Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer, a complicated and multi-dimensional medical concern worldwide, can be identified either the growth of malignant tumours or colonisation of nearby tissues attributing to uncontrollable proliferation and division of cells promoted by several influential factors, including family history, exposure to pollutants, choice of lifestyle, and certain infections. The intricate processes underlying the development, expansion, and advancement of cancer are still being studied. However, there are a variety of therapeutic alternatives available for the diagnosis and treatment of cancer depending on the type and stage of cancer as well as the patient’s individuality. The bioactive compounds- fortified nanofiber-based advanced therapies are revolutionary models for cancer detection and treatment, specifically targeting melanoma cells exploring unique properties, such as increased surface area for payload, and imaging and bio-sensing capacities of nano-structured materials with minimal damage to functioning organs. The objective of the study was to gain knowledge regarding the potentiality of Nanofibers (NFs) fabricated using biomaterials in promoting cancer management along with providing a thorough overview of recent developmental initiatives, challenges, and future investigation strategies. Several fabrication approaches, such as electrospinning, self-assembly, phase separation, drawing, and centrifugal spinning of bio-compatible NFs along with characterization techniques, have been elaborated in the review.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293056240502113235
2025-07-01
2025-09-02
Loading full text...

Full text loading...

References

  1. LangleyR.R. FidlerI.J. The seed and soil hypothesis revisited-The role of tumor-stroma interactions in metastasis to different organs.Int. J. Cancer2011128112527253510.1002/ijc.2603121365651
    [Google Scholar]
  2. LiI. NabetB.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance.Mol. Cancer20191813210.1186/s12943‑019‑0975‑530823926
    [Google Scholar]
  3. GilmoreE.C. WalshC.A. Genetic causes of microcephaly and lessons for neuronal development.Wiley Interdiscip. Rev. Dev. Biol.20132446147810.1002/wdev.8924014418
    [Google Scholar]
  4. GaoY. LyuL. FengY. LiF. HuY. A review of cutting-edge therapies for hepatocellular carcinoma (HCC): Perspectives from patents.Int. J. Med. Sci.202118143066308110.7150/ijms.5993034400877
    [Google Scholar]
  5. BasuB. Micro and nanoemulsions in colorectal cancerColorectal Cancer202425928610.1016/B978‑0‑443‑13870‑6.00005‑2
    [Google Scholar]
  6. BhattacharyaS. PrajapatiB.G. SinghS. Polymeric nanoparticles in colorectal cancerColorectal CancerAcademic press-Elsevier202420323110.1016/B978‑0‑443‑13870‑6.00020‑9
    [Google Scholar]
  7. PariharA. Novel targeting formulations in colorectal cancer In: Colorectal Cancer; Academic press-Elsevier, 2024 17520110.1016/B978‑0‑443‑13870‑6.00022‑2
    [Google Scholar]
  8. BhattacharyaS. PrajapatiB.G. SinghS. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy.Crit. Rev. Oncol. Hematol.202318510396110.1016/j.critrevonc.2023.10396136921781
    [Google Scholar]
  9. MohiteP. PuriA. PandhareR. SinghS. PrajapatiB. Current trends in the biomarker’sdiscovery for the treatment and management of colorectal cancer: A comprehensive review.Curr. Med. Chem.20243110.2174/010929867327445523121904472838299394
    [Google Scholar]
  10. SinghA.K. MalviyaR. PrajapatiB. SinghS. GoyalP. Utilization of stimuli-responsive biomaterials in the formulation of cancer vaccines.J. Funct. Biomater.202314524710.3390/jfb1405024737233357
    [Google Scholar]
  11. MohiteP. RajputT. PandhareR. SangaleA. SinghS. PrajapatiB.G. Nanoemulsion in management of colorectal cancer: challenges and future prospects.Nanomanufacturing20233213916610.3390/nanomanufacturing3020010
    [Google Scholar]
  12. Begum RukaiahS.S. BhupendraP. SumithraM. RavishPatel J. Advanced targeted drug delivery of bioactive agents fortified with graft chitosan in management of cancer: A review.Curr. Med. Chem.2024321937593789
    [Google Scholar]
  13. DeshmukhR. SinghV. HarwanshR.K. AgrawalR. GargA. SinghS. ElossailyG.M. AnsariM.N. AliN. PrajapatiB.G. Emerging trends of nanomedicines in the management of prostate cancer: Perspectives and potential applications.Pharmaceutics202416329710.3390/pharmaceutics1603029738543191
    [Google Scholar]
  14. CroyleR.T. LermanC. Risk communication in genetic testing for cancer susceptibility.JNCI monographs1999199925596610.1093/oxfordjournals.jncimonographs.a024210
    [Google Scholar]
  15. BasuA. DNA damage, mutagenesis and cancer.Int. J. Mol. Sci.201819497010.3390/ijms1904097029570697
    [Google Scholar]
  16. ParkJ.H. MoonJ.H. KimH.J. KongM.H. OhY.H. Sedentary lifestyle: overview of updated evidence of potential health risks.Korean J. Fam. Med.202041636537310.4082/kjfm.20.016533242381
    [Google Scholar]
  17. CarawayC.A. GaitschH. WicksE.E. KalluriA. KunadiN. TylerB.M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches.Polymers20221414296310.3390/polym1414296335890738
    [Google Scholar]
  18. NorouziM. AbdaliZ. LiuS. MillerD.W. Salinomycin-loaded nanofibers for glioblastoma therapy.Sci. Rep.201881937710.1038/s41598‑018‑27733‑229925966
    [Google Scholar]
  19. ÖzyurtM.G. BayirE. DoğanŞ. ÖztürkŞ. Şendemi̇rA. Coculture model of blood–brain barrier on electrospun nanofibers.Turk. J. Biol.202044412113210.3906/biy‑1908‑4232922120
    [Google Scholar]
  20. BhosaleR.R. GangadharappaH.V. GowdaD.V. OsmaniR.A.M.A. VaghelaR. KulkarniP.K. SairamK.V. GurupadayyaB. Current perspectives on novel drug carrier systems and therapies for management of pancreatic cancer: An updated inclusive review.Crit. Rev. Ther. Drug Carrier Syst.201835319529210.1615/CritRevTherDrugCarrierSyst.201801942929953347
    [Google Scholar]
  21. WenP. HuT.G. LiL. ZongM.H. WuH. A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning.Food Funct.20189115999600910.1039/C8FO01216D30382268
    [Google Scholar]
  22. RaoS.S. NelsonM.T. XueR. DeJesusJ.K. ViapianoM.S. LannuttiJ.J. SarkarA. WinterJ.O. Mimicking white matter tract topography using core–shell electrospun nanofibers to examine migration of malignant brain tumors.Biomaterials201334215181519010.1016/j.biomaterials.2013.03.06923601662
    [Google Scholar]
  23. PourmadadiM. TajikiA. HosseiniS.M. SamadiA. AbdoussM. DaneshniaS. YazdianF. A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications.J. Drug Deliv. Sci. Technol.20227610376710.1016/j.jddst.2022.103767
    [Google Scholar]
  24. ZelenyJ. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.Phys. Rev.191432699110.1103/PhysRev.3.69
    [Google Scholar]
  25. TeoW.E. RamakrishnaS. A review on electrospinning design and nanofibre assemblies.Nanotechnology20061714R89R10610.1088/0957‑4484/17/14/R0119661572
    [Google Scholar]
  26. FrenotA. ChronakisI.S. Polymer nanofibers assembled by electrospinning.Curr. Opin. Colloid Interface Sci.200381647510.1016/S1359‑0294(03)00004‑9
    [Google Scholar]
  27. DamiriF. FatimiA. Magdalena MusucA. Paiva SantosA.C. PaszkiewiczS. Igwe IdumahC. SinghS. VarmaR.S. BerradaM. Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications.J. Drug Deliv. Sci. Technol.20249510560110.1016/j.jddst.2024.105601
    [Google Scholar]
  28. SinghS. Biopolymers Towards Green and Sustainable Development.Bentham Science Publishers202210412410.2174/97898150793021220101
    [Google Scholar]
  29. Sudarshan SinghW.C. Conformational, Morphological, and Physical Characterization of Bio-based Polymers in Biopolymers Towards Green and Sustainable DevelopmentBentham Science Publishers2022173
    [Google Scholar]
  30. MukherjeeS. KaratiD. SinghS. PrajapatiB.G. Chitosan-based nanomedicine in the management of age-related macular degeneration: A review.Curr. Nanomed.2024141132710.2174/0124681873261772230927074628
    [Google Scholar]
  31. SinghS. ChittasuphoC. PrajapatiB.G. ChandelA.S. Editorial: Biodegradable polymeric materials in tissue engineering and their application in drug delivery.Front. Bioeng. Biotechnol.202311129611910.3389/fbioe.2023.129611937840658
    [Google Scholar]
  32. VyasJ. ShahI. SinghS. PrajapatiB.G. Biomaterials-based additive manufacturing for customized bioengineering in management of otolaryngology: A comprehensive review.Front. Bioeng. Biotechnol.202311123434010.3389/fbioe.2023.123434037744247
    [Google Scholar]
  33. SinghS. NwaborO.F. OntongJ.C. KaewnopparatN. VoravuthikunchaiS.P. Characterization of a novel, co-processed bio-based polymer, and its effect on mucoadhesive strength.Int. J. Biol. Macromol.202014586587510.1016/j.ijbiomac.2019.11.19831783076
    [Google Scholar]
  34. SinghS. NwaborO.F. OntongJ.C. VoravuthikunchaiS.P. Characterization and assessment of compression and compactibility of novel spray-dried, co-processed bio-based polymer.J. Drug Deliv. Sci. Technol.20205610152610.1016/j.jddst.2020.101526
    [Google Scholar]
  35. ChidrawarV.R. SinghS. JayeoyeT.J. DodiyaR. SameeW. ChittasuphoC. Porous swellable hypromellose composite fortified with eucalyptus camaldulensis leaf hydrophobic/hydrophilic phenolic-rich extract to mitigate dermal wound infections.J. Polym. Environ.20233193841385610.1007/s10924‑023‑02860‑8
    [Google Scholar]
  36. SinghS. ChidrawarV.R. HermawanD. DodiyaR. SameeW. OntongJ.C. UshirY.V. PrajapatiB.G. ChittasuphoC. Hypromellose highly swellable composite fortified with Psidium guajava leaf phenolic-rich extract for antioxidative, antibacterial, anti-inflammatory, anti-melanogenesis, and hemostasis applications.J. Polym. Environ.20233173197321410.1007/s10924‑023‑02819‑9
    [Google Scholar]
  37. KaratiD. MukherjeeS. SinghS. PrajapatiB.G. BasuB. Biopolymer-based nano-formulations for mitigation of ocular infections: A review.Polym. Bull.202310.1007/s00289‑023‑05095‑8
    [Google Scholar]
  38. PatelR.P. Alginate Nanoparticles: A Potential Drug Carrier in Tuberculosis Treatment.Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases. ShegokarR. PathakY. ChamSpringer International Publishing202320723410.1007/978‑3‑031‑14100‑3_11
    [Google Scholar]
  39. WuT. DingM. ShiC. QiaoY. WangP. QiaoR. WangX. ZhongJ. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering.Chin. Chem. Lett.202031361762510.1016/j.cclet.2019.07.033
    [Google Scholar]
  40. JainR. ShettyS. YadavK.S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers.J. Drug Deliv. Sci. Technol.20205710160410.1016/j.jddst.2020.101604
    [Google Scholar]
  41. VasitaR. KattiD.S. Nanofibers and their applications in tissue engineering.Int. J. Nanomedicine200611153010.2147/nano.2006.1.1.1517722259
    [Google Scholar]
  42. LiyanageP.Y. HettiarachchiS.D. ZhouY. OuhtitA. SevenE.S. OztanC.Y. CelikE. LeblancR.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment.Biochim. Biophys. Acta Rev. Cancer20191871241943310.1016/j.bbcan.2019.04.00631034927
    [Google Scholar]
  43. LiJ. LiuY. AbdelhakimH. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy.Molecules2022276180310.3390/molecules2706180335335167
    [Google Scholar]
  44. YangG. WangJ. WangY. LiL. GuoX. ZhouS. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy.ACS Nano2015921161117410.1021/nn504573u25602381
    [Google Scholar]
  45. ZhuJ. MarchantR.E. Design properties of hydrogel tissue-engineering scaffolds.Expert Rev. Med. Devices20118560762610.1586/erd.11.2722026626
    [Google Scholar]
  46. BehereI. IngavleG. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives.J. Biomed. Mater. Res. A2022110244346110.1002/jbm.a.3729034390324
    [Google Scholar]
  47. HorneJ. McLoughlinL. BridgersB. WujcikE.K. Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring.Sens. Actuat. Repo.20202110000510.1016/j.snr.2020.100005
    [Google Scholar]
  48. JalajaK. NaskarD. KunduS.C. JamesN.R. Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications.Carbohydr. Polym.20161361098110710.1016/j.carbpol.2015.10.01426572452
    [Google Scholar]
  49. AsghariS. RezaeiZ. MahmoudifardM. Electrospun nanofibers: a promising horizon toward the detection and treatment of cancer.Analyst202014582854287210.1039/C9AN01987A32096500
    [Google Scholar]
  50. MiguelS.P. FigueiraD.R. SimõesD. RibeiroM.P. CoutinhoP. FerreiraP. CorreiaI.J. Electrospun polymeric nanofibres as wound dressings: A review.Colloids Surf. B Biointerfaces2018169607110.1016/j.colsurfb.2018.05.01129747031
    [Google Scholar]
  51. SharmaR. Recent advances in polymeric electrospun nanofibers for drug delivery.Crit Rev Ther Drug Carrier Syst201431318721710.1615/CritRevTherDrugCarrierSyst.201400819324940748
    [Google Scholar]
  52. KulkarniD. MusaleS. PanzadeP. Paiva-SantosA.C. SonwaneP. MadiboneM. ChoundheP. GiramP. CavaluS. Surface functionalization of nanofibers: The multifaceted approach for advanced biomedical applications.Nanomaterials20221221389910.3390/nano1221389936364675
    [Google Scholar]
  53. SpizzirriU.G. AielloF. CarulloG. FacenteA. RestucciaD. Nanotechnologies: An innovative tool to release natural extracts with antimicrobial properties.Pharmaceutics202113223010.3390/pharmaceutics1302023033562128
    [Google Scholar]
  54. FigenA.K.J.E.M. ApplicationsT.A. Chapter 2 - History, basics, and parameters of electrospinning technique.Electrospun Materials and their Allied Application.Wiley Online Library2020536910.1002/9781119655039.ch2
    [Google Scholar]
  55. NuneS.K. Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration.Nanostructures for novel therapy.Elsevier201728131110.1016/B978‑0‑323‑46142‑9.00011‑6
    [Google Scholar]
  56. GanesanA. JaiganeshR. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers.Carbohydrate Polymer Technologies and ApplicationsElsevier2022410026210.1016/j.carpta.2022.100262
    [Google Scholar]
  57. IbrahimH.M. KlingnerA. A review on electrospun polymeric nanofibers: Production parameters and potential applications.Polym. Test.20209010664710.1016/j.polymertesting.2020.106647
    [Google Scholar]
  58. ZhangX. LuY. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost.Polym. Rev.201454467770110.1080/15583724.2014.935858
    [Google Scholar]
  59. WuS. DongT. LiY. SunM. QiY. LiuJ. KussM.A. ChenS. DuanB. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications.Appl. Mater. Today20222710147310.1016/j.apmt.2022.10147335434263
    [Google Scholar]
  60. CuiJ. YuX. ShenY. SunB. GuoW. LiuM. ChenY. WangL. ZhouX. ShafiqM. MoX. Electrospinning inorganic nanomaterials to fabricate bionanocomposites for soft and hard tissue repair.Nanomaterials202313120410.3390/nano1301020436616113
    [Google Scholar]
  61. XuJ.J. ZhaoW.W. SongS. FanC. ChenH.Y. Functional nanoprobes for ultrasensitive detection of biomolecules: an update.Chem. Soc. Rev.20144351601161110.1039/C3CS60277J24342982
    [Google Scholar]
  62. ChenZ. ChenZ. ZhangA. HuJ. WangX. YangZ. Electrospun nanofibers for cancer diagnosis and therapy.Biomater. Sci.20164692293210.1039/C6BM00070C27048889
    [Google Scholar]
  63. SteegP.S. Tumor metastasis: mechanistic insights and clinical challenges.Nat. Med.200612889590410.1038/nm146916892035
    [Google Scholar]
  64. SawyersC.L. The cancer biomarker problem.Nature2008452718754855210.1038/nature0691318385728
    [Google Scholar]
  65. LiuX. WangS. Three-dimensional nano-biointerface as a new platform for guiding cell fate.Chem. Soc. Rev.20144382385240110.1039/C3CS60419E24504119
    [Google Scholar]
  66. YanE. FanY. SunZ. GaoJ. HaoX. PeiS. WangC. SunL. ZhangD. Biocompatible core–shell electrospun nanofibers as potential application for chemotherapy against ovary cancer.Mater. Sci. Eng. C20144121722310.1016/j.msec.2014.04.05324907754
    [Google Scholar]
  67. LiuS. ZhouG. LiuD. XieZ. HuangY. WangX. WuW. JingX. Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers.J. Mater. Chem. B Mater. Biol. Med.20131110110910.1039/C2TB00121G32260617
    [Google Scholar]
  68. ZhouX. ChenL. WangW. JiaY. ChangA. MoX. WangH. HeC. Electrospun nanofibers incorporating self-decomposable silica nanoparticles as carriers for controlled delivery of anticancer drug.RSC Advances2015581658976590410.1039/C5RA11830A
    [Google Scholar]
  69. ZhengF. WangS. ShenM. ZhuM. ShiX. Antitumor efficacy of doxorubicin-loaded electrospun nano-hydroxyapatite–poly(lactic-co-glycolic acid) composite nanofibers.Polym. Chem.20134493394110.1039/C2PY20779F
    [Google Scholar]
  70. Mitxelena-IribarrenO. Drug-loaded PCL electrospun nanofibers as anti-pancreatic cancer drug delivery systems.polymer bulletien202280Suppl 111610.1007/s00289‑022‑04425‑6
    [Google Scholar]
  71. ChenM. FengW. LinS. HeC. GaoY. WangH. Antitumor efficacy of a PLGA composite nanofiber embedded with doxorubicin@MSNs and hydroxycamptothecin@HANPs.RSC Advances2014495533445335110.1039/C4RA09122A
    [Google Scholar]
  72. KimY.J. EbaraM. AoyagiT. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis.Adv. Funct. Mater.201323465753576110.1002/adfm.201300746
    [Google Scholar]
  73. GhavamiNejadA. SasikalaA.R.K. UnnithanA.R. ThomasR.G. JeongY.Y. Vatankhah-VarnoosfaderaniM. StadlerF.J. ParkC.H. KimC.S. Mussel-inspired electrospun smart magnetic nanofibers for hyperthermic chemotherapy.Adv. Funct. Mater.201525192867287510.1002/adfm.201500389
    [Google Scholar]
  74. NayakR. PadhyeR. KyratzisI.L. TruongY.B. ArnoldL. Recent advances in nanofibre fabrication techniques.Text. Res. J.201282212914710.1177/0040517511424524
    [Google Scholar]
  75. XuD. ChenW. Tobin-MiyajiY.J. SturgeC.R. YangS. ElmoreB. SinghA. PybusC. GreenbergD.E. SellatiT.J. QiangW. DongH. Fabrication and microscopic and spectroscopic characterization of cytocompatible self-assembling antimicrobial nanofibers.ACS Infect. Dis.2018491327133510.1021/acsinfecdis.8b0006929949345
    [Google Scholar]
  76. AlghoraibiI. AlomariS.J.H.n. Different methods for nanofiber design and fabrication.Handbook of nanofibers201814610.1007/978‑3‑319‑42789‑8_11‑2
    [Google Scholar]
  77. LiuN. ZhuL. LiZ. LiuW. SunM. ZhouZ. In situ self-assembled peptide nanofibers for cancer theranostics.Biomater. Sci.20219165427543610.1039/D1BM00782C34319316
    [Google Scholar]
  78. Del GenioV. FalangaA. Allard-VannierE. Hervé-AubertK. LeoneM. BellavitaR. UzbekovR. ChourpaI. GaldieroS. Design and validation of nanofibers made of self-assembled peptides to become multifunctional stimuli-sensitive nanovectors of anticancer drug doxorubicin.Pharmaceutics2022148154410.3390/pharmaceutics1408154435893800
    [Google Scholar]
  79. ZahmatkeshanM. Polymer-based nanofibers: preparation, fabrication, and applications.Handbook of nanofibers.Springer201921526110.1007/978‑3‑319‑53655‑2_29
    [Google Scholar]
  80. TanX. RodrigueD. A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene.Polymers2019118131010.3390/polym1108131031387315
    [Google Scholar]
  81. ChenD.W.C. LiuS.J. Nanofibers used for delivery of antimicrobial agents.Nanomedicine (Lond.)201510121959197110.2217/nnm.15.2826139128
    [Google Scholar]
  82. LvH. WuC. LiuX. BaiA. CaoY. ShangW. HuL. LiuY. Folate-functionalized mesoporous hollow SnO2 nanofibers as a targeting drug carrier to improve the antitumor effect of paclitaxel for liver cancer therapy.BioMed Res. Int.2018201811110.1155/2018/852619030596100
    [Google Scholar]
  83. WangJ. NainA.S. Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique.Langmuir20143045136411364910.1021/la503011u25310055
    [Google Scholar]
  84. BayrakE. Nanofibers: Production, Characterization, and Tissue Engineering Applications.21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and AgricultureIntechOpen202226510.5772/intechopen.102787
    [Google Scholar]
  85. StojanovskaE. CanbayE. PampalE.S. CalisirM.D. AgmaO. PolatY. SimsekR. GundogduN.A.S. AkgulY. KilicA. A review on non-electro nanofibre spinning techniques.RSC Advances2016687837838380110.1039/C6RA16986D
    [Google Scholar]
  86. AlmetwallyA.A. Technology of nano-fibers: Production techniques and properties-Critical review.J. Text Assoc2017781514
    [Google Scholar]
  87. RamachandranR. JunnuthulaV.R. GowdG.S. AshokanA. ThomasJ. PeethambaranR. ThomasA. UnniA.K.K. PanikarD. NairS.V. KoyakuttyM. Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma.Sci. Rep.2017714327110.1038/srep4327128262735
    [Google Scholar]
  88. XuX. ChenX. XuX. LuT. WangX. YangL. JingX. BCNU-loaded PEG–PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells.J. Control. Release2006114330731610.1016/j.jconrel.2006.05.03116891029
    [Google Scholar]
  89. OliveiraJ.E. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study.Advances in Materials Science and EngineeringHindawi Publishing Corporation20132013140957210.1155/2013/409572
    [Google Scholar]
  90. JafariA. Herbal extract incorporated chitosan based nanofibers as a new strategy for smart anticancer drug delivery system: an in vitro model.Wor. Can. Res.20207e146210.32113/wcrj_20201_1462
    [Google Scholar]
  91. RavichandranS. RadhakrishnanJ. NandhiramanV. MariappanM. Ruthenium complex infused polycaprolactone (PCL-Ru) nanofibers and their in vitro anticancer activity against human tested cancer cell lines.Resu. Chem.2022410038010.1016/j.rechem.2022.100380
    [Google Scholar]
  92. ŠircJ. HobzováR. KostinaN. MunzarováM. JuklíčkováM. LhotkaM. KubinováŠ. ZajícováA. MichálekJ. Morphological characterization of nanofibers: methods and application in practice.J. Nanomater.2012201211410.1155/2012/327369
    [Google Scholar]
  93. YanE. JiangJ. RenX. GaoJ. ZhangX. LiS. ChenS. LiY. Polycaprolactone/polyvinyl alcohol core-shell nanofibers as a pH-responsive drug carrier for the potential application in chemotherapy against colon cancer.Mater. Lett.202129112951610.1016/j.matlet.2021.129516
    [Google Scholar]
  94. MohebianZ. BabazadehM. ZarghamiN. MousazadehH. Anticancer efficiency of curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for potential postsurgical breast cancer treatment.J. Drug Deliv. Sci. Technol.20216110217010.1016/j.jddst.2020.102170
    [Google Scholar]
  95. ArumugamM. MurugesanB. PandiyanN. ChinnalaguD.K. RangasamyG. MahalingamS. Electrospinning cellulose acetate/silk fibroin/Au-Ag hybrid composite nanofiber for enhanced biocidal activity against MCF-7 breast cancer cell.Mater. Sci. Eng. C202112311201910.1016/j.msec.2021.11201933812637
    [Google Scholar]
  96. HassanM. BerglundL. Abou-ZeidR. HassanE. Abou-ElseoudW. OksmanK. Nanocomposite film based on cellulose acetate and lignin-rich rice straw nanofibers.Materials201912459510.3390/ma1204059530781531
    [Google Scholar]
  97. Pinzón-GarcíaA.D. SinisterraR. CortesM. MesaF. Ramírez-ClavijoS. Polycaprolactone nanofibers as an adjuvant strategy for Tamoxifen release and their cytotoxicity on breast cancer cells.PeerJ20219e1212410.7717/peerj.1212434760343
    [Google Scholar]
  98. El FawalG. Abu-SerieM.M. El-GendiH. El- FakharanyE.M. Fabrication, characterization and in vitro evaluation of disulfiram-loaded cellulose acetate/poly(ethylene oxide) nanofiber scaffold for breast and colon cancer cell lines treatment.Int. J. Biol. Macromol.202220455556410.1016/j.ijbiomac.2022.01.14535139395
    [Google Scholar]
  99. RadakisninR. Abdul MajidM.S. JamirM.R.M. JawaidM. SultanM.T.H. Mat TahirM.F. Structural, morphological and thermal properties of cellulose nanofibers from Napier fiber (Pennisetum purpureum).Materials20201318412510.3390/ma1318412532957438
    [Google Scholar]
  100. HuangF.L. WangQ.Q. WeiQ.F. GaoW.D. ShouH.Y. JiangS.D. Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid.Express Polym. Lett.20104955155810.3144/expresspolymlett.2010.69
    [Google Scholar]
  101. SharmaJ. Biocompatible electrospun tactic poly (methyl methacrylate) blend fibers.Polymers2014551532613269
    [Google Scholar]
  102. WeiJ. HuJ. LiM. ChenY. ChenY. Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment.RSC Advances2014453280112801910.1039/C4RA03722G
    [Google Scholar]
  103. TanE.P.S. LimC.T. Mechanical characterization of nanofibers – A review.Compos. Sci. Technol.20066691102111110.1016/j.compscitech.2005.10.003
    [Google Scholar]
  104. SchachnerA. BradyT.F. PepperbergI.M. HauserM.D. Spontaneous motor entrainment to music in multiple vocal mimicking species.Curr. Biol.2009191083183610.1016/j.cub.2009.03.06119409786
    [Google Scholar]
  105. DarbasizadehB. MortazaviS.A. KobarfardF. JaafariM.R. HashemiA. FarhadnejadH. Feyzi-barnajiB. Electrospun Doxorubicin-loaded PEO/PCL core/sheath nanofibers for chemopreventive action against breast cancer cells.J. Drug Deliv. Sci. Technol.20216410257610.1016/j.jddst.2021.102576
    [Google Scholar]
  106. KhalfA. MadihallyS.V. Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release.Mater. Sci. Eng. C20177616117010.1016/j.msec.2017.03.093
    [Google Scholar]
  107. PaipitakK. PornpraT. MongkontalangP. TechitdheerW. PecharapaW. Characterization of PVA-chitosan nanofibers prepared by electrospinning.Procedia Eng.2011810110510.1016/j.proeng.2011.03.019
    [Google Scholar]
  108. KhoshnazarS.M. AsadiA. KarimianA. AbdolmalekiA. BhattacharyaD. Applications of nanofibers in the diagnosis and treatment of cancer.Iran. J. Blood Cancer20221429210710.58209/ijbc.14.2.92
    [Google Scholar]
  109. MohiteP. ShahS.R. SinghS. RajputT. MundeS. AdeN. PrajapatiB.G. PaliwalH. MoriD.D. DudhrejiyaA.V. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications.Front. Bioeng. Biotechnol.202311119087910.3389/fbioe.2023.119087937274159
    [Google Scholar]
  110. MohiteP. RahayuP. MundeS. AdeN. ChidrawarV.R. SinghS. JayeoyeT.J. PrajapatiB.G. BhattacharyaS. PatelR.J. Chitosan-based hydrogel in the management of dermal infections: A review.Gels20239759410.3390/gels907059437504473
    [Google Scholar]
  111. SinghS. NwaborO.F. SyukriD.M. VoravuthikunchaiS.P. Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness.Int. J. Biol. Macromol.20211821015102510.1016/j.ijbiomac.2021.04.02733839180
    [Google Scholar]
  112. NwaborO.F. SinghS. PaosenS. VongkamjanK. VoravuthikunchaiS.P. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts.Food Biosci.20203610060910.1016/j.fbio.2020.100609
    [Google Scholar]
  113. EzeF.N. JayeoyeT.J. SinghS. Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract.Food Chem.202236613057410.1016/j.foodchem.2021.13057434303209
    [Google Scholar]
  114. BazzazzadehA. Fabrication of poly (acrylic acid) grafted- chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells.International Journal of PharmaceuticsElsevier202057811967410.1016/j.ijpharm.2020.119674
    [Google Scholar]
  115. SedghiR. GholamiM. ShaabaniA. SaberM. NiknejadH. Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence.Eur. Polym. J.202012310942110.1016/j.eurpolymj.2019.109421
    [Google Scholar]
  116. PintoR.J.B. LameirinhasN.S. GuedesG. Rodrigues da SilvaG.H. OskoeiP. SpirkS. OliveiraH. DuarteI.F. VilelaC. FreireC.S.R. Cellulose nanocrystals/chitosan-based nanosystems: Synthesis, characterization, and cellular uptake on breast cancer cells.Nanomaterials2021118205710.3390/nano1108205734443888
    [Google Scholar]
  117. SinghS. NwaborO.F. SukriD.M. WunnooS. DumjunK. LethongkamS. KusolphatP. HemtanonN. KlinprathumK. SunghanJ. DejyongK. LertwittayanonK. PisuchpenS. VoravuthikunchaiS.P. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application.Int. J. Biol. Macromol.202221623525010.1016/j.ijbiomac.2022.06.17235780920
    [Google Scholar]
  118. SinghS. ChunglokW. NwaborO.F. UshirY.V. SinghS. PanpipatW. Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications.J. Polym. Environ.202230393895310.1007/s10924‑021‑02249‑5
    [Google Scholar]
  119. ChandelN. JainK. JainA. RajT. PatelA.K. YangY-H. BhatiaS.K. The versatile world of cellulose-based materials in healthcare: From production to applications.Ind. Crops Prod.202320111692910.1016/j.indcrop.2023.116929
    [Google Scholar]
  120. LiuY. WangQ. LuY. DengH. ZhouX. Synergistic enhancement of cytotoxicity against cancer cells by incorporation of rectorite into the paclitaxel immobilized cellulose acetate nanofibers.Int. J. Biol. Macromol.202015267268010.1016/j.ijbiomac.2020.02.18432084466
    [Google Scholar]
  121. WsooM.A. ShahirS. Mohd BohariS.P. NayanN.H.M. RazakS.I.A. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective.Carbohydr. Res.202049110797810.1016/j.carres.2020.10797832163784
    [Google Scholar]
  122. YangZ. XuH. ZhaoX. Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer.Adv. Sci.202079190371810.1002/advs.20190371832382486
    [Google Scholar]
  123. FegerG. AngelovB. AngelovaA. Prediction of amphiphilic cell-penetrating peptide building blocks from protein-derived amino acid sequences for engineering of drug delivery nanoassemblies.J. Phys. Chem. B2020124204069407810.1021/acs.jpcb.0c0161832337991
    [Google Scholar]
  124. SharmaR. MalviyaR. SinghS. PrajapatiB. A critical review on classified excipient sodium-alginate-based hydrogels: Modification, characterization, and application in soft tissue engineering.Gels20239543010.3390/gels905043037233021
    [Google Scholar]
  125. SinghS. ChunglokW. NwaborO.F. ChulrikW. JansakunC. BhoopongP. Porous biodegradable sodium alginate composite fortified with hibiscus sabdariffa l. calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life.J. Polym. Environ.202331392293810.1007/s10924‑022‑02596‑x
    [Google Scholar]
  126. Bingol OzakpinarO. DastanH. GurbogaM. SayinF.S. OzsavciD. Caliskan SalihiE. Carbon nanofiber- sodium alginate composite aerogels loaded with vitamin D: The cytotoxic and apoptotic effects on colon cancer cells.Gels20239756110.3390/gels907056137504440
    [Google Scholar]
  127. MuthulakshmiL. PrabakaranS. RamalingamV. RajuluA.V. RajanM. RamakrishnaS. LuoH. Sodium alginate nanofibers loaded Terminalia catappa scaffold regulates intrinsic apoptosis signaling in skin melanoma cancer.Process Biochem.20221189210210.1016/j.procbio.2022.04.004
    [Google Scholar]
  128. Andrés Felipe Chamorro RengifoN.M.S. ToigoJ. MendesC. ArgentaD.F Rosso DottoM.E. Santos da SilvaM.C. José NunesR. CaonT. Luiz ParizeA. MinattiE. PEO-chitosan nanofibers containing carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanoparticles loaded with pyrazoline for skin cancer treatment.Eur. Polym. J.201933534310.1016/j.eurpolymj.2019.08.001
    [Google Scholar]
  129. TacarO. SriamornsakP. DassC.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems.J. Pharm. Pharmacol.201265215717010.1111/j.2042‑7158.2012.01567.x23278683
    [Google Scholar]
  130. VickersN.J. Animal communication: when i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  131. PB. GS. SA.M. AT.S. Efficacy of biopolymeric PVA-AuNPs and PCL-Curcumin loaded electrospun nanofibers and their anticancer activity against A431 skin cancer cell line.Mater. Today Commun.20202510127610.1016/j.mtcomm.2020.101276
    [Google Scholar]
  132. GhezziM. PescinaS. DelledonneA. FerraboschiI. SissaC. TerenzianiF. RemiroP.D.F.R. SantiP. NicoliS. Improvement of imiquimod solubilization and skin retention via TPGS micelles: exploiting the co-solubilizing effect of oleic acid.Pharmaceutics2021139147610.3390/pharmaceutics1309147634575553
    [Google Scholar]
  133. SafhiA.Y. Three-dimensional (3D) printing in cancer therapy and diagnostics: current status and future perspectives.Pharmaceuticals202215667810.3390/ph1506067835745597
    [Google Scholar]
  134. ChewS.A. DantiS. Biomaterial-based implantable devices for cancer therapy.Adv. Healthc. Mater.201762160076610.1002/adhm.20160076627886461
    [Google Scholar]
  135. ChenS. BodaS.K. BatraS.K. LiX. XieJ. Emerging roles of electrospun nanofibers in cancer research.Adv. Healthc. Mater.201876170102410.1002/adhm.20170102429210522
    [Google Scholar]
  136. MercanteL.A. PavinattoA. PereiraT.S. MiglioriniF.L. dos SantosD.M. CorreaD.S. Nanofibers interfaces for biosensing: Design and applications.Sensors and Actuators Reports2021310004810.1016/j.snr.2021.100048
    [Google Scholar]
  137. SuprajaP. SinghV. VanjariS.R.K. Govind SinghS. Electrospun CNT embedded ZnO nanofiber based biosensor for electrochemical detection of Atrazine: a step closure to single molecule detection.Microsyst. Nanoeng.202061310.1038/s41378‑019‑0115‑934567618
    [Google Scholar]
  138. WooK.M. ChenV.J. JungH.M. KimT.I. ShinH.I. BaekJ.H. RyooH.M. MaP.X. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects.Tissue Eng. Part A20091582155216210.1089/ten.tea.2008.043319348597
    [Google Scholar]
  139. GoswamiM. RekhiP. DebnathM. RamakrishnaS. Microbial polyhydroxyalkanoates granules: an approach targeting biopolymer for medical applications and developing bone scaffolds.Molecules202126486010.3390/molecules2604086033562111
    [Google Scholar]
  140. YuJ. XiaH. NiQ.Q. A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering.J. Mater. Sci.20185374734474410.1007/s10853‑017‑1807‑x
    [Google Scholar]
  141. SmithI.O. LiuX.H. SmithL.A. MaP.X. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine.Wiley Interdiscip Rev Nanomed Nanobiotechnol20091222623610.1002/wnan.2620049793
    [Google Scholar]
  142. WalmsleyG.G. McArdleA. TevlinR. MomeniA. AtashrooD. HuM.S. FerozeA.H. WongV.W. LorenzP.H. LongakerM.T. WanD.C. Nanotechnology in bone tissue engineering.Nanomedicine20151151253126310.1016/j.nano.2015.02.01325791811
    [Google Scholar]
  143. WolinskyJ.B. ColsonY.L. GrinstaffM.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers.J. Control. Release20121591142610.1016/j.jconrel.2011.11.03122154931
    [Google Scholar]
  144. SongB. WuC. ChangJ. Dual drug release from electrospun poly (lactic-co-glycolic acid) mesoporous silica nanoparticles composite mats with distinct release profiles.Acta Biomater.2012851901190710.1016/j.actbio.2012.01.02022326789
    [Google Scholar]
  145. QiuK. ChenB. NieW. ZhouX. FengW. WangW. ChenL. MoX. WeiY. HeC. Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly (L-lactic acid)/poly (ε-caprolactone) composite scaffold for bone tissue engineering.ACS Appl. Mater. Interfaces2016864137414810.1021/acsami.5b1187926736029
    [Google Scholar]
  146. ZhengF. WangS. WenS. ShenM. ShiX. Amoxicillin-loaded electrospun nano-hydroxyapatite poly(lactic- co-glycolic acid) composite nanofibers: Preparation, characterization and antibacterial activity.J. Control. Release20131721e30e3110.1016/j.jconrel.2013.08.068
    [Google Scholar]
  147. ManoJ.F. Stimuli-responsive polymeric systems for biomedical applications.Adv. Eng. Mater.200810651552710.1002/adem.200700355
    [Google Scholar]
  148. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat377624150417
    [Google Scholar]
  149. Alvarez-LorenzoC. ConcheiroA. Smart drug delivery systems: from fundamentals to the clinic.Chem. Commun.201450587743776510.1039/C4CC01429D24805962
    [Google Scholar]
  150. AlSawaftahN.M. AwadN.S. PittW.G. HusseiniG.A. pH-responsive nanocarriers in cancer therapy.Polymers202214593610.3390/polym1405093635267759
    [Google Scholar]
  151. SchoellerJ. ItelF. Wuertz-KozakK. FortunatoG. RossiR.M. pH-responsive electrospun nanofibers and their applications.Polym. Rev.202262235139910.1080/15583724.2021.1939372
    [Google Scholar]
  152. GuoH. TanS. GaoJ. WangL. Sequential release of drugs form a dual-delivery system based on pH-responsive nanofibrous mats towards wound care.J. Mater. Chem. B Mater. Biol. Med.2020881759177010.1039/C9TB02522G32037408
    [Google Scholar]
  153. MuruganB. SagadevanS. FatimahI. OhW-C. Motalib HossainM.A. JohanM.R. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine.Nanotechnol. Rev.202110193395310.1515/ntrev‑2021‑0067
    [Google Scholar]
  154. SinghH. SharmaR. JoshiM. GargT. GoyalA.K. RathG. Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers.Artif. Cells Nanomed. Biotechnol.201543426326910.3109/21691401.2014.88544224621011
    [Google Scholar]
  155. YuanZ. PanY. ChengR. ShengL. WuW. PanG. FengQ. CuiW. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis.Nanotechnology2016272424510110.1088/0957‑4484/27/24/24510127172065
    [Google Scholar]
  156. IllangakoonU.E. YuD.G. AhmadB.S. ChattertonN.P. WilliamsG.R. 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning.Int. J. Pharm.2015495289590210.1016/j.ijpharm.2015.09.04426410755
    [Google Scholar]
  157. LiuJ. LiuJ. XuH. ZhangY. ChuL. LiuQ. SongN. YangC. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery.Int. J. Nanomedicine2014919720724399876
    [Google Scholar]
  158. ArdeshirzadehB. AnarakiN.A. IraniM. RadL.R. ShamshiriS. Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds.Mater. Sci. Eng. C20154838439010.1016/j.msec.2014.12.03925579938
    [Google Scholar]
  159. MaG. LiuY. PengC. FangD. HeB. NieJ. Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer.Carbohydr. Polym.201186250551210.1016/j.carbpol.2011.04.082
    [Google Scholar]
  160. ChenY. LiuS. HouZ. MaP. YangD. LiC. LinJ. Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo.Nano Res.2015861917193110.1007/s12274‑014‑0701‑y
    [Google Scholar]
  161. ZhangZ. LiuS. QiY. ZhouD. XieZ. JingX. ChenX. HuangY. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery.J. Control. Release201623512513310.1016/j.jconrel.2016.05.04627221069
    [Google Scholar]
  162. CheH.L. LeeH.J. UtoK. EbaraM. KimW.J. AoyagiT. ParkI.K. Simultaneous drug and gene delivery from the biodegradable poly (ε-caprolactone) nanofibers for the treatment of liver cancer.J. Nanosci. Nanotechnol.201515107971797510.1166/jnn.2015.1123326726449
    [Google Scholar]
  163. AguilarL.E. UnnithanA.R. AmarjargalA. TiwariA.P. HongS.T. ParkC.H. KimC.S. Electrospun polyurethane/Eudragit® L100-55 composite mats for the pH dependent release of paclitaxel on duodenal stent cover application.Int. J. Pharm.201547811810.1016/j.ijpharm.2014.10.05725445536
    [Google Scholar]
  164. XieJ. MarijnissenJ. WangC. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro.Biomaterials200627173321333210.1016/j.biomaterials.2006.01.03416490248
    [Google Scholar]
  165. Slemming-AdamsenP. SongJ. DongM. BesenbacherF. ChenM. In situ cross-linked PNIPAM/gelatin nanofibers for thermo-responsive drug release.Macromol. Mater. Eng.2015300121226123110.1002/mame.201500160
    [Google Scholar]
  166. BosworthL.A. Travelling along the clinical roadmap: developing electrospun scaffolds for tendon repair.Conference Papers in Science.Hindawi Limited201411610.1155/2014/304974
    [Google Scholar]
  167. GoonooN. Bhaw-LuximonA. JhurryD. In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications.RSC Adv.2014460316183164210.1039/C4RA05218H
    [Google Scholar]
  168. HiwraleA. BharatiS. PingaleP. RajputA. Nanofibers: A current era in drug delivery system.Heliyon202399e1891710.1016/j.heliyon.2023.e1891737674834
    [Google Scholar]
  169. AbidS. HussainT. RazaZ.A. NazirA. Current applications of electrospun polymeric nanofibers in cancer therapy.Mater. Sci. Eng. C20199796697710.1016/j.msec.2018.12.10530678985
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293056240502113235
Loading
/content/journals/cmc/10.2174/0109298673293056240502113235
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biomaterials; cancer; cellulose; electrospinning; malignant tumour; nanofibers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test