatment of Alzheimer’s disease.Eur. J. Med. Chem.202324811512010.1016/j.ejmech.2023.11512036682173
    [Google Scholar]
  191. GuttiG. LeifeldJ. KakarlaR. BajadN.G. GaneshpurkarA. KumarA. KrishnamurthyS. Klein-SchmidtC. TapkenD. HollmannM. SinghS.K. Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer’s disease.Eur. J. Med. Chem.202325911567010.1016/j.ejmech.2023.11567037515920
    [Google Scholar]
  192. KushwahaP. FatimaS. UpadhyayA. GuptaS. BhagwatiS. BaghelT. SiddiqiM.I. NazirA. SashidharaK.V. Synthesis, biological evaluation and molecular dynamic simulations of novel Benzofuran-tetrazole derivatives as potential agents against Alzheimer’s disease.Bioorg. Med. Chem. Lett.2019291667210.1016/j.bmcl.2018.11.00530455151
    [Google Scholar]
  193. Abd El-KarimS.S. AnwarM.M. AhmedN.S. SyamY.M. ElseginyS.A. AlyH.F. YounisE.A. KhalilW.K.B. AhmedK.A. MohammedF.F. RizkM. Discovery of novel benzofuran-based derivatives as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, molecular docking and 3D-QSAR investigation.Eur. J. Med. Chem.202326011576610.1016/j.ejmech.2023.11576637678141
    [Google Scholar]
  194. LiX. LiT. ZhangP. LiX. LuL. SunY. ZhangB. AllenS. WhiteL. PhillipsJ. ZhuZ. YaoH. XuJ. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer’s disease.Eur. J. Med. Chem.202224411484110.1016/j.ejmech.2022.11484136257284
    [Google Scholar]
  195. ManzoorS. PrajapatiS.K. MajumdarS. RazaM.K. GabrM.T. KumarS. PalK. RashidH. KumarS. KrishnamurthyS. HodaN. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer’s action: Design, synthesis, crystal structure and in-vitro biological evaluation.Eur. J. Med. Chem.202121511322410.1016/j.ejmech.2021.11322433582578
    [Google Scholar]
  196. EstradaM. Herrera-ArozamenaC. PérezC. ViñaD. RomeroA. Morales-GarcíaJ.A. Pérez-CastilloA. Rodríguez-FrancoM.I. New cinnamic – N-benzylpiperidine and cinnamic – N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties.Eur. J. Med. Chem.201612137638610.1016/j.ejmech.2016.05.05527267007
    [Google Scholar]
  197. WangJ. CaiP. YangX.L. LiF. WuJ.J. KongL.Y. WangX.B. Novel cinnamamide-dibenzylamine hybrids: Potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease.Eur. J. Med. Chem.2017139688310.1016/j.ejmech.2017.07.07728800459
    [Google Scholar]
  198. PagoniA. MarinelliL. Di StefanoA. CiullaM. TurkezH. MardinogluA. VassiliouS. CacciatoreI. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation.Eur. J. Med. Chem.202018611188010.1016/j.ejmech.2019.11188031753513
    [Google Scholar]
  199. XieY. ChenC. LinS. YuX. YeS. ChenX. OuyangN. XiongW. LiC. XuC. SongG. WuH. Design, synthesis and anti-AD effects of dual inhibitor targeting glutaminyl cyclase/GSK-3β.Eur. J. Med. Chem.202324811508910.1016/j.ejmech.2023.11508936638710
    [Google Scholar]
  200. BlaikieL. KayG. Kong Thoo LinP. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.2020302112750510.1016/j.bmcl.2020.12750532822761
    [Google Scholar]
  201. ZhangZ. GuoJ. ChengM. ZhouW. WanY. WangR. FangY. JinY. LiuJ. XieS.S. Design, synthesis, and biological evaluation of novel xanthone-alkylbenzylamine hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202121311315410.1016/j.ejmech.2021.11315433476932
    [Google Scholar]
  202. AlbuquerqueH.M.T. Nunes da SilvaR. PereiraM. MaiaA. GuieuS. SoaresA.R. SantosC.M.M. VieiraS.I. SilvaA.M.S. Steroid–Quinoline Hybrids for Disruption and Reversion of Protein Aggregation Processes.ACS Med. Chem. Lett.202213344344810.1021/acsmedchemlett.1c0060435300075
    [Google Scholar]
  203. WangB. WangZ. ChenH. LuC.J. LiX. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (benzo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant.Bioorg. Med. Chem.201624194741474910.1016/j.bmc.2016.08.01727567080
    [Google Scholar]
  204. LuoZ. LiangL. ShengJ. PangY. LiJ. HuangL. LiX. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease.Bioorg. Med. Chem.20142241355136110.1016/j.bmc.2013.12.06624461494
    [Google Scholar]
  205. SchulzeM. SiolO. DeckerM. LehmannJ. Bivalent 5,8,9,13b-tetrahydro-6H-isoquino[1,2-a]isoquinolines and -isoquinolinium salts: Novel heterocyclic templates for butyrylcholinesterase inhibitors.Bioorg. Med. Chem. Lett.20102092946294910.1016/j.bmcl.2010.03.01120350808
    [Google Scholar]
  206. XuZ.C. WangX.B. YuW.Y. XieS.S. LiS.Y. KongL.Y. Design, synthesis and biological evaluation of benzylisoquinoline derivatives as multifunctional agents against Alzheimer’s disease.Bioorg. Med. Chem. Lett.201424102368237310.1016/j.bmcl.2014.03.05824726809
    [Google Scholar]
  207. KarabelyovV. Kondeva-BurdinaM. AngelovaV.T. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review.Bioorg. Med. Chem.20212911588810.1016/j.bmc.2020.11588833360082
    [Google Scholar]
  208. ZhongZ. HeX. GeJ. ZhuJ. YaoC. CaiH. YeX.Y. XieT. BaiR. Discovery of small-molecule compounds and natural products against Parkinson’s disease: Pathological mechanism and structural modification.Eur. J. Med. Chem.202223711437810.1016/j.ejmech.2022.11437835462165
    [Google Scholar]
  209. SashidharaK.V. ModukuriR.K. JadiyaP. RaoK.B. SharmaT. HaqueR. SinghD.K. BanerjeeD. SiddiqiM.I. NazirA. Discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson’s disease.ACS Med. Chem. Lett.20145101099110310.1021/ml500222g25313319
    [Google Scholar]
  210. LüM.H. WangZ.P. XingL.Z. ZhangW. HanF. HuangG.L. LiuW. ZhangY.X. XuJ. CuiJ. Hybrids of polyphenolic/quinone acids, the potential preventive and therapeutic drugs for PD: Disaggregate α-Syn fibrils, inhibit inclusions, and repair damaged neurons in mice.Eur. J. Med. Chem.202324911512210.1016/j.ejmech.2023.11512236680987
    [Google Scholar]
  211. Di MartinoR.M.C. PruccoliL. BisiA. GobbiS. RampaA. MartinezA. PérezC. Martinez-GonzalezL. PaglioneM. Di SchiaviE. SeghettiF. TarozziA. BellutiF. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 Inducer for the treatment of Parkinson’s disease.ACS Chem. Neurosci.202011172728274010.1021/acschemneuro.0c0036332663009
    [Google Scholar]
  212. PinnenF. CacciatoreI. CornacchiaC. MollicaA. SozioP. CerasaL.S. IannitelliA. FontanaA. NasutiC. Di StefanoA. CNS delivery of l-dopa by a new hybrid glutathione–methionine peptidomimetic prodrug.Amino Acids201242126126910.1007/s00726‑010‑0804‑z21080012
    [Google Scholar]
  213. ShenZ.B. MengH.W. MengX.S. LvZ.K. FangM.Y. ZhangL.L. LvZ.L. LiM.S. LiuA.K. HanJ.H. LiQ.S. DuanY.J. Design, synthesis, and SAR study of novel flavone 1,2,4-oxadiazole derivatives with anti-inflammatory activities for the treatment of Parkinson’s disease.Eur. J. Med. Chem.202325511541710.1016/j.ejmech.2023.11541737137246
    [Google Scholar]
  214. GhogareJ.G. BhandariS.V. BotharaK.G. MadgulkarA.R. ParasharG.A. SonawaneB.G. InamdarP.R. Design, synthesis and pharmacological screening of potential anticonvulsant agents using hybrid approach.Eur. J. Med. Chem.201045385786310.1016/j.ejmech.2009.09.01420034707
    [Google Scholar]
  215. MarcinkowskaM. MordylB. Fajkis-ZajaczkowskaN. SiwekA. KarczT. GawalskaA. BuckiA. ŻmudzkiP. PartykaA. Jastrzębska-WięsekM. PomiernyB. WalczakM. SmolikM. PytkaK. MikaK. KotańskaM. KolaczkowskiM. Hybrid molecules combining GABA-A and serotonin 5-HT6 receptors activity designed to tackle neuroinflammation associated with depression.Eur. J. Med. Chem.202324711507110.1016/j.ejmech.2022.11507136603509
    [Google Scholar]
  216. MalikS. BahareR.S. KhanS.A. Design, synthesis and anticonvulsant evaluation of N-(benzo[d]thiazol-2-ylcarbamoyl)-2-methyl-4-oxoquinazoline-3(4H)-carbothioamide derivatives: A hybrid pharmacophore approach.Eur. J. Med. Chem.20136711310.1016/j.ejmech.2013.06.02623831504
    [Google Scholar]
  217. ZarębaP. SałatK. HöfnerG.C. ŁątkaK. BajdaM. LataczG. KotniewiczK. RapaczA. PodkowaA. MajM. JóźwiakK. FilipekB. WannerK.T. MalawskaB. KuligK. Development of tricyclic N-benzyl-4-hydroxybutanamide derivatives as inhibitors of GABA transporters mGAT1-4 with anticonvulsant, antinociceptive, and antidepressant activity.Eur. J. Med. Chem.202122111351210.1016/j.ejmech.2021.11351234015586
    [Google Scholar]
  218. YogeeswariP. SriramD. SahityaP. RagavendranJ.V. RanganadhV. Synthesis and anticonvulsant activity of 4-(2-(2,6-dimethylphenylamino)-2-oxoethylamino)-N-(substituted)butanamides: A pharmacophoric hybrid approach.Bioorg. Med. Chem. Lett.200717133712371510.1016/j.bmcl.2007.04.03217481896
    [Google Scholar]
  219. LiuW. WangH. LiX. XuY. ZhangJ. WangW. GongQ. QiuX. ZhuJ. MaoF. ZhangH. LiJ. Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment.Bioorg. Med. Chem.201826123117312510.1016/j.bmc.2018.04.03729729987
    [Google Scholar]
  220. AbramM. RapaczA. LataczG. SzulczykB. Kalinowska-TłuścikJ. Otto-ŚlusarczykD. StrugaM. KamińskiR.M. KamińskiK. Asymmetric synthesis and in vivo/in vitro characterization of new hybrid anticonvulsants derived from (2,5-dioxopyrrolidin-1-yl)phenylacetamides.Bioorg. Chem.202110910475110.1016/j.bioorg.2021.10475133647745
    [Google Scholar]
  221. KamińskiK. ZagajaM. RapaczA. ŁuszczkiJ.J. Andres-MachM. AbramM. ObniskaJ. New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl)propan-2-yl]pyrrolidine-2,5-diones.Bioorg. Med. Chem.201624460661810.1016/j.bmc.2015.12.02726746343
    [Google Scholar]
  222. SunX. LiN. ZhongP. ChenL. SunJ. Development of MAO-A and 5-HT2AR dual Inhibitors with Improved antidepressant activity.J. Med. Chem.20226519133851340010.1021/acs.jmedchem.2c0127136173886
    [Google Scholar]
  223. SashidharaK.V. RaoK.B. SinghS. ModukuriR.K. Aruna TejaG. ChandasanaH. ShuklaS. BhattaR.S. Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents.Bioorg. Med. Chem. Lett.201424204876488010.1016/j.bmcl.2014.08.03725239852
    [Google Scholar]
  224. SashidharaK.V. ModukuriR.K. SinghS. Bhaskara RaoK. Aruna TejaG. GuptaS. ShuklaS. Design and synthesis of new series of coumarin–aminopyran derivatives possessing potential anti-depressant-like activity.Bioorg. Med. Chem. Lett.201525233734110.1016/j.bmcl.2014.11.03625488839
    [Google Scholar]
  225. ZhouJ. KläßT. JohnsonK.M. GibersonK.M. KozikowskiA.P. Discovery of novel conformationally constrained tropane-based biaryl and arylacetylene ligands as potent and selective norepinephrine transporter inhibitors and potential antidepressants.Bioorg. Med. Chem. Lett.200515102461246510.1016/j.bmcl.2005.03.08315863297
    [Google Scholar]
  226. HuangZ.H. YinL.Q. GuanL.P. LiZ.H. TanC. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects.Bioorg. Med. Chem. Lett.2020301112717310.1016/j.bmcl.2020.12717332278513
    [Google Scholar]
  227. DuY. GaoF. SunH. WuC. ZhuG. ZhuM. Novel substituted 4-(Arylethynyl)-Pyrrolo[2,3-d]pyrimidines negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) Treat depressive disorder in mice.Eur. J. Med. Chem.202326111585510.1016/j.ejmech.2023.11585537847955
    [Google Scholar]
  228. Dalton KingH. DenhartD.J. DeskusJ.A. DittaJ.L. EppersonJ.R. HigginsM.A. KungJ.E. MarcinL.R. SloanC.P. MattsonG.K. MolskiT.F. KrauseR.G. BertekapR.L.Jr LodgeN.J. MattsonR.J. MacorJ.E. Conformationally restricted homotryptamines. Part 4: Heterocyclic and naphthyl analogs of a potent selective serotonin reuptake inhibitor.Bioorg. Med. Chem. Lett.200717205647565110.1016/j.bmcl.2007.07.08317766113
    [Google Scholar]
  229. Abdul-HayS. SchieferI.T. ChandrasenaR.E.P. LiM. AbdelhamidR. WangY.T. TavassoliE. MichalsenB. AsghodomR.T. LuoJ. ThatcherG.R.J. NO-SSRIs: Nitric oxide chimera drugs incorporating a selective serotonin reuptake inhibitor.ACS Med. Chem. Lett.20112965666110.1021/ml200003321927645
    [Google Scholar]
  230. MedinaR.A. Vázquez-VillaH. Gómez-TamayoJ.C. BenhamúB. Martín-FontechaM. de la FuenteT. CaltabianoG. HedlundP.B. PardoL. López-RodríguezM.L. The extracellular entrance provides selectivity to serotonin 5-HT7 receptor antagonists with antidepressant-like behavior in vivo. J. Med. Chem.201457156879688410.1021/jm500880c25073094
    [Google Scholar]
  231. MohsinN.A. AhmadM. Hybrid organic molecules as antiinflammatory agents; a review of structural features and biological activity.Turk. J. Chem.20184212010.3906/kim‑1706‑58
    [Google Scholar]
  232. ChenT. ZhuG. MengX. ZhangX. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury.Eur. J. Med. Chem.202020711266010.1016/j.ejmech.2020.11266032916382
    [Google Scholar]
  233. PereiraR. SilvaA.M.S. RibeiroD. SilvaV.L.M. FernandesE. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects.Eur. J. Med. Chem.202325211528010.1016/j.ejmech.2023.11528036966653
    [Google Scholar]
  234. GascoA. BoschiD. ChegaevK. CenaC. Di StiloA. FrutteroR. LazzaratoL. RolandoB. ToscoP. Multitarget drugs: Focus on the NO-donor hybrid drugs.Pure Appl. Chem.20088081693170110.1351/pac200880081693
    [Google Scholar]
  235. MartelliA. RapposelliS. CalderoneV. NO-releasing hybrids of cardiovascular drugs.Curr. Med. Chem.200613660962510.2174/09298670677605563416529554
    [Google Scholar]
  236. MartelliA. BreschiM. CalderoneV. Pharmacodynamic hybrids coupling established cardiovascular mechanisms of action with additional nitric oxide releasing properties.Curr. Pharm. Des.200915661463610.2174/13816120978731561119199986
    [Google Scholar]
  237. SerafimR.A.M. PrimiM.C. TrossiniG.H.G. FerreiraE.I. Nitric oxide: state of the art in drug design.Curr. Med. Chem.201219338640510.2174/09298671280341432122335514
    [Google Scholar]
  238. BhardwajA. KaurJ. KnausE.E. Can nitric oxide-releasing hybrid drugs alleviate adverse cardiovascular risks?Future Med. Chem.20135438138310.4155/fmc.13.2323495685
    [Google Scholar]
  239. AbdelallE.K.A. AbdelhamidA.O. AzouzA.A. Synthesis and biological evaluations of new nitric oxide-anti-inflammatory drug hybrids.Bioorg. Med. Chem. Lett.201727184358436910.1016/j.bmcl.2017.08.02328844389
    [Google Scholar]
  240. MontanaroG. BertinariaM. RolandoB. FrutteroR. LucasC.D. DorwardD.A. RossiA.G. MegsonI.L. GascoA. Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents.Bioorg. Med. Chem.20132172107211610.1016/j.bmc.2013.01.00923394865
    [Google Scholar]
  241. KodelaR. ChattopadhyayM. KashfiK. NOSH-Aspirin: A novel nitric oxide-hydrogen sulfide-releasing hybrid: A new class of anti-inflammatory pharmaceuticals.ACS Med. Chem. Lett.20123325726210.1021/ml300002m22916316
    [Google Scholar]
  242. AbadiA.H. HegazyG.H. El-ZaherA.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents.Bioorg. Med. Chem.200513205759576510.1016/j.bmc.2005.05.05316002298
    [Google Scholar]
  243. ChandakS.L. BansodeA.S. MurumkarP.R. ShindeM.G. BotharaK.G. Synthesis and investigation of anti-inflammatory activity of novel nitric oxide donating hybrid drugs.Med. Chem. Res.20132273510351710.1007/s00044‑012‑0345‑y
    [Google Scholar]
  244. VelázquezC. RaoP.N.P. McDonaldR. KnausE.E. Synthesis and biological evaluation of 3,4-diphenyl-1,2,5-oxadiazole-2-oxides and 3,4-diphenyl-1,2,5-oxadiazoles as potential hybrid COX-2 inhibitor/nitric oxide donor agents.Bioorg. Med. Chem.20051382749275710.1016/j.bmc.2005.02.03415781386
    [Google Scholar]
  245. HernándezP. CabreraM. LavaggiM.L. CelanoL. TiscorniaI. Rodrigues da CostaT. ThomsonL. Bollati-FogolínM. MirandaA.L.P. LimaL.M. BarreiroE.J. GonzálezM. CerecettoH. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives.Bioorg. Med. Chem.20122062158217110.1016/j.bmc.2012.01.03422356737
    [Google Scholar]
  246. VelázquezC.A. Praveen RaoP.N. CitroM.L. KeeferL.K. KnausE.E. O2-Acetoxymethyl-protected diazeniumdiolate-based NSAIDs (NONO–NSAIDs): Synthesis, nitric oxide release, and biological evaluation studies.Bioorg. Med. Chem.200715144767477410.1016/j.bmc.2007.05.00917509888
    [Google Scholar]
  247. AbdellatifK.R.A. ChowdhuryM.A. DongY. ChenQ.H. KnausE.E. Diazen-1-ium-1,2-diolated and nitrooxyethyl nitric oxide donor ester prodrugs of anti-inflammatory (E)-2-(aryl)-3-(4-methanesulfonylphenyl)acrylic acids: Synthesis, cyclooxygenase inhibition, and nitric oxide release studies.Bioorg. Med. Chem.20081663302330810.1016/j.bmc.2007.12.00618096394
    [Google Scholar]
  248. AbdellatifK.R.A. ChowdhuryM.A. DongY. VelázquezC. DasD. SureshM.R. KnausE.E. Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole and its methanesulfonyl analog: Synthesis, biological evaluation and nitric oxide release studies.Bioorg. Med. Chem.200816229694969810.1016/j.bmc.2008.10.00118930406
    [Google Scholar]
  249. AbdellatifK.R.A. ChowdhuryM.A. DongY. DasD. YuG. VelázquezC. SureshM.R. KnausE.E. Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-carboxymethylphenyl)-1-(4-methanesulfonylphenyl)-3-trifluoromethyl-1H-pyrazole and its aminosulfonyl analog: Synthesis, biological evaluation and nitric oxide release studies.Bioorg. Med. Chem.200917145182518810.1016/j.bmc.2009.05.04619500994
    [Google Scholar]
  250. AbdellatifK.R.A. ChowdhuryM.A. DongY. DasD. YuG. VelázquezC.A. SureshM.R. KnausE.E. Dinitroglyceryl and diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of aspirin, indomethacin and ibuprofen: Synthesis, biological evaluation and nitric oxide release studies.Bioorg. Med. Chem. Lett.200919113014301810.1016/j.bmcl.2009.04.05919419861
    [Google Scholar]
  251. Abdel-HafezE.S.M.N. Abuo-RahmaG.E.D.A.A. Abdel-AzizM. RadwanM.F. FaragH.H. Design, synthesis and biological investigation of certain pyrazole-3-carboxylic acid derivatives as novel carriers for nitric oxide.Bioorg. Med. Chem.200917113829383710.1016/j.bmc.2009.04.03719419878
    [Google Scholar]
  252. Abdel-AzizM. Abuo-RahmaG.E.D.A.A. BeshrE.A.M. AliT.F.S. New nitric oxide donating 1,2,4-triazole/oxime hybrids: Synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities.Bioorg. Med. Chem.201321133839384910.1016/j.bmc.2013.04.02223665142
    [Google Scholar]
  253. BiW. BiY. GaoX. YanX. ZhangY. XueP. BammertC.E. LegalleyT.D. Michael GibsonK. BiL. WangJ.X. Anti-inflammatory, analgesic and antioxidant activities of novel kyotorphin-nitroxide hybrid molecules.Bioorg. Med. Chem. Lett.20162682005201310.1016/j.bmcl.2016.02.08626961795
    [Google Scholar]
  254. LiY.R. LiC. LiuJ.C. GuoM. ZhangT.Y. SunL.P. ZhengC.J. PiaoH.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents.Bioorg. Med. Chem. Lett.201525225052505710.1016/j.bmcl.2015.10.02826490095
    [Google Scholar]
  255. KaurG. SilakariO. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation.Bioorg. Chem.201880243510.1016/j.bioorg.2018.05.01429864685
    [Google Scholar]
  256. GhanimA.M. RezqS. IbrahimT.S. RomeroD.G. KothayerH. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition.Eur. J. Med. Chem.202121911345710.1016/j.ejmech.2021.11345733892270
    [Google Scholar]
  257. RadwanM.F. DalbyK.N. KaoudT.S. Propyphenazone-based analogues as prodrugs and selective cyclooxygenase-2 inhibitors.ACS Med. Chem. Lett.20145998398810.1021/ml500156v25221653
    [Google Scholar]
  258. MaghrabyM.T.E. Abou-GhadirO.M.F. Abdel-MotyS.G. AliA.Y. SalemO.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes.Bioorg. Med. Chem.202028711540310.1016/j.bmc.2020.11540332127262
    [Google Scholar]
  259. SinhaS. ManjuS.L. DobleM. Chalcone-thiazole hybrids: rational design, synthesis, and lead identification against 5-lipoxygenase.ACS Med. Chem. Lett.201910101415142210.1021/acsmedchemlett.9b0019331620227
    [Google Scholar]
  260. AbdelazeemA.H. Safi El-DinA.G. Abdel-FattahM.M. AminN.H. El-MoghazyS.M. El-SaadiM.T. Discovery of novel urea-diarylpyrazole hybrids as dual COX-2/sEH inhibitors with improved anti-inflammatory activity and highly reduced cardiovascular risks.Eur. J. Med. Chem.202020511266210.1016/j.ejmech.2020.11266232763463
    [Google Scholar]
  261. MartelliA. TestaiL. AnziniM. CappelliA. Di CapuaA. BiavaM. PoceG. ConsalviS. GiordaniA. CaselliG. RovatiL. GhelardiniC. PatrignaniP. SautebinL. BreschiM.C. CalderoneV. The novel anti-inflammatory agent VA694, endowed with both NO-releasing and COX2-selective inhibiting properties, exhibits NO-mediated positive effects on blood pressure, coronary flow and endothelium in an experimental model of hypertension and endothelial dysfunction.Pharmacol. Res.2013781910.1016/j.phrs.2013.09.00824083950
    [Google Scholar]
  262. ChowdhuryM.A. AbdellatifK.R.A. DongY. DasD. SureshM.R. KnausE.E. Synthesis of celecoxib analogs that possess a N-hydroxypyrid-2(1H)one 5-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity.Bioorg. Med. Chem. Lett.200818236138614110.1016/j.bmcl.2008.10.00918945614
    [Google Scholar]
  263. FuZ.Y. JinQ.H. QuY.L. GuanL.P. Chalcone derivatives bearing chromen or benzo[f]chromen moieties: Design, synthesis, and evaluations of anti-inflammatory, analgesic, selective COX-2 inhibitory activities.Bioorg. Med. Chem. Lett.201929151909191210.1016/j.bmcl.2019.05.05131160177
    [Google Scholar]
  264. AbbasS.E. AwadallahF.M. IbrahinN.A. SaidE.G. KamelG.M. New quinazolinone–pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies.Eur. J. Med. Chem.20125314114910.1016/j.ejmech.2012.03.05022551678
    [Google Scholar]
  265. BiavaM. BattilocchioC. PoceG. AlfonsoS. ConsalviS. PorrettaG.C. SchenoneS. CalderoneV. MartelliA. TestaiL. GhelardiniC. Di Cesare MannelliL. SautebinL. RossiA. GiordaniA. PatrignaniP. AnziniM. Improving the solubility of a new class of antiinflammatory pharmacodynamic hybrids, that release nitric oxide and inhibit cycloxygenase-2 isoenzyme.Eur. J. Med. Chem.20125828729810.1016/j.ejmech.2012.10.01423131542
    [Google Scholar]
  266. AlsafiM.H.A. FarhanM.S. Synthesis, characterization and acute anti-inflammatory evaluation of new mefenamic acid derivatives having 4-thiazolidinone nucleus.Iraqi J. Pharm Sci.20192813814610.31351/vol28iss1pp138‑146
    [Google Scholar]
  267. KashidB.B. SalunkheP.H. DongareB.B. MoreK.R. KhedkarV.M. GhanwatA.A. Synthesis of novel of 2, 5-disubstituted 1, 3, 4- oxadiazole derivatives and their in vitro anti-inflammatory, anti-oxidant evaluation, and molecular docking study.Bioorg. Med. Chem. Lett.2020301212713610.1016/j.bmcl.2020.12713632280025
    [Google Scholar]
  268. PanJ. XuT. XuF. ZhangY. LiuZ. ChenW. FuW. DaiY. ZhaoY. FengJ. LiangG. Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases.Eur. J. Med. Chem.201712547849110.1016/j.ejmech.2016.09.03327689730
    [Google Scholar]
  269. KumarR.S. AntonisamyP. AlmansourA.I. ArumugamN. PeriyasamiG. AltafM. KimH.R. KwonK.B. Functionalized spirooxindole-indolizine hybrids: Stereoselective green synthesis and evaluation of anti-inflammatory effect involving TNF-α and nitrite inhibition.Eur. J. Med. Chem.201815241742310.1016/j.ejmech.2018.04.06029751235
    [Google Scholar]
  270. HatnapureG.D. KecheA.P. RodgeA.H. BirajdarS.S. TaleR.H. KambleV.M. Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent.Bioorg. Med. Chem. Lett.201222206385639010.1016/j.bmcl.2012.08.07122981334
    [Google Scholar]
  271. MachadoA.L. LimaL.M. Araújo-J.X.Jr FragaC.A.M. Gonçalves KoatzV.L. BarreiroE.J. Design, synthesis and antiinflammatory activity of novel phthalimide derivatives, structurally related to thalidomide.Bioorg. Med. Chem. Lett.20051541169117210.1016/j.bmcl.2004.12.01215686935
    [Google Scholar]
  272. ZhangZ. CaoP. FangM. ZouT. HanJ. DuanY. XuH. YangX. LiQ.S. Design, synthesis, and SAR study of novel 4,5-dihydropyrazole-Thiazole derivatives with anti-inflammatory activities for the treatment of sepsis.Eur. J. Med. Chem.202122511374310.1016/j.ejmech.2021.11374334403978
    [Google Scholar]
  273. KatoT. FukaoK. OharaT. NayaN. TokuyamaR. MutoS. FukasawaH. ItaiA. MatsumuraK. Design, synthesis, and anti-inflammatory evaluation of a novel PPARδ agonist with a 4-(1-pyrrolidinyl)piperidine structure.J. Med. Chem.20236616114281144610.1021/acs.jmedchem.3c0093237552807
    [Google Scholar]
  274. LimaL.M. CastroP. MachadoA.L. FragaC.A.M. LugnierC. de MoraesV.L.G. BarreiroE.J. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues.Bioorg. Med. Chem.20021093067307310.1016/S0968‑0896(02)00152‑912110331
    [Google Scholar]
  275. LamieP. PhiloppesJ. El-GendyA. RarovaL. GruzJ. Design, synthesis and evaluation of novel phthalimide derivatives as antimicrobial, antioxidant and anti-inflammatory agents.Molecules2015209166201664210.3390/molecules20091662026389864
    [Google Scholar]
  276. LacerdaR.B. de LimaC.K.F. da SilvaL.L. RomeiroN.C. MirandaA.L.P. BarreiroE.J. FragaC.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes.Bioorg. Med. Chem.2009171748410.1016/j.bmc.2008.11.01819059783
    [Google Scholar]
  277. BerrinoE. MicheliL. CarradoriS. di Cesare MannelliL. GuglielmiP. De LucaA. CartaF. GhelardiniC. SecciD. SupuranC.T. Novel Insights on CAI−CORM hybrids: Evaluation of the CO releasing properties and pain-relieving activity of differently substituted coumarins for the treatment of rheumatoid arthritis.J. Med. Chem.20236631892190810.1021/acs.jmedchem.2c0170636701258
    [Google Scholar]
  278. Hadjipavlou-LitinaD. MagoulasG.E. BariamisS.E. DrainasD. AvgoustakisK. PapaioannouD. Does conjugation of antioxidants improve their antioxidative/anti-inflammatory potential?Bioorg. Med. Chem.201018238204821710.1016/j.bmc.2010.10.01221041094
    [Google Scholar]
  279. ChenW. GeX. XuF. ZhangY. LiuZ. PanJ. SongJ. DaiY. ZhouJ. FengJ. LiangG. Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury.Bioorg. Med. Chem. Lett.201525152998300410.1016/j.bmcl.2015.05.03026048788
    [Google Scholar]
  280. AldawsariF.S. AguiarR.P. WiirzlerL.A.M. Aguayo-OrtizR. AljuhaniN. CumanR.K.N. Medina-FrancoJ.L. SirakiA.G. Velázquez-MartínezC.A. Anti-inflammatory and antioxidant properties of a novel resveratrol–salicylate hybrid analog.Bioorg. Med. Chem. Lett.20162651411141510.1016/j.bmcl.2016.01.06926850006
    [Google Scholar]
  281. ZhengX.J. LiC.S. CuiM.Y. SongZ.W. BaiX.Q. LiangC.W. WangH.Y. ZhangT.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential and anti-inflammatory agents.Bioorg. Med. Chem. Lett.20203012723710.1016/j.bmcl.2020.127237
    [Google Scholar]
  282. ZhengX.J. LiC.S. CuiM.Y. SongZ.W. BaiX.Q. LiangC.W. WangH.Y. ZhangT.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents.Bioorg. Med. Chem. Lett.2020301312723710.1016/j.bmcl.2020.12723732386981
    [Google Scholar]
  283. KankalaS. KankalaR.K. GundepakaP. ThotaN. NerellaS. GangulaM.R. GugulothH. KaggaM. VaddeR. VasamC.S. Regioselective synthesis of isoxazole–mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies.Bioorg. Med. Chem. Lett.20132351306130910.1016/j.bmcl.2012.12.10123357631
    [Google Scholar]
  284. MengheresG. RiceC.R. OlajideO.A. HemmingK. Synthesis of novel isoflavone/benzo-δ-sultam hybrids as potential anti-inflammatory drugs.Bioorg. Med. Chem. Lett.20213412776110.1016/j.bmcl.2020.12776133359607
    [Google Scholar]
  285. HuangS.T. LiaoJ.S. FangH.W. LinC.M. Synthesis and anti-inflammation evaluation of new C60 fulleropyrrolidines bearing biologically active xanthine.Bioorg. Med. Chem. Lett.20081819910310.1016/j.bmcl.2007.11.00418023183
    [Google Scholar]
  286. LuoX. XiongH. JiangY. FanY. ZuoC. ChenD. ChenL. LinH. GaoJ. Macrophage reprogramming via targeted ROS scavenging and COX-2 downregulation for alleviating inflammation.Bioconjug. Chem.20233471316132610.1021/acs.bioconjchem.3c0023937330989
    [Google Scholar]
  287. WangW. WangS.K. WangQ. ZhangZ. LiB. ZhouZ.D. ZhangJ.F. LinC. ChenT.X. JinZ. TangY.Z. Diclofenac and eugenol hybrid with enhanced anti-inflammatory activity through activating HO-1 and inhibiting NF-κB pathway in vitro and in vivo. Eur. J. Med. Chem.202325911566910.1016/j.ejmech.2023.11566937517204
    [Google Scholar]
  288. AkhtarM. NiuJ. ZhuY. LuoZ. TianT. DongY. WangY. FareedM.S. LinL. Anti-inflammatory efficacy and relevant SAR investigations of novel chiral pyrazolo isoquinoline derivatives: Design, synthesis, in-vitro, in-vivo, and computational studies targeting iNOS.Eur. J. Med. Chem.202325611541210.1016/j.ejmech.2023.11541237146344
    [Google Scholar]
  289. LiS.M. ChouJ.Y. TsaiS.E. TsengC.C. ChungC.Y. ZengW.Z. HuY.P. UramaruN. HuangG.J. WongF.F. Synthesis and anti-inflammatory activity evaluation of NO-releasing furoxan/1,2,4-triazole hybrid derivatives.Eur. J. Med. Chem.202325711549610.1016/j.ejmech.2023.11549637224762
    [Google Scholar]
  290. LiX. HuY. HeB. LiL. TianY. XiaoY. ShangH. ZouZ. Design, synthesis and evaluation of ursodeoxycholic acid-cinnamic acid hybrids as potential anti-inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways.Eur. J. Med. Chem.202326011578510.1016/j.ejmech.2023.11578537678142
    [Google Scholar]
  291. AuvinS. AuguetM. NavetE. HarnettJ.J. ViossatI. SchulzJ. BiggD. ChabrierP.E. Novel inhibitors of neuronal nitric oxide synthase with potent antioxidant properties.Bioorg. Med. Chem. Lett.200313220921210.1016/S0960‑894X(02)00883‑112482425
    [Google Scholar]
  292. Vázquez-JiménezL. GarridoM. MiceliM. PratsE. Ferrer-MontielA. TeixidóM. JimenoC. MesseguerA. Synthesis and in vitro, ex-vivo and in vivo activity of hybrid compounds linking a potent ROS and RNS scavenger activity with diverse substrates addressed to pass across the blood-brain barrier.Eur. J. Med. Chem.201612378880210.1016/j.ejmech.2016.08.00727541262
    [Google Scholar]
  293. YooY.J. NamD.H. JungS.Y. JangJ.W. KimH.J. JinC. PaeA.N. LeeY.S. Synthesis of cinnamoyl ketoamides as hybrid structures of antioxidants and calpain inhibitors.Bioorg. Med. Chem. Lett.201121102850285410.1016/j.bmcl.2011.03.07721504847
    [Google Scholar]
  294. SahuP.K. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.Eur. J. Med. Chem.201612151051610.1016/j.ejmech.2016.05.03727318975
    [Google Scholar]
  295. SahuP.K. SahuP.K. SahuP.L. AgarwalD.D. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives.Bioorg. Med. Chem. Lett.20162641342134710.1016/j.bmcl.2015.12.01326810315
    [Google Scholar]
  296. MatosM. MuraF. Vazquez-RodriguezS. BorgesF. SantanaL. UriarteE. Olea-AzarC. Study of coumarin-resveratrol hybrids as potent antioxidant compounds.Molecules20152023290330810.3390/molecules2002329025690290
    [Google Scholar]
  297. BuendiaI. NavarroE. MichalskaP. GameiroI. EgeaJ. AbrilS. LópezA. González-LafuenteL. LópezM.G. LeónR. New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection.Future Med. Chem.20157151961196910.4155/fmc.15.9926496465
    [Google Scholar]
  298. DurandG. PolidoriA. SallesJ.P. ProstM. DurandP. PucciB. Synthesis and antioxidant efficiency of a new amphiphilic spin-trap derived from PBN and lipoic acid.Bioorg. Med. Chem. Lett.200313162673267610.1016/S0960‑894X(03)00545‑612873491
    [Google Scholar]
  299. DowarahJ. SinghV.P. Anti-diabetic drugs recent approaches and advancements.Bioorg. Med. Chem.202028511526310.1016/j.bmc.2019.11526332008883
    [Google Scholar]
  300. LiuC. MiaoR. RazaF. QianH. TianX. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain.Eur. J. Med. Chem.2023245Pt 111489310.1016/j.ejmech.2022.11489336395649
    [Google Scholar]
  301. IbrahimM.K. EissaI.H. AlesawyM.S. MetwalyA.M. RadwanM.M. ElSohlyM.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists.Bioorg. Med. Chem.201725174723474410.1016/j.bmc.2017.07.01528720328
    [Google Scholar]
  302. SatishS. SrivastavaA. YadavP. VarshneyS. ChoudharyR. BalaramnavarV.M. NarenderT. GaikwadA.N. Aegeline inspired synthesis of novel amino alcohol and thiazolidinedione hybrids with antiadipogenic activity in 3T3-L1 cells.Eur. J. Med. Chem.201814378079110.1016/j.ejmech.2017.11.04129220798
    [Google Scholar]
  303. HuangF. ZengZ. ZhangW. YanZ. ChenJ. YuL. YangQ. LiY. YuH. ChenJ. WuC. ZhangX. SuY. ZhouH. Design, synthesis, and biological evaluation of novel sulindac derivatives as partial agonists of PPARγ with potential anti-diabetic efficacy.Eur. J. Med. Chem.202122211354210.1016/j.ejmech.2021.11354234118723
    [Google Scholar]
  304. RajanS. PuriS. KumarD. BabuM.H. ShankarK. VarshneyS. SrivastavaA. GuptaA. ReddyM.S. GaikwadA.N. Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway.Eur. J. Med. Chem.20181431345136010.1016/j.ejmech.2017.10.03429153558
    [Google Scholar]
  305. KinfeH.H. BelayY.H. JosephJ.S. MukwevhoE. Evaluation of the Influence of thiosemicarbazone–triazole hybrids on genes implicated in lipid oxidation and accumulation as potential anti-obesity agents.Bioorg. Med. Chem. Lett.201323195275527810.1016/j.bmcl.2013.08.02823988353
    [Google Scholar]
  306. XiaoD. LuL. LiangB. XiongZ. XuX. ChenW.H. Identification of 1,3,4-oxadiazolyl-containing β-carboline derivatives as novel α-glucosidase inhibitors with antidiabetic activity.Eur. J. Med. Chem.202326111579510.1016/j.ejmech.2023.11579537688939
    [Google Scholar]
  307. ShahM. JanM.S. SadiqA. KhanS. RashidU. SAR and lead optimization of (Z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl)thiazolidine-2,4-dione as a potential multi-target antidiabetic agent.Eur. J. Med. Chem.202325811559110.1016/j.ejmech.2023.11559137393789
    [Google Scholar]
  308. MushtaqA. AzamU. MehreenS. NaseerM.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.Eur. J. Med. Chem.202324911511910.1016/j.ejmech.2023.11511936680985
    [Google Scholar]
  309. CalderoneV. RapposelliS. MartelliA. DigiacomoM. TestaiL. TorriS. MarchettiP. BreschiM.C. BalsamoA. NO-glibenclamide derivatives: Prototypes of a new class of nitric oxide-releasing anti-diabetic drugs.Bioorg. Med. Chem.200917155426543210.1016/j.bmc.2009.06.04919595600
    [Google Scholar]
  310. DigiacomoM. MartelliA. TestaiL. LapucciA. BreschiM.C. CalderoneV. RapposelliS. Synthesis and evaluation of multi-functional NO-donor/insulin-secretagogue derivatives for the treatment of type II diabetes and its cardiovascular complications.Bioorg. Med. Chem.201523342242810.1016/j.bmc.2014.12.04325577707
    [Google Scholar]
  311. XieY.D. LiuJ.P. WangW. ShiY.H. WangX.P. SunM. XuX.Y. LiN. 3,4-Dihydroxyphenethyl nitrate with nitric oxide releasing, antioxidant, hypoglycemic and hypolipidemic effects.Bioorg. Med. Chem. Lett.2020301512727710.1016/j.bmcl.2020.12727732527456
    [Google Scholar]
  312. LiZ. XuX. DengL. LiaoR. LiangR. ZhangB. ZhangL. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents.Bioorg. Med. Chem.201826143947395210.1016/j.bmc.2018.06.01729954682
    [Google Scholar]
  313. LiZ. XuX. LiuR. DengF. ZengX. ZhangL. Nitric oxide donor-based FFA1 agonists: Design, synthesis and biological evaluation as potential anti-diabetic and anti-thrombotic agents.Bioorg. Med. Chem.201826154560456610.1016/j.bmc.2018.07.05030082106
    [Google Scholar]
  314. YangQ. ZhouF. TangX. WangJ. FengH. JiangW. JinL. JiangN. YuanY. HanJ. YanZ. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents.Eur. J. Med. Chem.202223311421410.1016/j.ejmech.2022.11421435231829
    [Google Scholar]
  315. InoueT. MoritaM. TojoT. YoshiharaK. NagashimaA. MoritomoA. OhkuboM. MiyakeH. Synthesis and SAR study of new thiazole derivatives as vascular adhesion protein-1 (VAP-1) inhibitors for the treatment of diabetic macular edema.Bioorg. Med. Chem.20132151219123310.1016/j.bmc.2012.12.02523337801
    [Google Scholar]
  316. ShahK. PatelD. JadavP. SheikhM. SairamK.V.V.M. JoharapurkarA. JainM.R. BahekarR. Discovery of liver selective non-steroidal glucocorticoid receptor antagonist as novel antidiabetic agents.Bioorg. Med. Chem. Lett.201222185857586210.1016/j.bmcl.2012.07.07822917520
    [Google Scholar]
  317. ChaidamS. SaehlimN. AthipornchaiA. SirionU. SaeengR. Synthesis and biological evaluation of 1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment of Type 2 diabetes.Bioorg. Med. Chem. Lett.20215012833110.1016/j.bmcl.2021.12833134418573
    [Google Scholar]
  318. ShengR. YangL. ZhangY. XingE. ShiR. WenX. WangH. SunH. Discovery of novel selective GPR120 agonists with potent anti-diabetic activity by hybrid design.Bioorg. Med. Chem. Lett.201828152599260410.1016/j.bmcl.2018.06.04729980358
    [Google Scholar]
  319. Hernández-VázquezE. Salgado-BarreraS. Ramírez-EspinosaJ.J. Estrada-SotoS. Hernández-LuisF. SAR and lead optimization of (z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl) thiazolidine-2,4-dione as a potential multi-target antidiabetic agent.Bioorg. Med. Chem.2016242298230610.1016/j.bmc.2016.04.00727079123
    [Google Scholar]
  320. Hernández-VázquezE. Castañeda-ArriagaR. Ramírez-EspinosaJ.J. Medina-CamposO.N. Hernández-LuisF. ChaverriJ.P. Estrada-SotoS. 1,5-Diarylpyrazole and vanillin hybrids: Synthesis, biological activity and DFT studies.Eur. J. Med. Chem.201510010611810.1016/j.ejmech.2015.06.01026079087
    [Google Scholar]
  321. ShuklaP. SinghA.B. SrivastavaA.K. PratapR. Chalcone based aryloxypropanolamines as potential antihyperglycemic agents.Bioorg. Med. Chem. Lett.200717379980210.1016/j.bmcl.2006.10.06817095211
    [Google Scholar]
  322. MonteroA. GoyaP. JagerovicN. CalladoL.F. MeanaJ.J. GirónR. GoicoecheaC. MartínM.I. Guanidinium and aminoimidazolinium derivatives of N-(4-piperidyl)propanamides as potential ligands for μ opioid and I2-imidazoline receptors: Synthesis and pharmacological screening.Bioorg. Med. Chem.20021041009101810.1016/S0968‑0896(01)00356‑X11836109
    [Google Scholar]
  323. DardonvilleC. JagerovicN. CalladoL.F. MeanaJ.J. Fentanyl derivatives bearing aliphatic alkaneguanidinium moieties: a new series of hybrid molecules with significant binding affinity for μ-opioid receptors and I2-imidazoline binding sites.Bioorg. Med. Chem. Lett.200414249149310.1016/j.bmcl.2003.10.04814698188
    [Google Scholar]
  324. Romero-HernándezL.L. Merino-MontielP. Montiel-SmithS. Meza-ReyesS. Vega-BáezJ.L. AbasoloI. SchwartzS. LópezÓ. Fernández-BolañosJ.G. Diosgenin-based thio(seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile.Eur. J. Med. Chem.201599678110.1016/j.ejmech.2015.05.01826046314
    [Google Scholar]
  325. HuangY. HuangW. YangG. WangR. MaL. Design and synthesis of novel diosgenin-triazole hybrids targeting inflammation as potential neuroprotective agents.Bioorg. Med. Chem. Lett.20214312809210.1016/j.bmcl.2021.12809233964436
    [Google Scholar]
  326. ZhouL.C. LiangY.F. HuangY. YangG.X. ZhengL.L. SunJ.M. LiY. ZhuF.L. QianH.W. WangR. MaL. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202121911342610.1016/j.ejmech.2021.11342633848787
    [Google Scholar]
  327. WangW. WangW. YaoG. RenQ. WangD. WangZ. LiuP. GaoP. ZhangY. WangS. SongS. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer’s agents: Design, synthesis and biological evaluation.Eur. J. Med. Chem.201815135136210.1016/j.ejmech.2018.03.08229635167
    [Google Scholar]
  328. NarenderT. MadhurG. JaiswalN. AgrawalM. MauryaC.K. RahujaN. SrivastavaA.K. TamrakarA.K. Synthesis of novel triterpene and N-allylated/N-alkylated niacin hybrids as α-glucosidase inhibitors.Eur. J. Med. Chem.20136316216910.1016/j.ejmech.2013.01.05323474902
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673305662240702071354
Loading
/content/journals/cmc/10.2174/0109298673305662240702071354
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiviral hybrids; CNS; dimeric drugs; Drug hybrids; hybrids; linking bridges; synergy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test