Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The current review was undertaken to collate data on Gpx4 inhibitors and the regulatory proteins related to Gpx4. Gpx4 plays an essential role in ferroptosis; it can be used to determine the Gpx4 as an indicator for determining tumor occurrence and as a means of treating cancer. Although there is no market for Gpx4 inhibitors, many researchers have conducted extensive research, and some compounds have entered clinical research. This article summarizes all papers related to Gpx4; hope this review can provide some new insights and ideas for researchers aiming to develop efficient and low- toxicity Gpx4 inhibitors and provide some new ideas for cancer treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673288408240212051401
2025-07-01
2025-09-05
Loading full text...

Full text loading...

References

  1. DengD.J. World Cancer Report 2020 comes out-adjusting cancer prevention strategies to adapt to the new trend of cancer epidemic.J Multidiscip. Cancer Manage.20206032732
    [Google Scholar]
  2. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042
    [Google Scholar]
  3. SundeR.A. HadleyK.B. Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements.Exp. Biol. Med.20102351233110.1258/ebm.2009.009262
    [Google Scholar]
  4. ConradM. In vivo relevance of ferroptotic cell death.Free Radic. Biol. Med.20171121910.1016/j.freeradbiomed.2017.10.358
    [Google Scholar]
  5. AldrovandiM. ConradM. Ferroptosis: The Good, the Bad and the Ugly.Cell Res.202030121061106210.1038/s41422‑020‑00434‑0
    [Google Scholar]
  6. YiJ. ZhuJ. WuJ. ThompsonC.B. JiangX. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis.Proc. Natl. Acad. Sci.202011749311893119710.1073/pnas.2017152117
    [Google Scholar]
  7. TortiS.V. TortiF.M. Iron: The cancer connection.Mol. Aspects Med.2020757510086010.1016/j.mam.2020.100860
    [Google Scholar]
  8. MishimaE. ConradM. Nutritional and metabolic control of ferroptosis.Annu. Rev. Nutr.202242127530910.1146/annurev‑nutr‑062320‑114541
    [Google Scholar]
  9. KelnerM.J. MontoyaM.A. Structural organization of the human selenium-dependent phospholipid hydroperoxide glutathione peroxidase gene (Gpx4): Chromosomal localization to 19p13.3.Biochem. Biophys. Res. Commun.19982491535510.1006/bbrc.1998.9086
    [Google Scholar]
  10. KnoppE.A. ArndtT.L. EngK.L. CaldwellM. LeBoeufR.C. DeebS.S. O’BrienK.D. Murine phospholipid hydroperoxide glutathione peroxidase: cDNA sequence, tissue expression, and mapping.Mamm. Genome199910660160510.1007/s003359901053
    [Google Scholar]
  11. PassaiaG. QuevalG. BaiJ. Margis-PinheiroM. FoyerC.H. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.J. Exp. Bot.20146551403141310.1093/jxb/ert486
    [Google Scholar]
  12. DangF. NieL. WeiW. Ubiquitin signaling in cell cycle control and tumorigenesis.Cell Death Differ.202128242743810.1038/s41418‑020‑00648‑0
    [Google Scholar]
  13. BertramJ.S. The molecular biology of cancer.Mol. Aspects Med.200021616722310.1016/S0098‑2997(00)00007‑8
    [Google Scholar]
  14. VogelsteinB. KinzlerK.W. Cancer genes and the pathways they control.Nat. Med.200410878979910.1038/nm1087
    [Google Scholar]
  15. ImaiH. NakagawaY. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells.Free Radic. Biol. Med.200334214516910.1016/S0891‑5849(02)01197‑8
    [Google Scholar]
  16. Brigelius-FlohéR. KippA. Glutathione peroxidases in different stages of carcinogenesis.Biochim. Biophys. Acta, Gen. Subj.20091790111555156810.1016/j.bbagen.2009.03.006
    [Google Scholar]
  17. SuY. ZhaoB. ZhouL. ZhangZ. ShenY. LvH. AlQudsyL.H.H. ShangP. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs.Cancer Lett.202048312713610.1016/j.canlet.2020.02.015
    [Google Scholar]
  18. UpretyD. AdjeiA.A. KRAS: From undruggable to a druggable Cancer Target.Cancer Treat. Rev.20208910207010.1016/j.ctrv.2020.102070
    [Google Scholar]
  19. SongJ.H. AnN. ChatterjeeS. Kistner-GriffinE. MahajanS. MehrotraS. KraftA.S. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing.Oncogene201534283728373610.1038/onc.2014.306
    [Google Scholar]
  20. ChenP. LiX. ZhangR. LiuS. XiangY. ZhangM. ChenX. PanT. YanL. FengJ. DuanT. WangD. ChenB. JinT. WangW. ChenL. HuangX. ZhangW. SunY. LiG. KongL. ChenX. LiY. YangZ. ZhangQ. ZhuoL. SuiX. XieT. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation.Theranostics202010115107511910.7150/thno.44705
    [Google Scholar]
  21. CarlsonB.A. TobeR. YefremovaE. TsujiP.A. HoffmannV.J. SchweizerU. GladyshevV.N. HatfieldD.L. ConradM. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration.Redox Biol.20169223110.1016/j.redox.2016.05.003
    [Google Scholar]
  22. TheodossiouT.A. OlsenC.E. JonssonM. KubinA. HothersallJ.S. BergK. The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy.Redox Biol.20171219119710.1016/j.redox.2017.02.018
    [Google Scholar]
  23. RodriguezR. SchreiberS.L. ConradM. Persister cancer cells: Iron addiction and vulnerability to ferroptosis.Mol. Cell202282472874010.1016/j.molcel.2021.12.001
    [Google Scholar]
  24. MouY.H. WangJ. WuJ.C. HeD. ZhangC.F. DuanC.J. LiB. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20192134
    [Google Scholar]
  25. ImaiH. MatsuokaM. KumagaiT. SakamotoT. KoumuraT. Lipid peroxidation-dependent cell death regulated by Gpx4 and ferroptosis.Curr. Top. Microbiol. Immunol.201640314317010.1007/82_2016_508
    [Google Scholar]
  26. MishimaE. ConradM. Nonmetabolic role for CKB in ferroptosis.Nat. Cell Biol.202325563363410.1038/s41556‑023‑01104‑0
    [Google Scholar]
  27. LeeR.C. FeinbaumR.L. AmbrosV. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y
    [Google Scholar]
  28. AmbrosV. microRNAs.Cell2001107782382610.1016/S0092‑8674(01)00616‑X
    [Google Scholar]
  29. WangJ. ZhangL. MicroRNA-135a promotes proliferation, migration, invasion and induces chemoresistance of endometrial cancer cells.Eur. J. Obstet. Gynecol. Reprod. Biol.20195100103
    [Google Scholar]
  30. ZhangS. YeJ.W. ShenY.J. MuK.F. GuoX.W. Effects of miR-324-3p targeting Gpx4 on ferroptosis in prostate cancer cells.Zhongguo Shengwu Gongcheng Zazhi2022421/27279
    [Google Scholar]
  31. DengS. WuD. LiL. LiuT. ZhangT. LiJ. YuY. HeM. ZhaoY.Y. HanR. XuY. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549.Biochem. Biophys. Res. Commun.2021549546010.1016/j.bbrc.2021.02.077
    [Google Scholar]
  32. ZhangW. PengY.Q. FeiS.J. LiuY. HuangP. TianY.N. ShiJ. WangJ.Z. Liang, H.; He, J.J.; Xu, J. The effect of miR-338 targeting Gpx4 on the proliferation ability of non-small cell lung cancer.Modern Oncology2020282340414045
    [Google Scholar]
  33. ZhangW. LiuY. TianY.N. HuangP. ShiJ. LiangH. HeJ.J. XuJ. MiR-1287 regulates proliferation of breast cancer by interfering with Gpx4 expression.Modern Oncology2021290711241129
    [Google Scholar]
  34. GomaaA. PengD. ChenZ. SouttoM. AbouelezzK. CorvalanA. El-RifaiW. Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers.Sci. Rep.2019911697010.1038/s41598‑019‑53174‑6
    [Google Scholar]
  35. XuZ. ChenL. WangC. ZhangL. XuW. MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4.Free Radic. Res.20215511-121119112910.1080/10715762.2021.2024816
    [Google Scholar]
  36. LiuL. YaoH. ZhouX. ChenJ. ChenG. ShiX. WuG. ZhouG. HeS. MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer.Mol. Carcinog.202261330131010.1002/mc.23367
    [Google Scholar]
  37. XuP. WangY. DengZ. TanZ. PeiX. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression.Oncol. Lett.20222326710.3892/ol.2022.13186
    [Google Scholar]
  38. PanY. ZhouH.J. LiW. XiangZ.J. ChenS.S. ZengM.Z. LiuS.K. Relationship between miR-124-3p expression level and colorectal cancer and its reversal of drug resistance in oxaliplatin-resistant HCT116 cells.Chin. J. Clin. Pharmacol.2020364419423
    [Google Scholar]
  39. ChenW. FuJ. ChenY. LiY. NingL. HuangD. YanS. ZhangQ. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer.Aging20211312165001651210.18632/aging.203172
    [Google Scholar]
  40. LiZ. LuoY. WangC. HanD. SunW. Circular RNA circBLNK promotes osteosarcoma progression and inhibits ferroptosis in osteosarcoma cells by sponging miR-188-3p and regulating GPX4 expression.Oncol. Rep.202350519210.3892/or.2023.8629
    [Google Scholar]
  41. WuK. YanM. LiuT. WangZ. DuanY. XiaY. JiG. ShenY. WangL. LiL. ZhengP. DongB. WuQ. XiaoL. YangX. ShenH. WenT. ZhangJ. YiJ. DengY. QianX. MaL. FangJ. ZhouQ. LuZ. XuD. Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function.Nat. Cell Biol.202325571472510.1038/s41556‑023‑01133‑9
    [Google Scholar]
  42. LuY. QinH. JiangB. LuW. HaoJ. CaoW. DuL. ChenW. ZhaoX. GuoH. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma.Cancer Lett.202152211310.1016/j.canlet.2021.09.014
    [Google Scholar]
  43. WangR. XingR. SuQ. YinH. WuD. LvC. YanZ. Knockdown of SFRS9 inhibits progression of colorectal cancer through triggering ferroptosis mediated by GPX4 reduction.Front. Oncol.20211168358910.3389/fonc.2021.683589
    [Google Scholar]
  44. ZhaoG. LiangJ. ShanG. GuJ. XuF. LuC. MaT. BiG. ZhanC. GeD. KLF11 regulates lung adenocarcinoma ferroptosis and chemosensitivity by suppressing GPX4.Commun. Biol.20236157010.1038/s42003‑023‑04959‑z
    [Google Scholar]
  45. LuC. LiuJ. YangJ. LncRNA-XIST promotes lung adenocarcinoma growth and inhibits ferroptosis by regulating GPX4.Mol. Biotechnol.20231910.1007/s12033‑023‑00993‑8
    [Google Scholar]
  46. WangZ. LiH. CaiH. LiangJ. JiangY. SongF. HouC. HouJ. FTO sensitizes oral squamous cell carcinoma to ferroptosis via suppressing ACSL3 and GPX4.Int. J. Mol. Sci.202324221633910.3390/ijms242216339
    [Google Scholar]
  47. HanL. BaiL. FangX. LiuJ. KangR. ZhouD. TangD. DaiE. SMG9 drives ferroptosis by directly inhibiting GPX4 degradation.Biochem. Biophys. Res. Commun.2021567929810.1016/j.bbrc.2021.06.038
    [Google Scholar]
  48. WangW. XiaX.H. YangH.H. SongZ.B. Phosphatase PHLPP2 enhances ferroptosis inducer RSL3 sensitivity by inhibiting Gpx4 activity in non-small cell lung cancer.J. Chin. Oncol.202216
    [Google Scholar]
  49. KremerD.M. NelsonB.S. LinL. YaroszE.L. HalbrookC.J. KerkS.A. SajjakulnukitP. MyersA. ThurstonG. HouS.W. CarpenterE.S. AndrenA.C. NwosuZ.C. CusmanoN. WisnerS. MbahN.E. ShanM. DasN.K. MagnusonB. LittleA.C. SavaniM.R. RamosJ. GaoT. SastraS.A. PalermoC.F. BadgleyM.A. ZhangL. AsaraJ.M. McBrayerS.K. di MaglianoM.P. CrawfordH.C. ShahY.M. OliveK.P. LyssiotisC.A. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis.Nat. Commun.2021121486010.1038/s41467‑021‑24859‑2
    [Google Scholar]
  50. WeïwerM. BittkerJ.A. LewisT.A. ShimadaK. YangW.S. MacPhersonL. DandapaniS. PalmerM. StockwellB.R. SchreiberS.L. MunozB. Development of small-molecule probes that selectively kill cells induced to express mutant RAS.Bioorg. Med. Chem. Lett.20122241822182610.1016/j.bmcl.2011.09.047
    [Google Scholar]
  51. YangW.S. KimK.J. GaschlerM.M. PatelM. ShchepinovM.S. StockwellB.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc. Natl. Acad. Sci.201611334E4966E497510.1073/pnas.1603244113
    [Google Scholar]
  52. YangW.S. StockwellB.R. Synthetic lethal screening identififies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.Chem. Biol.200815323424510.1016/j.chembiol.2008.02.010
    [Google Scholar]
  53. ConradM. PrattD.A. The chemical basis of ferroptosis.Nat. Chem. Biol.201915121137114710.1038/s41589‑019‑0408‑1
    [Google Scholar]
  54. ShenL.D. QiW.H. BaiJ.J. ZuoC.Y. BaiD.L. GaoW.D. ZongX.L. HaoT.T. MaY. CaoG.C. RETRACTED: Resibufogenin inhibited colorectal cancer cell growth and tumorigenesis through triggering ferroptosis and ROS production mediated by GPX4 inactivation.Anat. Rec.2021304231332210.1002/ar.24378
    [Google Scholar]
  55. JinM. ShiC. LiT. WuY. HuC. HuangG. Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system.Biomed. Pharmacother.202012911028210.1016/j.biopha.2020.110282
    [Google Scholar]
  56. SharmaT. AiraoV. PanaraN. VaishnavD. RanpariyaV. ShethN. ParmarS. Solasodine protects rat brain against ischemia/reperfusion injury through its antioxidant activity.Eur. J. Pharmacol.2014725404610.1016/j.ejphar.2014.01.005
    [Google Scholar]
  57. ZhanS. LuL. PanS. WeiX. MiaoR. LiuX. XueM. LinX. XuH. Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth.Br. J. Cancer2022127236437610.1038/s41416‑022‑01800‑y
    [Google Scholar]
  58. YaoL. YanD. JiangB. XueQ. ChenX. HuangQ. QiL. TangD. ChenX. LiuJ. Plumbagin is a novel GPX4 protein degrader that induces apoptosis in hepatocellular carcinoma cells.Free Radic. Biol. Med.202320311010.1016/j.freeradbiomed.2023.03.263
    [Google Scholar]
  59. ZhangW. JiangB. LiuY. XuL. WanM. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4.Free Radic. Biol. Med.2022180758410.1016/j.freeradbiomed.2022.01.009
    [Google Scholar]
  60. DuX. ZhangJ. LiuL. XuB. HanH. DaiW. PeiX. FuX. HouS. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells.J. Zhejiang Univ. Sci. B202223428629910.1631/jzus.B2100748
    [Google Scholar]
  61. YiR. WangH. DengC. WangX. YaoL. NiuW. FeiM. ZhabaW. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition.Biosci. Rep.2020406BSR2019331410.1042/BSR20193314
    [Google Scholar]
  62. LiuY. SongZ. LiuY. MaX. WangW. KeY. XuY. YuD. LiuH. Identification of ferroptosis as a novel mechanism for antitumor activity of natural product derivative a2 in gastric cancer.Acta Pharm. Sin. B20211161513152510.1016/j.apsb.2021.05.006
    [Google Scholar]
  63. LvH. ZhenC. LiuJ. ShangP. β -phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway.Oxid. Med. Cell. Longev.2020202012310.1155/2020/5021983
    [Google Scholar]
  64. YuanJ.M. StepanovI. MurphyS.E. WangR. AllenS. JensenJ. StrayerL. Adams-HaduchJ. UpadhyayaP. LeC. KurzerM.S. NelsonH.H. YuM.C. HatsukamiD. HechtS.S. Clinical trial of 2-phenethyl isothiocyanate as an inhibitor of metabolic activation of a tobacco-specific lung carcinogen in cigarette smokers.Cancer Prev. Res.20169539640510.1158/1940‑6207.CAPR‑15‑0380
    [Google Scholar]
  65. IkejiriF. HonmaY. KasukabeT. UranoT. SuzumiyaJ. TH588, an MTH1 inhibitor, enhances phenethyl isothiocyanate-induced growth inhibition in pancreatic cancer cells.Oncol. Lett.201815332403244
    [Google Scholar]
  66. ChenP. LvX. ZhengZ. Gigantol exerts anti-lung cancer activity by inducing ferroptosis via SLC7A11-GPX4 axis.Biochem. Biophys. Res. Commun.202469014927410.1016/j.bbrc.2023.149274
    [Google Scholar]
  67. WuC.Y. YangY.H. LinY.S. ShuL.H. LiuH.T. WuY.H. WuY.H. Induction of ferroptosis and apoptosis in endometrial cancer cells by dihydroisotanshinone I.Heliyon2023911e2165210.1016/j.heliyon.2023.e21652
    [Google Scholar]
  68. GongG. GanesanK. LiuY. HuangY. LuoY. WangX. ZhangZ. ZhengY. Danggui Buxue Tang improves therapeutic efficacy of doxorubicin in triple negative breast cancer via ferroptosis.J. Ethnopharmacol.202432311765510.1016/j.jep.2023.117655
    [Google Scholar]
  69. UsukhbayarN. UesugiS. KimuraK. 3,6-Epidioxy-1,10-bisaboladiene and sulfasalazine synergistically induce ferroptosis-like cell death in human breast cancer cell lines.Biosci. Biotechnol. Biochem.202387111336134410.1093/bbb/zbad117
    [Google Scholar]
  70. MiY. ShanH. WangB. TangH. JiaJ. LiuX. YangQ. Genipin inhibits proliferation of gastric cancer cells by inducing ferroptosis: an integrated study of network pharmacology and bioinformatics study.Med. Oncol.20244124610.1007/s12032‑023‑02283‑4
    [Google Scholar]
  71. LiH. LiuW. ZhangX. WuF. SunD. WangZ. Ketamine suppresses proliferation and induces ferroptosis and apoptosis of breast cancer cells by targeting KAT5/GPX4 axis.Biochem. Biophys. Res. Commun.202158511111610.1016/j.bbrc.2021.11.029
    [Google Scholar]
  72. GaschlerM.M. AndiaA.A. LiuH. CsukaJ.M. HurlockerB. VaianaC.A. HeindelD.W. ZuckermanD.S. BosP.H. ReznikE. YeL.F. TyurinaY.Y. LinA.J. ShchepinovM.S. ChanA.Y. Peguero-PereiraE. FomichM.A. DanielsJ.D. BekishA.V. ShmanaiV.V. KaganV.E. MahalL.K. WoerpelK.A. StockwellB.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation.Nat. Chem. Biol.201814550751510.1038/s41589‑018‑0031‑6
    [Google Scholar]
  73. EatonJ.K. RubertoR.A. KrammA. ViswanathanV.S. SchreiberS.L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently.J. Am. Chem. Soc.201914151204072041510.1021/jacs.9b10769
    [Google Scholar]
  74. LiuL. LiuB. GuanG. KangR. DaiY. TangD. Cyclophosphamide-induced GPX4 degradation triggers parthanatos by activating AIFM1.Biochem. Biophys. Res. Commun.2022606687410.1016/j.bbrc.2022.03.098
    [Google Scholar]
  75. NingN. ShangZ. LiuZ. XiaZ. LiY. RenR. WangH. ZhangY. A novel microtubule inhibitor promotes tumor ferroptosis by attenuating SLC7A11/GPX4 signaling.Cell Death Discov.20239145310.1038/s41420‑023‑01713‑6
    [Google Scholar]
  76. ZhouW. LimA. ElmadbouhO.H.M. EdderkaouiM. OsipovA. MathisonA.J. UrrutiaR. LiuT. WangQ. PandolS.J. Verteporfin induces lipid peroxidation and ferroptosis in pancreatic cancer cells.Free Radic. Biol. Med.202421249350410.1016/j.freeradbiomed.2024.01.003
    [Google Scholar]
  77. XuC. XiaoZ. WangJ. LaiH. ZhangT. GuanZ. XiaM. ChenM. RenL. HeY. GaoY. ZhaoC. Discovery of a potent glutathione peroxidase 4 inhibitor as a selective ferroptosis inducer.J. Med. Chem.20216418133121332610.1021/acs.jmedchem.1c00569
    [Google Scholar]
  78. LiuS.J. ZhaoQ. PengC. MaoQ. WuF. ZhangF-H. FengQ-S. HeG. HanB. Design, synthesis, and biological evaluation of nitroisoxazole-containing spiro[pyrrolidin-oxindole] derivatives as novel glutathione peroxidase 4/mouse double minute 2 dual inhibitors that inhibit breast adenocarcinoma cell proliferation.Eur. J. Med. Chem.202121711335910.1016/j.ejmech.2021.113359
    [Google Scholar]
  79. ChenJ.N. LiT. ChengL. Synthesis and in vitro anti-bladder cancer activity evaluation of quinazolinyl-arylurea derivatives.Eur. J. Med. Chem.202020511266110.1016/j.ejmech.2020.112661
    [Google Scholar]
  80. HuS. SechiM. SinghP.K. DaiL. McCannS. SunD. LjungmanM. NeamatiN. A novel redox modulator induces a GPX4-mediated cell death that is dependent on iron and reactive oxygen species.J. Med. Chem.202063179838985510.1021/acs.jmedchem.0c01016
    [Google Scholar]
  81. SongH. LiangJ. GuoY. LiuY. SaK. YanG. XuW. XuW. ChenL. LiH. A potent GPX4 degrader to induce ferroptosis in HT1080 cells.Eur. J. Med. Chem.202426511611010.1016/j.ejmech.2023.116110
    [Google Scholar]
  82. XuJ. AiQ. CaoH. LiuQ. MiR-185-3p and miR-324-3p predict radiosensitivity of nasopharyngeal carcinoma and modulate cancer cell growth and apoptosis by targeting SMAD7.Med. Sci. Monit.2015212828283610.12659/MSM.895660
    [Google Scholar]
  83. LiuC. LiG. YangN. SuZ. ZhangS. DengT. RenS. LuS. TianY. LiuY. QiuY. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma.Cancer Cell Int.2017171210.1186/s12935‑016‑0372‑8
    [Google Scholar]
  84. JiangY.C. MaJ.X. The role of MiR-324-3p in polycystic ovary syndrome (PCOS) via targeting WNT2B.Eur. Rev. Med. Pharmacol. Sci.2018221132863293
    [Google Scholar]
  85. LiuY. ChenY. ZhouZ. HeX. TaoL. JiangY. LanR. HongQ. ChuM. chi-miR-324-3p regulates goat granulosa cell proliferation by targeting DENND1A.Front. Vet. Sci.2021873244010.3389/fvets.2021.732440
    [Google Scholar]
  86. XuJ. LeiS. SunS. ZhangW. ZhuF. YangH. XuQ. ZhangB. LiH. ZhuM. HuX. ZhangH. TangB. KangP. MiR-324-3p regulates fibroblast proliferation via targeting TGF-β1 in atrial fibrillation.Int. Heart J.20206161270127810.1536/ihj.20‑423
    [Google Scholar]
  87. SunG.L. LiZ. WangW.Z. ChenZ. ZhangL. LiQ. WeiS. LiB.W. XuJ.H. ChenL. HeZ.Y. YingK. ZhangX. XuH. ZhangD.C. XuZ.K. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway.J. Gastroenterol.201853672573910.1007/s00535‑017‑1408‑0
    [Google Scholar]
  88. XieJ.H. ChenL. Significance of liquid-liquid phase separation (LLPS)-related genes in breast cancer: A multi-omics analysis.Aging2023114623452359
    [Google Scholar]
  89. GengL. WangZ. TianY. Down-regulation of ZNF252P-AS1 alleviates ovarian cancer progression by binding miR-324-3p to downregulate LY6K.J. Ovarian Res.2022151110.1186/s13048‑021‑00933‑7
    [Google Scholar]
  90. MilbretaU. LinJ. PineseC. OngW. ChinJ.S. ShirahamaH. MiR. WilliamsA. BechlerM.E. WangJ. ffrench-ConstantC. HokeA. ChewS.Y. Scaffold-mediated sustained, non-viral delivery of miR-219/miR-338 promotes CNS remyelination.Mol. Ther.201927241142310.1016/j.ymthe.2018.11.016
    [Google Scholar]
  91. LuanX. WangY. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p.J. Gynecol. Oncol.2018296e9510.3802/jgo.2018.29.e95
    [Google Scholar]
  92. LiuD.Z. ZhaoH. ZouQ-G. MaQ.J. MiR-338 suppresses cell proliferation and invasion by targeting CTBP2 in glioma.Cancer Biomark.201720328929710.3233/CBM‑170128
    [Google Scholar]
  93. LiY. HuangY. QiZ. SunT. ZhouY. MiR-338-5p promotes glioma cell invasion by regulating TSHZ3 and MMP2.Cell. Mol. Neurobiol.201838366967710.1007/s10571‑017‑0525‑x
    [Google Scholar]
  94. BilegsaikhanE. LiuH.N. ShenX.Z. LiuT.T. Circulating miR-338-5p is a potential diagnostic biomarker in colorectal cancer.J. Dig. Dis.201819740441010.1111/1751‑2980.12643
    [Google Scholar]
  95. LongJ. LuoJ. YinX. MiR-338-5p promotes the growth and metastasis of malignant melanoma cells via targeting CD82.Biomed. Pharmacother.20181021195120210.1016/j.biopha.2018.03.075
    [Google Scholar]
  96. HeJ. WangJ. LiS. LiT. ChenK. ZhangS. Hypoxia-inhibited miR-338-3p suppresses breast cancer progression by directly targeting ZEB2.Cancer Sci.2020111103550356310.1111/cas.14589
    [Google Scholar]
  97. LiuY. HanK. CaoY. HuY. ShaoZ. TongW. HanY. LiuY. KLF9 regulates miR-338-3p/NRCAM axis to block the progression of osteosarcoma cells.J. Cancer20221362029203910.7150/jca.63533
    [Google Scholar]
  98. HaoW. ZhuY. GuoY. WangH. miR-1287-5p upregulation inhibits the EMT and pro-inflammatory cytokines in LPS-induced human nasal epithelial cells (HNECs).Transpl. Immunol.20216810142910.1016/j.trim.2021.101429
    [Google Scholar]
  99. ZhuY. LiuL. ChuL. LanJ. WeiJ. LiW. XueC. Microscopic polyangiitis plasma-derived exosomal miR-1287-5p induces endothelial inflammatory injury and neutrophil adhesion by targeting CBL.PeerJ202311e1457910.7717/peerj.14579
    [Google Scholar]
  100. LuJ. TangL. XuY. GeK. HuangJ. GuM. ZhongJ. HuangQ. Mir-1287 suppresses the proliferation, invasion, and migration in hepatocellular carcinoma by targeting PIK3R3.J. Cell. Biochem.2018119119229923810.1002/jcb.27190
    [Google Scholar]
  101. YuW. YaoJ. LyuP. ZhouJ. ChenX. LiuX. XiaoS. XPG is modulated by miR-4715-3p and rs873601 genotypes in lung cancer.Cancer Manag. Res.2021133417342710.2147/CMAR.S294365
    [Google Scholar]
  102. BagasraO. ShamabadiN.S. PandeyP. DesokyA. McLeanE. Differential expression of miRNAs in a human developing neuronal cell line chronically infected with Zika virus.Libyan J. Med.2021161190990210.1080/19932820.2021.1909902
    [Google Scholar]
  103. ChenS. CaiX. LiuY. ShenY. GuillotA. TackeF. TangL. LiuH. The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: Evidence from transcriptome and biological data.Bioengineered2022135117401175110.1080/21655979.2022.2072602
    [Google Scholar]
  104. SchwarzenbacherD. KlecC. PasculliB. CerkS. RinnerB. KarbienerM. IvanC. BarbanoR. LingH. Wulf-GoldenbergA. StanzerS. RinnerthalerG. StoegerH. BauernhoferT. HaybaeckJ. HoeflerG. JahnS.W. ParrellaP. CalinG.A. PichlerM. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors.Breast Cancer Res.20192112010.1186/s13058‑019‑1104‑5
    [Google Scholar]
  105. WangT. HouJ. LiZ. ZhengZ. WeiJ. SongD. HuT. WuQ. YangJ.Y. CaiJ. MiR-15a-3p and miR-16-1-3p negatively regulate twist1 to repress gastric cancer cell invasion and metastasis.Int. J. Biol. Sci.201713112213410.7150/ijbs.14770
    [Google Scholar]
  106. FanB. ChenL.P. YuanY.H. XiaoH.N. LvX.S. XiaZ.Y. MiR-15a-3p suppresses the growth and metastasis of ovarian cancer cell by targeting Twist1.Eur. Rev. Med. Pharmacol. Sci.201923519341946
    [Google Scholar]
  107. González-LópezP. Álvarez-VillarrealM. Ruiz-SimónR. López-PastorA.R. de CenigaM.V. EsparzaL. Martín-VenturaJ.L. EscribanoÓ. Gómez-HernándezA. Role of miR-15a-5p and miR-199a-3p in the inflammatory pathway regulated by NF-κB in experimental and human atherosclerosis.Clin. Transl. Med.2023138e136310.1002/ctm2.1363
    [Google Scholar]
  108. LiuS.J. WangW.T. ZhangF.L. YuY.H. YuH.J. LiangY. LiN. LiY.B. MiR-15a-3p affects the proliferation, migration and apoptosis of lens epithelial cells.Mol. Med. Rep.201921911101116
    [Google Scholar]
  109. CuiY. YangY. RenL. YangJ. WangB. XingT. ChenH. ChenM. miR-15a-3p suppresses prostate cancer cell proliferation and invasion by targeting SLC39A7 via downregulating Wnt/β-catenin signaling pathway.Cancer Biother. Radiopharm.201934747247910.1089/cbr.2018.2722
    [Google Scholar]
  110. ShiJ. FuQ. YangP. LiuH. JiL. WangK. Downregulation of microRNA-15a-3p is correlated with clinical outcome and negatively regulates cancer proliferation and migration in human osteosarcoma.J. Cell. Biochem.201811911215122210.1002/jcb.26294
    [Google Scholar]
  111. BesnierM. ShantikumarS. AnwarM. DixitP. Chamorro-JorganesA. SweaadW. Sala-NewbyG. MadedduP. ThomasA.C. HowardL. MushtaqS. PetrettoE. CaporaliA. EmanueliC. miR-15a/-16 inhibit angiogenesis by targeting the Tie2 coding sequence: Therapeutic potential of a miR-15a/16 decoy system in limb ischemia.Mol. Ther. Nucleic Acids201917496210.1016/j.omtn.2019.05.002
    [Google Scholar]
  112. SunC.Y. SheX.M. QinY. ChuZ.B. ChenL. AiL.S. ZhangL. HuY. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF.Carcinogenesis201334242643510.1093/carcin/bgs333
    [Google Scholar]
  113. ChavaS. ReynoldsC.P. PathaniaA.S. GorantlaS. PoluektovaL.Y. CoulterD.W. GuptaS.C. PandeyM.K. ChallagundlaK.B. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma.Mol. Oncol.202014118019610.1002/1878‑0261.12588
    [Google Scholar]
  114. ZhangX.J. YeH. ZengC.W. HeB. ZhangH. ChenY.Q. Dysregulation of miR-15a and miR-214 in human pancreatic cancer.J. Hematol. Oncol.2010314610.1186/1756‑8722‑3‑46
    [Google Scholar]
  115. GaoS. XingC. ChenC. LinS. DongP. YuF. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level.J. Exp. Clin. Cancer Res.201130111010.1186/1756‑9966‑30‑110
    [Google Scholar]
  116. BonciD. CoppolaV. MusumeciM. AddarioA. GiuffridaR. MemeoL. D’UrsoL. PagliucaA. BiffoniM. LabbayeC. BartucciM. MutoG. PeschleC. De MariaR. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities.Nat. Med.200814111271127710.1038/nm.1880
    [Google Scholar]
  117. JinL. LiY. HeT. HuJ. LiuJ. ChenM. ZhangZ. GuiY. MaoX. YangS. LaiY. miR-15a-5p acts as an oncogene in renal cell carcinoma.Mol. Med. Rep.20171531379138610.3892/mmr.2017.6121
    [Google Scholar]
  118. YanL. JiangL. WangB. HuQ. DengS. HuangJ. SunX. ZhangY. FengL. ChenW. Novel microRNA biomarkers of systemic lupus erythematosus in plasma: miR-124-3p and miR-377-3p.Clin. Biochem.2022107556110.1016/j.clinbiochem.2022.05.004
    [Google Scholar]
  119. SunT. LiY. ZhaoF. SunH. GaoY. WuB. YangS. JiF. ZhouD. MiR-1-3p and MiR-124-3p synergistically damage the intestinal barrier in the ageing colon.J. Crohn’s Colitis202216465666710.1093/ecco‑jcc/jjab179
    [Google Scholar]
  120. FuW. WuX. YangZ. MiH. The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB.Arch. Med. Sci.20191551154116210.5114/aoms.2018.78743
    [Google Scholar]
  121. ZoR.B. LongZ.W. MiR-124-3p suppresses bladder cancer by targeting DNA methyltransferase 3B.J. Cell. Physiol.20181234464474
    [Google Scholar]
  122. SongB. XuL. JiangK. ChengF. MiR-124-3p inhibits tumor progression in prostate cancer by targeting EZH2.Funct. Integr. Genomics20232328010.1007/s10142‑023‑00991‑8
    [Google Scholar]
  123. ZhangZ. MiR-124-3p suppresses prostatic carcinoma by targeting PTGS2 through the AKT/NF-κB pathway.Mol. Biotechnol.202163762163010.1007/s12033‑021‑00326‑7
    [Google Scholar]
  124. WangY. ChenL. WuZ. WangM. JinF. WangN. HuX. LiuZ. ZhangC.Y. ZenK. ChenJ. LiangH. ZhangY. ChenX. miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL.BMC Cancer201616182610.1186/s12885‑016‑2862‑4
    [Google Scholar]
  125. LeungL.Y. ChanC.P.Y. LeungY.K. JiangH.L. AbrigoJ.M. WangD.F. ChungJ.S.H. RainerT.H. GrahamC.A. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke.Clin. Chim. Acta201443313914410.1016/j.cca.2014.03.007
    [Google Scholar]
  126. LuoW.S. LuoG.X. ZhangY. MiR-135a-5p and miR-124-3p inhibit malignancy of glioblastoma by downregulation of syndecan binding protein.J. Biomed. Nanotechnol.201871413171329
    [Google Scholar]
  127. LvL. ShenJ. XuJ. WuX. ZengC. LinL. MaoW. WeiT. MiR-124-3p reduces angiotensin II-dependent hypertension by down-regulating EGR1.J. Hum. Hypertens.202135869670810.1038/s41371‑020‑0381‑x
    [Google Scholar]
  128. WuQ. ZhongH. JiaoL. WenY. ZhouY. ZhouJ. LuX. SongX. YingB. MiR-124-3p inhibits the migration and invasion of Gastric cancer by targeting ITGB3.Pathol. Res. Pract.2020216115276210.1016/j.prp.2019.152762
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673288408240212051401
Loading
/content/journals/cmc/10.2174/0109298673288408240212051401
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; cervical cance; ferroptosis; Gpx4; inhibitor; reactive oxygen species
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test