Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Oridonin is a tetracyclic diterpenoid compound extracted from the medicinal herb Isodon and related species. Since 1976, studies have reported the significant anti-tumor activity of oridonin Recently, an increasing number of studies have confirmed the anti-tumor effects of oridonin in various types of cancers, and its effect on hematological malignancies stands out. Herein, we have systematically reviewed the anti- tumor effects of oridonin and its specific mechanisms in hematological malignancies, including the regulation of cancer proteins, activation of intrinsic and extrinsic apoptosis signaling pathways, accumulation of reactive oxygen species (ROS), modulation of chaperone proteins and miRNA expression, combination therapy with chemotherapeutic drugs, and the development of its derivatives. Taken together, oridonin exhibits multiple anti-tumor activities and serves as a multi-target agent, making it worthy of further investigation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673273034231215190811
2024-02-16
2025-12-07
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. CroninK.A. ScottS. FirthA.U. SungH. HenleyS.J. ShermanR.L. SiegelR.L. AndersonR.N. KohlerB.A. BenardV.B. NegoitaS. WigginsC. CanceW.G. JemalA. Annual report to the nation on the status of cancer, part 1: National cancer statistics.Cancer2022128244251428410.1002/cncr.3447936301149
    [Google Scholar]
  3. ShimadaA. Hematological malignancies and molecular targeting therapy.Eur. J. Pharmacol.201986217264110.1016/j.ejphar.2019.17264131493406
    [Google Scholar]
  4. AubergerP. Tamburini-BonnefoyJ. PuissantA. Drug resistance in hematological malignancies.Int. J. Mol. Sci.20202117609110.3390/ijms2117609132847013
    [Google Scholar]
  5. FeiX. LeiF. ZhangH. LuH. ZhuY. TangY. Predicting early post-chemotherapy adverse events in patients with hematological malignancies: A retrospective study.Support. Care Cancer20162462727273310.1007/s00520‑016‑3085‑626803835
    [Google Scholar]
  6. YangY.C. LinP.H. WeiM.C. Production of oridonin-rich extracts from Rabdosia rubescens using hyphenated ultrasound-assisted supercritical carbon dioxide extraction.J. Sci. Food Agric.201797103323333210.1002/jsfa.818227981601
    [Google Scholar]
  7. LuY. SunC. PanY. Isolation and purification of oridonin from Rabdosia rubescens using upright counter-current chromatography.J. Sep. Sci.200629231431810.1002/jssc.20050032616524109
    [Google Scholar]
  8. HeF. BaiY. WangJ. WeiJ. YuC. LiS. YangW. HanC. Isolation and purification of oridonin from the whole plant of Isodon rubescens by high-speed counter-current chromatography.Molecules20111697949795710.3390/molecules1609794922143552
    [Google Scholar]
  9. YangY.C. WangC.S. WeiM.C. A green approach for the extraction and characterization of oridonin and ursolic and oleanolic acids from Rabdosia rubescens and its kinetic behavior.Food Chem.202031912658210.1016/j.foodchem.2020.12658232199144
    [Google Scholar]
  10. ShenQ.K. DengH. WangS.B. TianY.S. QuanZ.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway.Eur. J. Med. Chem.2019173153110.1016/j.ejmech.2019.04.00530981113
    [Google Scholar]
  11. XuS. PeiL. LiD. YaoH. CaiH. YaoH. WuX. XuJ. Synthesis and antimycobacterial evaluation of natural oridonin and its enmein-type derivatives.Fitoterapia20149930030610.1016/j.fitote.2014.10.00525316557
    [Google Scholar]
  12. HouW. FanQ. SuL. XuH. Synthesis of oridonin derivatives via mizoroki-heck reaction and click chemistry for cytotoxic activity.Anticancer. Agents Med. Chem.201919793594710.2174/187152061966619011812143930657049
    [Google Scholar]
  13. DingY. DingC. YeN. LiuZ. WoldE.A. ChenH. WildC. ShenQ. ZhouJ. Discovery and development of natural product oridonin-inspired anticancer agents.Eur. J. Med. Chem.201612210211710.1016/j.ejmech.2016.06.01527344488
    [Google Scholar]
  14. ShenQ.K. ChenZ.A. ZhangH.J. LiJ.L. LiuC.F. GongG.H. QuanZ.S. Design and synthesis of novel oridonin analogues as potent anticancer agents.J. Enzyme Inhib. Med. Chem.201833132433310.1080/14756366.2017.141921929303372
    [Google Scholar]
  15. FujitaE. NagaoY. NodeM. KanekoK. NakazawaS. KurodaH. Antitumor activity of the isodon diterpenoids: Structural requirements for the activity.Experientia197632220320610.1007/BF019377661269612
    [Google Scholar]
  16. ZouB. TanY. DengW. ZhengJ. YangQ. KeM. DingZ. LiX. Oridonin ameliorates inflammation-induced bone loss in mice via suppressing DC-STAMP expression.Acta Pharmacol. Sin.202142574475410.1038/s41401‑020‑0477‑432753731
    [Google Scholar]
  17. HuangW. HuangM. OuyangH. PengJ. LiangJ. Oridonin inhibits vascular inflammation by blocking NF-κB and MAPK activation.Eur. J. Pharmacol.201882613313910.1016/j.ejphar.2018.02.04429518395
    [Google Scholar]
  18. YangH. LvH. LiH. CiX. PengL. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways.Cell Commun. Signal.20191716210.1186/s12964‑019‑0366‑y31186013
    [Google Scholar]
  19. HeH. JiangH. ChenY. YeJ. WangA. WangC. LiuQ. LiangG. DengX. JiangW. ZhouR. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity.Nat. Commun.201891255010.1038/s41467‑018‑04947‑629959312
    [Google Scholar]
  20. GaoJ. LiC. WangX. SunX. ZhangR. chenC. YuM. LiuY. ZhuY. ChenJ. Oridonin attenuates lung inflammation and fibrosis in silicosis via covalent targeting iNOS.Biomed. Pharmacother.202215311353210.1016/j.biopha.2022.11353236076611
    [Google Scholar]
  21. LiX. WangK. WangG. CuiB. SongS. SunX. DengY. Oridonin attenuates burkholderia cenocepacia virulence by suppressing quorum-sensing signaling.Microbiol. Spectr.2022104e01787-2210.1128/spectrum.01787‑2235856676
    [Google Scholar]
  22. YuanZ. OuyangP. GuK. RehmanT. ZhangT. YinZ. FuH. LinJ. HeC. ShuG. LiangX. YuanZ. SongX. LiL. ZouY. YinL. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA).Pharm. Biol.201957171071610.1080/13880209.2019.167434231622118
    [Google Scholar]
  23. LiD. HanT. XuS. ZhouT. TianK. HuX. ChengK. LiZ. HuaH. XuJ. Antitumor and antibacterial derivatives of oridonin: A main composition of dong-ling-cao.Molecules201621557510.3390/molecules2105057527144553
    [Google Scholar]
  24. LiuZ. OuyangL. PengH. ZhangW.Z. Oridonin: Targeting programmed cell death pathways as an anti-tumour agent.Cell Prolif.201245649950710.1111/j.1365‑2184.2012.00849.x23106297
    [Google Scholar]
  25. ZhouF. GaoH. ShangL. LiJ. ZhangM. WangS. LiR. YeL. YangS. Oridonin promotes endoplasmic reticulum stress via TP53-repressed TCF4 transactivation in colorectal cancer.J. Exp. Clin. Cancer Res.202342115010.1186/s13046‑023‑02702‑437337284
    [Google Scholar]
  26. LiX. ZhangC.T. MaW. XieX. HuangQ. Oridonin: A review of its pharmacology, pharmacokinetics and toxicity.Front. Pharmacol.20211264582410.3389/fphar.2021.64582434295243
    [Google Scholar]
  27. LiuX. XuJ. ZhouJ. ShenQ. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance.Genes Dis.20218444846210.1016/j.gendis.2020.06.01034179309
    [Google Scholar]
  28. LiuJ. YangF. ZhangY. LiJ. Studies on the cell-immunosuppressive mechanism of Oridonin from Isodon serra.Int. Immunopharmacol.20077794595410.1016/j.intimp.2007.03.00117499197
    [Google Scholar]
  29. DuX. QueW. HuX. YuX. GuoW.Z. ZhangS. LiX.K. Oridonin prolongs the survival of mouse cardiac allografts by attenuating the NF-κB/NLRP3 pathway.Front. Immunol.20211271957410.3389/fimmu.2021.71957434566976
    [Google Scholar]
  30. XuM. WanC. HuangS. WangH. FanD. WuH.M. WuQ. MaZ. DengW. TangQ.Z. Oridonin protects against cardiac hypertrophy by promoting P21-related autophagy.Cell Death Dis.201910640310.1038/s41419‑019‑1617‑y31127082
    [Google Scholar]
  31. ZhanZ. DaiF. ZhangT. ChenY. SheJ. JiangH. LiuS. GuT. TangL. Oridonin alleviates hyperbilirubinemia through activating LXRα-UGT1A1 axis.Pharmacol. Res.202217810618810.1016/j.phrs.2022.10618835338002
    [Google Scholar]
  32. LiL. SongJ. ZhangM. ZhangH. ZhuH. GuoW. PanC. LiuX. XuL. ZhangZ. Oridonin ameliorates caspase-9-mediated brain neuronal apoptosis in mouse with ischemic stroke by inhibiting RIPK3-mediated mitophagy.Acta Pharmacol. Sin.202344472674010.1038/s41401‑022‑00995‑336216897
    [Google Scholar]
  33. XuL. BiY. XuY. ZhangZ. XuW. ZhangS. ChenJ. Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway.J. Cell. Mol. Med.20202484480449310.1111/jcmm.1510632168416
    [Google Scholar]
  34. Yi-wenZ. Mei-huaB. Xiao-yaL. YuC. JingY. Hong-haoZ. Effects of oridonin on hepatic cytochrome P450 expression and activities in PXR-humanized mice.Biol. Pharm. Bull.201841570771210.1248/bpb.b17‑0088229709908
    [Google Scholar]
  35. ButturiniA. GaleR.P. Oncogenes and leukemia.Leukemia1990421381602406517
    [Google Scholar]
  36. Le BeauM.M. Chromosomal fragile sites and cancer-specific rearrangements.Blood198667484985810.1182/blood.V67.4.849.8493513870
    [Google Scholar]
  37. LichtJ.D. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML.Oncogene200120405660567910.1038/sj.onc.120459311607817
    [Google Scholar]
  38. FaliniB. BrunettiL. SportolettiP. MartelliM.P. NPM1-mutated acute myeloid leukemia: From bench to bedside.Blood2020136151707172110.1182/blood.201900422632609823
    [Google Scholar]
  39. ChopraR. PuQ.Q. ElefantyA.G. Biology of BCR-ABL.Blood Rev.199913421122910.1054/blre.1999.011910741897
    [Google Scholar]
  40. ChenZ. ChenS.J. RARA and PML genes in acute promyelocytic leukemia.Leuk. Lymphoma199284-525326010.3109/104281992090510041337847
    [Google Scholar]
  41. GaoF. TangQ. YangP. FangY. LiW. WuY. Apoptosis inducing and differentiation enhancement effect of oridonin on the all-trans-retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells.Int. J. Lab. Hematol.2010321p1e114e12210.1111/j.1751‑553X.2009.01147.x19302235
    [Google Scholar]
  42. GuoY. ShanQ. GongY. LinJ. YangX. ZhouR. Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway.Cancer Biol. Ther.201213131244125410.4161/cbt.2146022895079
    [Google Scholar]
  43. LiF. YiS. WenL. HeJ. YangL. ZhaoJ. ZhangB. CuiG. ChenY. Oridonin induces NPM mutant protein translocation and apoptosis in NPM1c+ acute myeloid leukemia cells in vitro.Acta Pharmacol. Sin.201435680681310.1038/aps.2014.2524902788
    [Google Scholar]
  44. ZhenT. WuC.F. LiuP. WuH.Y. ZhouG.B. LuY. LiuJ.X. LiangY. LiK.K. WangY.Y. XieY.Y. HeM.M. CaoH.M. ZhangW.N. ChenL.M. PetrieK. ChenS.J. ChenZ. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein.Sci. Transl. Med.20124127127ra3810.1126/scitranslmed.300356222461642
    [Google Scholar]
  45. ZhouG.B. KangH. WangL. GaoL. LiuP. XieJ. ZhangF.X. WengX.Q. ShenZ.X. ChenJ. GuL.J. YanM. ZhangD.E. ChenS.J. WangZ.Y. ChenZ. Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo.Blood200710983441345010.1182/blood‑2006‑06‑03225017197433
    [Google Scholar]
  46. ElagibK.E. GoldfarbA.N. Oncogenic pathways of AML1-ETO in acute myeloid leukemia: Multifaceted manipulation of marrow maturation.Cancer Lett.2007251217918610.1016/j.canlet.2006.10.01017125917
    [Google Scholar]
  47. BurkeB.A. CarrollM. BCR–ABL: A multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia.Leukemia20102461105111210.1038/leu.2010.6720445577
    [Google Scholar]
  48. FoàR. VitaleA. VignettiM. MeloniG. GuariniA. De ProprisM.S. EliaL. PaoloniF. FaziP. CiminoG. NobileF. FerraraF. CastagnolaC. SicaS. LeoniP. ZuffaE. FozzaC. LuppiM. CandoniA. IacobucciI. SoveriniS. MandelliF. MartinelliG. BaccaraniM. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia.Blood2011118256521652810.1182/blood‑2011‑05‑35140321931113
    [Google Scholar]
  49. ZhaoZ. ChenY. Oridonin, a promising antitumor natural product in the chemotherapy of hematological malignancies.Curr. Pharm. Biotechnol.201415111083109210.2174/138920101566614111111560825391243
    [Google Scholar]
  50. CaoY. WeiW. ZhangN. YuQ. XuW.B. YuW.J. ChenG.Q. WuY.L. YanH. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling.BMC Cancer201515124810.1186/s12885‑015‑1219‑825886043
    [Google Scholar]
  51. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y32203277
    [Google Scholar]
  52. De KouchkovskyI. Abdul-HayM. ‘Acute myeloid leukemia: A comprehensive review and 2016 update’.Blood Cancer J.201667e44110.1038/bcj.2016.5027367478
    [Google Scholar]
  53. BruserudØ. GjertsenB.T. HuangT. Induction of differentiation and apoptosis- a possible strategy in the treatment of adult acute myelogenous leukemia.Oncologist20005645446210.1634/theoncologist.5‑6‑45411110596
    [Google Scholar]
  54. KaufmannS.H. KarpJ.E. SvingenP.A. KrajewskiS. BurkeP.J. GoreS.D. ReedJ.C. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse.Blood1998913991100010.1182/blood.V91.3.9919446661
    [Google Scholar]
  55. EstrovZ. ThallP.F. TalpazM. EsteyE.H. KantarjianH.M. AndreeffM. HarrisD. VanQ. WalterscheidM. KornblauS.M. Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia.Blood19989293090309710.1182/blood.V92.9.30909787143
    [Google Scholar]
  56. ZhangQ. Riley-GillisB. HanL. JiaY. LodiA. ZhangH. GanesanS. PanR. KonoplevS.N. SweeneyS.R. RyanJ.A. JitkovaY. DunnerK.Jr GrosskurthS.E. VijayP. GhoshS. LuC. MaW. KurtzS. RuvoloV.R. MaH. WengC.C. RamageC.L. BaranN. ShiC. CaiT. DavisR.E. BattulaV.L. MiY. WangJ. DiNardoC.D. AndreeffM. TynerJ.W. SchimmerA. LetaiA. PaduaR.A. Bueso-RamosC.E. TizianiS. LeversonJ. PopovicR. KonoplevaM. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia.Signal Transduct. Target. Ther.2022715110.1038/s41392‑021‑00870‑335185150
    [Google Scholar]
  57. MaungZ.T. MacLeanF.R. ReidM.M. PearsonA.D.J. ProctorS.J. HamiltonP.J. HallA.G. The relationship between bcl -2 expression and response to chemotherapy in acute leukaemia.Br. J. Haematol.199488110510910.1111/j.1365‑2141.1994.tb04984.x7803231
    [Google Scholar]
  58. LingV.Y. StraubeJ. GodfreyW. HaldarR. JanardhananY. CooperL. BruedigamC. CooperE. Tavakoli ShiraziP. JacquelinS. TeyS.K. BaellJ. HuangF. JinJ. ZhaoY. BullingerL. BywaterM.J. LaneS.W. Targeting cell cycle and apoptosis to overcome chemotherapy resistance in acute myeloid leukemia.Leukemia202337114315310.1038/s41375‑022‑01755‑236400926
    [Google Scholar]
  59. ChoiJ.H. BogenbergerJ.M. TibesR. Targeting apoptosis in acute myeloid leukemia: Current status and future directions of BCL-2 inhibition with venetoclax and beyond.Target. Oncol.202015214716210.1007/s11523‑020‑00711‑332319019
    [Google Scholar]
  60. DiNardoC.D. JonasB.A. PullarkatV. ThirmanM.J. GarciaJ.S. WeiA.H. KonoplevaM. DöhnerH. LetaiA. FenauxP. KollerE. HavelangeV. LeberB. EsteveJ. WangJ. PejsaV. HájekR. PorkkaK. IllésÁ. LavieD. LemoliR.M. YamamotoK. YoonS.S. JangJ.H. YehS.P. TurgutM. HongW.J. ZhouY. PotluriJ. PratzK.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N. Engl. J. Med.2020383761762910.1056/NEJMoa201297132786187
    [Google Scholar]
  61. LiuJ. HuangR. LinD. WuX. PengJ. LinQ. PanX. ZhangM. HouM. ChenF. Apoptotic effect of oridonin on NB4 cells and its mechanism.Leuk. Lymphoma200546459359710.1080/1042819040001980016019488
    [Google Scholar]
  62. LiaoM. DongQ. ChenR. XuL. JiangY. GuoZ. XiaoM. HeW. CaoC. HuR. SunW. JiangH. WangJ. Oridonin inhibits DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia by inducing apoptosis and necroptosis.Cell Death Discov.20217129710.1038/s41420‑021‑00697‑534663800
    [Google Scholar]
  63. LiuY.Q. MuZ.Q. YouS. TashiroS. OnoderaS. IkejimaT. Fas/FasL signaling allows extracelluar-signal regulated kinase to regulate cytochrome c release in oridonin-induced apoptotic U937 cells.Biol. Pharm. Bull.20062991873187910.1248/bpb.29.187316946501
    [Google Scholar]
  64. Di BaccoA. KeeshanK. McKennaS.L. CotterT.G. Molecular abnormalities in chronic myeloid leukemia: Deregulation of cell growth and apoptosis.Oncologist20005540541510.1634/theoncologist.5‑5‑40511040277
    [Google Scholar]
  65. LiuJ.J. HuangR.W. LinD.J. WuX.Y. PengJ. PanX.L. SongY.Q. LinQ. HouM. WangD.N. ChenF. ZhangM.H. Oridonin-induced apoptosis in leukemia K562 cells and its mechanism.Neoplasma200552322523015875084
    [Google Scholar]
  66. ShanQ.Q. GuoY. GongY.P. LinJ. WangY.S. Anti-leukemia effect and mechanism of oridonin on imatinib-sensitive and imatinib-resistant K562 cells.Zhongguo Shi Yan Xue Ye Xue Za Zhi20172551378138329070111
    [Google Scholar]
  67. HuangF.L. YuS.J. LiC.L. Role of autophagy and apoptosis in acute lymphoblastic leukemia.Cancer Contr.20212810.1177/1073274821101913834169775
    [Google Scholar]
  68. ProkopA. WiederT. SturmI. EβmannF. SeegerK. WuchterC. LudwigW-D. HenzeG. DörkenB. DanielP.T. Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo.Leukemia20001491606161310.1038/sj.leu.240186610995007
    [Google Scholar]
  69. GuoY. ShanQ.Q. GongY.P. LinJ. YangX. Anti-leukemia effect of oridonin on T-cell acute lymphoblastic leukemia.Sichuan Da Xue Xue Bao Yi Xue Ban201445690390725571712
    [Google Scholar]
  70. GuoY. ShanQ.Q. GongY.P. LinJ. YangX. ZhouR.Q. Anti-leukemia effect of oridonin on Ph(+) acute lymphoblastic leukemia cell SUP-B15.Zhonghua Xue Ye Xue Za Zhi201233643944322967375
    [Google Scholar]
  71. Al-OdatO.S. GuirguisD.A. SchmalbachN.K. YaoG. Budak-AlpdoganT. JonnalagaddaS.C. PandeyM.K. Autophagy and apoptosis: Current challenges of treatment and drug resistance in multiple myeloma.Int. J. Mol. Sci.202224164410.3390/ijms2401064436614089
    [Google Scholar]
  72. WangJ. CaoZ. WangP. ZhangX. TangJ. HeY. HuangZ. MaoX. ShiS. KouX. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring fas-mediated apoptosis.ACS Nano2021159143601437210.1021/acsnano.1c0351734506129
    [Google Scholar]
  73. ZengR. ChenY. ZhaoS. CuiG. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1.Acta Pharmacol. Sin.20123319110010.1038/aps.2011.14322158107
    [Google Scholar]
  74. DuanH.Q. LiM.Y. GaoL. ZhangJ.F. WangW. LiY. MaY.G. WangC.B. Mechanism concerning antitumor effect of oridonin on multiple myeloma cell line U266.Zhongguo Shi Yan Xue Ye Xue Za Zhi201422236436924763006
    [Google Scholar]
  75. ChangX.G. JiO. YaoH. ZhuangY. DongW. LinL. ShenQ. Effects of oridonin on proliferation apoptosis of human multiple myeloma cells H929 in vitro.Zhongguo Shi Yan Xue Ye Xue Za Zhi201927245846330998154
    [Google Scholar]
  76. XuZ.Z. FuW.B. JinZ. GuoP. WangW.F. LiJ.M. Reactive oxygen species mediate oridonin-induced apoptosis through DNA damage response and activation of JNK pathway in diffuse large B cell lymphoma.Leuk. Lymphoma201657488889810.3109/10428194.2015.106112726415087
    [Google Scholar]
  77. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑035102280
    [Google Scholar]
  78. ApelK. HirtH. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction.Annu. Rev. Plant Biol.200455137339910.1146/annurev.arplant.55.031903.14170115377225
    [Google Scholar]
  79. ZangL. HeH. XuQ. YuY. ZhengN. LiuW. HayashiT. TashiroS. OnoderaS. IkejimaT. Reactive oxygen species H2O2 and OH, but not O2 − promote oridonin-induced phagocytosis of apoptotic cells by human histocytic lymphoma U937 cells.Int. Immunopharmacol.201315241442310.1016/j.intimp.2013.01.00423352441
    [Google Scholar]
  80. HuangH. WengH. DongB. ZhaoP. ZhouH. QuL. Oridonin triggers chaperon-mediated proteasomal degradation of BCR-ABL in leukemia.Sci. Rep.2017714152510.1038/srep4152528128329
    [Google Scholar]
  81. HuangH.L. WengH.Y. WangL.Q. YuC.H. HuangQ.J. ZhaoP.P. WenJ.Z. ZhouH. QuL.H. Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis.Mol. Cancer Ther.20121151155116510.1158/1535‑7163.MCT‑12‑006622389469
    [Google Scholar]
  82. Dal PiazF. CotugnoR. LeporeL. VassalloA. MalafronteN. LauroG. BifulcoG. BelisarioM.A. De TommasiN. Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells.J. Proteomics201382142610.1016/j.jprot.2013.01.03023416714
    [Google Scholar]
  83. ZhaoJ. ZhangM. HeP. ZhaoJ. ChenY. QiJ. WangY. Proteomic analysis of oridonin-induced apoptosis in multiple myeloma cells.Mol. Med. Rep.20171541807181510.3892/mmr.2017.621328259901
    [Google Scholar]
  84. WengH. HuangH. DongB. ZhaoP. ZhouH. QuL. Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S.Cancer Res.201474164409441910.1158/0008‑5472.CAN‑13‑174824872388
    [Google Scholar]
  85. ZhangY. WangL. ZiY. ZhangL. GuoY. HuangY. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells.Saudi J. Biol. Sci.201724367868610.1016/j.sjbs.2017.01.04228386196
    [Google Scholar]
  86. ZhangW. LuY. ZhenT. ChenX. ZhangM. LiuP. WengX. ChenB. WangY. Homoharringtonine synergy with oridonin in treatment of t(8; 21) acute myeloid leukemia.Front. Med.201913338839710.1007/s11684‑018‑0624‑130206768
    [Google Scholar]
  87. LiW. MaL. Synergistic antitumor activity of oridonin and valproic acid on HL-60 leukemia cells.J. Cell. Biochem.201912045620562710.1002/jcb.2784530320906
    [Google Scholar]
  88. EdwardsS.K.E. HanY. LiuY. KreiderB.Z. LiuY. GrewalS. DesaiA. BaronJ. MooreC.R. LuoC. XieP. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells.Leuk. Res.201641859510.1016/j.leukres.2015.12.00526740054
    [Google Scholar]
  89. SpirinP. LebedevT. OrlovaN. MorozovA. PoymenovaN. DmitrievS.E. BuzdinA. StockingC. KovalchukO. PrassolovV. Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors.Oncotarget2017834569915700210.18632/oncotarget.1850328915648
    [Google Scholar]
  90. LiuY.F. JiaY. HeP.C. ZhangM. HeQ. Influence of oridonin on the icilling acitivity of NK-92 MI cells targeting cell THP1 and its mechanism.Zhongguo Shi Yan Xue Ye Xue Za Zhi20192751374137931607286
    [Google Scholar]
  91. ZhangY. WangS. DaiM. NaiJ. ZhuL. ShengH. Solubility and bioavailability enhancement of oridonin: A review.Molecules202025233210.3390/molecules2502033231947574
    [Google Scholar]
  92. ChaiD. HaoB. HuR. ZhangF. YanJ. SunY. HuangX. ZhangQ. JiangH. Delivery of oridonin and methotrexate via pegylated graphene oxide.ACS Appl. Mater. Interfaces20191126229152292410.1021/acsami.9b0398331252460
    [Google Scholar]
  93. CumminsC.B. WangX. XuJ. HughesB.D. DingY. ChenH. ZhouJ. RadhakrishnanR.S. Antifibrosis effect of novel oridonin analog CYD0618 via suppression of the NF-κB pathway.J. Surg. Res.201823228329210.1016/j.jss.2018.06.04030463731
    [Google Scholar]
  94. YanX.B. LeiM. ZhangY.J. LiuH.M. Synthesis of oridonin glucopyranoside.Youji Huaxue2005252222224
    [Google Scholar]
  95. ShenJ. ZhangD. ZhaoZ. JiaL. ZhengD. LiuG. HaoL. ZhangQ. TianX. LiC. GuoH. Synthesis, characterization, in vitro and in vivo evaluation of PEGylated oridonin conjugates.Int. J. Pharm.20134561808610.1016/j.ijpharm.2013.08.01423973480
    [Google Scholar]
  96. GaoL. ZhangD. ChenM. ZhengT. WangS. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement.Drug Dev. Ind. Pharm.200733121332133910.1080/0363904070174181018097807
    [Google Scholar]
  97. GaoL. ZhangD. ChenM. DuanC. DaiW. JiaL. ZhaoW. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions.Int. J. Pharm.20083551-232132710.1016/j.ijpharm.2007.12.01618242896
    [Google Scholar]
  98. LouH. ZhangX. GaoL. FengF. WangJ. WeiX. YuZ. ZhangD. ZhangQ. In vitro and in vivo antitumor activity of oridonin nanosuspension.Int. J. Pharm.2009379118118610.1016/j.ijpharm.2009.06.02219563872
    [Google Scholar]
  99. WangC. WeiY. YuL. ZhangL. The effect of stealth liposomes on pharmacokinetics, tissue distribution and anti-tumor activity of oridonin.PDA J. Pharm. Sci. Technol.200963540941620158047
    [Google Scholar]
  100. SunX.Y. QuC.X. LinH. DongJ.Y. In vitro and in vivo evaluation of freeze-dried oridonin-loaded PEGylated liposomes.Lat. Am. J. Pharm.201433711441150
    [Google Scholar]
  101. FengH. LiuY. ZhangM. LiuR. WangJ. WangW. HeP. ZhangP. NiuF. De Novo design of a humanized antiCD33 antibody-oridonin conjugate for acute myeloid leukemia therapy.Biochem. Biophys. Res. Commun.202262915215810.1016/j.bbrc.2022.09.03236122452
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673273034231215190811
Loading
/content/journals/cmc/10.2174/0109298673273034231215190811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test