Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer, a diverse group of diseases characterized by abnormal cell growth and the potential to spread throughout the body, accounts for approximately 10 million deaths globally each year. Current cancer therapies, including chemotherapy, radiation, and various pharmacological treatments, present several challenges and potential side effects. It is important to differentiate these conventional methods, which often involve synthetic drugs, from adjuvant therapies that might be used in conjunction. As a result, there is an increasing interest in alternative therapies, particularly in agents derived from natural sources for cancer treatment. Secondary metabolites have shown promise in promoting the development of new clinical drugs with various anti-cancer mechanisms. This review focuses on the anti-cancer potential of the novel metabolite Andrographolide, extracted mainly from The chemopreventive properties and the ability to inhibit various signaling pathways across different types of cancers without side effects posit Andrographolide as a promising natural antitumour agent. The review identified that Andrographolide inhibits multiple signaling pathways, contributing to its anti-proliferative, anti-metastatic, and apoptotic effects in various cancers. The compound's natural origin and lack of adverse side effects make it particularly attractive as a therapeutic agent. However, further detailed studies are needed to fully understand its specific mechanisms and potential clinical applications. Andrographolide presents a compelling option as a natural anticancer agent with the potential to overcome some limitations of traditional cancer treatments. Its broad spectrum of anti-cancer activities and absence of side effects highlight its therapeutic potential. The review highlights that continued research and clinical studies are important for confirming the effectiveness and safety of Andrographolide in human use, alongside optimizing dosage and delivery techniques.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673295496240530100728
2025-07-01
2025-09-02
Loading full text...

Full text loading...

References

  1. BrayF. Transitions in human development and the global cancer burden.World Cancer Report201434
    [Google Scholar]
  2. CunhaA.R.D. ComptonK. XuR. MishraR. DrangsholtM.T. AntunesJ.L.F. KerrA.R. AchesonA.R. LuD. WallaceL.E. KocarnikJ.M. FuW. DeanF.E. PenniniA. HenriksonH.J. AlamT. AbabnehE. Abd-ElsalamS. AbdounM. AbidiH. Abubaker AliH. Abu-GharbiehE. AdaneT.D. AddoI.Y. AhmadA. AhmadS. Ahmed RashidT. AkondeM. Al HamadH. AlahdabF. AlimohamadiY. AlipourV. Al-MaweriS.A. AlsharifU. Ansari-MoghaddamA. AnwarS.L. AnyasodorA.E. ArablooJ. AravkinA.Y. ArulebaR.T. AsaadM. AshrafT. AthariS.S. AttiaS. AzadnajafabadS. Azangou-KhyavyM. BadarM. BaghcheghiN. BanachM. BardhanM. BarqawiH.J. BashirN.Z. BashiriA. BenzianH. BernabeE. BhagatD.S. BhojarajaV.S. BjørgeT. BouaoudS. BraithwaiteD. BrikoN.I. CalinaD. CarrerasG. ChakrabortyP.A. ChattuV.K. ChaurasiaA. ChenM.X. ChoW.C.S. ChuD.T. ChukwuI.S. ChungE. Cruz-MartinsN. DadrasO. DaiX. DandonaL. DandonaR. DaneshpajouhnejadP. Darvishi Cheshmeh SoltaniR. DarweshA.M. DebelaS.A. Derbew MollaM. DessalegnF.N. Dianati-NasabM. DigesaL.E. DixitS.G. DixitA. DjalaliniaS. El SayedI. El TantawiM. EnyewD.B. ErkuD.A. EzzeddiniR. FagbamigbeA.F. FalzoneL. FetensaG. FukumotoT. GaewkhiewP. GallusS. GebrehiwotM. GhashghaeeA. GillP.S. GolechhaM. GoleijP. GomezR.S. GoriniG. GuimaraesA.L.S. GuptaB. GuptaS. GuptaV.B. GuptaV.K. Haj-MirzaianA. HalboubE.S. HalwaniR. HanifA. HariyaniN. HaroraniM. HasaniH. HassanA.M. HassanipourS. HassenM.B. HayS.I. HayatK. Herrera-SernaB.Y. HollaR. HoritaN. HosseinzadehM. HussainS. IlesanmiO.S. IlicI.M. IlicM.D. IsolaG. JaiswalA. JaniC.T. JavaheriT. JayarajahU. JayaramS. JosephN. KadashettiV. KandaswamyE. KaranthS.D. KarayeI.M. KauppilaJ.H. KaurH. KeykhaeiM. KhaderY.S. KhajuriaH. KhanaliJ. KhatibM.N. Khayat KashaniH.R. Khazeei TabariM.A. KimM.S. KompaniF. KoohestaniH.R. KumarG.A. KurmiO.P. La VecchiaC. LalD.K. LandiresI. LasradoS. LeddaC. LeeY.H. LibraM. LimS.S. ListlS. LopukhovP.D. MafiA.R. MahumudR.A. MalikA.A. MathurM.R. MauludS.Q. MeenaJ.K. Mehrabi NasabE. MestrovicT. MirfakhraieR. MisganawA. MisraS. MithraP. MohammadY. MohammadiM. MohammadiE. MokdadA.H. MoniM.A. MoragaP. MorrisonS.D. MozaffariH.R. MubarikS. MurrayC.J.L. NairT.S. Narasimha SwamyS. NarayanaA.I. NassereldineH. NattoZ.S. NayakB.P. NegruS.M. NggadaH.A. NouraeiH. Nuñez-SamudioV. OanceaB. OlagunjuA.T. Omar BaliA. Padron- MonederoA. PadubidriJ.R. PandeyA. PardhanS. PatelJ. PezzaniR. PirachaZ.Z. RabieeN. RadhakrishnanV. RadhakrishnanR.A. RahmaniA.M. RahmanianV. RaoC.R. RaoS.J. RathG.K. RawafD.L. RawafS. RawassizadehR. RazeghiniaM.S. RezaeiN. RezaeiN. RezaeiN. RezapourA. RiadA. RobertsT.J. Romero-RodríguezE. RoshandelG. The global, regional, and national burden of adult lip, oral, and pharyngeal cancer in 204 countries and territories: A systematic analysis for the global burden of disease study 2019.JAMA Oncol.202391014011416
    [Google Scholar]
  3. KhanmohammadiS. Saeedi MoghaddamS. AzadnajafabadS. RezaeiN. EsfahaniZ. RezaeiN. G.N.T., Bronchus; Collaborators, L.C.; Naghavi, M.; Larijani, B.; Farzadfar, F.; Khanmohammadi, S.; Moghaddam, S.S.; Azadnajafabad, S.; Rezaei, N.; Esfahani, Z.; Rezaei, N.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; Abdoun, M.; Abrehdari-Tafreshi, Z.; Abu-Zaid, A.; Ahmad, A.; Ahmadi, S.; Hamad, H.A.; Hospital, R.; Alessy, S.A.; Aljunid, S.M.; Amir-Behghadami, M.; Ansari-Moghaddam, A.; Arabloo, J.; Azangou-Khyavy, M.; Baghcheghi, N.; Bajbouj, K.; Bijani, A.; Bilalaga, M.M.; Bouaoud, S.; Calina, D.; Cho, W.C.S.; Da’ar, O.B.; Djalalinia, S.; Elghazaly, H.; Elhadi, M.; Ezzeddini, R.; Feizkhah, A.; Ghashghaee, A.; Golitaleb, M.; Avval, A.H.; Hafezi-Nejad, N.; Hamadeh, R.R.; Jalili, M.; Jamshidi, E.; Karimi, A.; Khader, Y.S.; Khanali, J.; Kompani, F.; Koohestani, H.R.; Bicer, B.K.; Mafi, A.R.; Mahmoodpoor, A.; Malekpour, M.-R.; Malik, A.A.; Mirfakhraie, R.; Mohammadi, E.; Momtazmanesh, S.; Moradzadeh, R.; Moraga, P.; Natto, Z.S.; Noori, M.; Perna, S.; Pezzani, R.; A.; Pirestani, M.; Langroudi, A.P.; Rabiee, M.; Rabiee, N.; Rahmani, S.; Redwan, E.M.M.; Rezaei, N.; Roshandel, G.; Sadeghi, E.; Farrokhi, A.S.; Samy, A.M.; Sathian, B.; Shahabi, S.; Sharifi-Rad, J.; Sheikhbahaei, S.; Varniab, Z.S.; Shorofi, S.A.; Soodejani, M.T.; Tbakhi, A.; Tehrani-Banihashemi, A.; Tahbaz, S.V.; Jabbari, S.H.Y.; Yousefi, Z.; Zamanian, M.; Zare, I.; Zarrintan, A.; Zoladl, M.; Naghavi, M.; Larijani, B.; Farzadfar, F, Burden of tracheal, bronchus, and lung cancer in North Africa and Middle East countries, 1990 to 2019: Results from the GBD study 2019.Front. Oncol.202312p. 1098218
    [Google Scholar]
  4. SharmaR. Abbasi-KangevariM. Abd-RabuR. AbidiH. Abu-GharbiehE. AcunaJ.M. AdhikariS. AdvaniS.M. AfzalM.S. Aghaie MeybodiM. AhinkorahB.O. AhmadS. AhmadiA. AhmadiS. AhmedH. AhmedL.A. AhmedM.B. Al HamadH. AlahdabF. AlaneziF.M. AlanziT.M. AlhalaiqaF.A.N. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. AlmustanyirS. Al-RaddadiR.M. AlvandS. Alvis-GuzmanN. AminiS. AncuceanuR. AnoushiravaniA. AnoushirvaniA.A. Ansari-MoghaddamA. ArablooJ. AryannejadA. Asghari JafarabadiM. AthariS.S. AusloosF. AusloosM. AwedewA.F. AwokeM.A. AyanaT.M. AzadnajafabadS. AzamiH. Azangou-KhyavyM. Azari JafariA. BadiyeA.D. BagheriehS. BahadoryS. BaigA.A. BakerJ.L. BanachM. BarrowA. BerhieA.Y. BesharatS. BhagatD.S. BhagavathulaA.S. BhalaN. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BjørgeT. BodichaB.B.A. BraithwaiteD. BrennerH. CalinaD. CaoC. CaoY. CarrerasG. CarvalhoF. CerinE. ChakinalaR.C. ChoW.C.S. ChuD-T. CondeJ. CostaV.M. Cruz-MartinsN. DadrasO. DaiX. DandonaL. DandonaR. DanielewiczA. DemekeF.M. DemissieG.D. DesaiR. DhamnetiyaD. DianatinasabM. DiazD. DidehdarM. DoaeiS. DoanL.P. DodangehM. EghbalianF. EjetaD.D. EkholuenetaleM. EkundayoT.C. El SayedI. ElhadiM. EnyewD.B. EyayuT. EzzeddiniR. FakhradiyevI.R. FarooqueU. FarrokhpourH. FarzadfarF. FatehizadehA. FattahiH. FattahiN. FereidoonnezhadM. FernandesE. FetensaG. FilipI. FischerF. ForoutanM. GaalP.A. GadM.M. GallusS. GargT. GetachewT. GhamariS-H. GhashghaeeA. GhithN. GholamalizadehM. Gholizadeh NavashenaqJ. GizawA.T. GlasbeyJ.C. GolechhaM. GoleijP. GonfaK.B. GoriniG. GuhaA. GuptaS. GuptaV.B. GuptaV.K. HaddadiR. Hafezi-NejadN. Haj-MirzaianA. HalwaniR. HaqueS. HaririS. HasaballahA.I. HassanipourS. HayS.I. HerteliuC. HollaR. HosseiniM-S. HosseinzadehM. HostiucM. HousehM. HuangJ. HumayunA. IavicoliI. IlesanmiO.S. IlicI.M. IlicM.D. IslamiF. IwagamiM. JahaniM.A. JakovljevicM. JavaheriT. JayawardenaR. JebaiR. JhaR.P. JooT. JosephN. JoukarF. JozwiakJ.J. KabirA. KalhorR. KamathA. KapoorN. KarayeI.M. KarimiA. KauppilaJ.H. KazemiA. KeykhaeiM. KhaderY.S. KhajuriaH. KhalilovR. KhanaliJ. KhayamzadehM. KhodadostM. KimH. KimM.S. KisaA. KisaS. KolahiA-A. KoohestaniH.R. KopecJ.A. KoteeswaranR. KoyanagiA. KrishnamoorthyY. KumarG.A. KumarM. KumarV. La VecchiaC. LamiF.H. LandiresI. LeddaC. LeeS. LeeW-C. LeeY.Y. LeongE. LiB. LimS.S. LoboS.W. LoureiroJ.A. LuneviciusR. MadadizadehF. MahmoodpoorA. MajeedA. MalekpourM-R. MalekzadehR. MalikA.A. Mansour-GhanaeiF. MantovaniL.G. MartorellM. MasoudiS. MathurP. MeenaJ.K. Mehrabi NasabE. MendozaW. MentisA-F.A. MestrovicT. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MijenaG.F.W. MirmoeeniS. Mirza-Aghazadeh-AttariM. MirzaeiH. MisraS. MohammadK.A. MohammadiE. MohammadiS. MohammadiS.M. Mohammadian-HafshejaniA. MohammedS. MohammedT.A. MokaN. MokdadA.H. MokhtariZ. MolokhiaM. MomtazmaneshS. MonastaL. MoradiG. MoradzadehR. MoragaP. Morgado-da-CostaJ. MubarikS. MulitaF. NaghaviM. NaimzadaM.D. NamH.S. NattoZ.S. NayakB.P. NazariJ. Nazemalhosseini-MojaradE. NegoiI. NguyenC.T. NguyenS.H. NoorN.M. NooriM. NooriS.M.A. Nuñez-SamudioV. NzoputamC.I. OanceaB. OdukoyaO.O. OguntadeA.S. Okati-AliabadH. OlagunjuA.T. OlagunjuT.O. OngS. OstroffS.M. Padron-MonederoA. PakzadR. PanaA. PandeyA. Pashazadeh KanF. PatelU.K. PaudelU. PereiraR.B. PerumalsamyN. PestellR.G. PirachaZ.Z. PollokR.C.G. PourshamsA. PourtaheriN. PrashantA. RabieeM. RabieeN. RadfarA. RafieiS. RahmanM. RahmaniA.M. RahmanianV. RajaiN. RajeshA. Ramezani-DorohV. RamezanzadehK. RanabhatK. RashediS. RashidiA. RashidiM. RashidiM-M. RastegarM. RawafD.L. RawafS. RawassizadehR. RazeghiniaM.S. RenzahoA.M.N. RezaeiN. RezaeiN. RezaeiS. RezaeianM. Rezazadeh-KhademS. RoshandelG. Saber-AyadM.M. Saberzadeh-ArdestaniB. SaddikB. SadeghiH. SaeedU. SahebazzamaniM. SahebkarA. Salek FarrokhiA. SalimiA. SalimzadehH. SamadiP. SamaeiM. SamyA.M. SanabriaJ. Santric-MilicevicM.M. SaqibM.A.N. SarveazadA. SathianB. SatpathyM. SchneiderI.J.C. ŠekerijaM. SepanlouS.G. SeylaniA. ShaF. ShafieeS.M. ShaghaghiZ. ShahabiS. ShakerE. SharifianM. Sharifi-RadJ. SheikhbahaeiS. ShettyJ.K. ShirkoohiR. ShobeiriP. Siddappa MalleshappaS.K. SilvaD.A.S. Silva JulianG. SinghA.D. SinghJ.A. SirajM.S. SivandzadehG.R. SkryabinV.Y. SkryabinaA.A. SoceaB. SolmiM. Soltani-ZangbarM.S. SongS. SzerencsésV. SzócskaM. Tabarés-SeisdedosR. TabibianE. TaheriM. TaheriAbkenarY. TaherkhaniA. TalaatI.M. TanK-K. TbakhiA. TesfayeB. TiyuriA. TollosaD.N. TouvierM. TranB.X. TusaB.S. UllahI. UllahS. VacanteM. Valadan TahbazS. VerouxM. VoB. VosT. WangC. WestermanR. WoldemariamM. Yahyazadeh JabbariS.H. YangL. YazdanpanahF. YuC. YuceD. YunusaI. ZadnikV. ZahirM. ZareI. ZhangZ-J. ZoladlM. GBD 2019 Colorectal Cancer Collaborators Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Gastroenterol. Hepatol.20227762764710.1016/S2468‑1253(22)00044‑935397795
    [Google Scholar]
  5. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  6. KiticD. MiladinovicB. RandjelovicM. SzopaA. SeidelV. PrasherP. SharmaM. FatimaR. Arslan AteşşahinD. CalinaD. Sharifi-RadJ. Anticancer and chemopreventive potential of Morinda citrifolia L. bioactive compounds: A comprehensive update.Phytother. Res.20243841932195010.1002/ptr.813738358681
    [Google Scholar]
  7. LiuN. LuoT. ZhangJ. HanL. DuanW. LuW. QiuH. LinY. WuY. ZhangH. YangF. GeD. YF343, A novel histone deacetylase inhibitor, combined with cq to inhibit- autophagy, contributes to increased apoptosis in triple- negative breast cancer.Curr. Med. Chem.202330404605462110.2174/092986733066623012015281536683315
    [Google Scholar]
  8. FarisP. NegriS. FarisD. ScolariF. MontagnaD. MocciaF. Hydrogen Sulfide (H2S): As a potent modulator and therapeutic prodrug in cancer.Curr. Med. Chem.202330404506453210.2174/092986733066623012610063836703602
    [Google Scholar]
  9. JafernikK. MotykaS. CalinaD. Sharifi-RadJ. SzopaA. Comprehensive review of dibenzocyclooctadiene lignans from the Schisandra genus: Anticancer potential, mechanistic insights and future prospects in oncology.Chin. Med.20241911710.1186/s13020‑024‑00879‑038267965
    [Google Scholar]
  10. TshikhudoP.P. MabhaudhiT. KoorbanallyN.A. MudauF.N. Avendaño CaceresE.O. PopaD. CalinaD. Sharifi-RadJ. Anticancer potential of β-carboline alkaloids: An updated mechanistic overview.Chem. Biodivers.2024212e20230126310.1002/cbdv.20230126338108650
    [Google Scholar]
  11. ImtiazI. SchlossJ. BugarcicA. Traditional and contemporary herbal medicines in management of cancer: A scoping review.J. Ayurveda Integr. Med.202415110090410.1016/j.jaim.2024.10090438395014
    [Google Scholar]
  12. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e20230146810.1002/cbdv.20230146838206170
    [Google Scholar]
  13. PaunovicD. RajkovicJ. NovakovicR. Grujic-MilanovicJ. MekkyR.H. PopaD. CalinaD. Sharifi-RadJ. The potential roles of gossypol as anticancer agent: Advances and future directions.Chin. Med.202318116310.1186/s13020‑023‑00869‑838098026
    [Google Scholar]
  14. HardtL. Mahamat-SalehY. AuneD. SchlesingerS. Plant-based diets and cancer prognosis: A review of recent research.Curr. Nutr. Rep.202211469571610.1007/s13668‑022‑00440‑136138327
    [Google Scholar]
  15. Gali-MuhtasibH. HmadiR. KarehM. TohmeR. DarwicheN. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis.Apoptosis201520121531156210.1007/s10495‑015‑1169‑226362468
    [Google Scholar]
  16. KhalidE.B. AymanE.L.M.E.L.K. RahmanH. AbdelkarimG. NajdaA. Natural products against cancer angiogenesis.Tumour Biol.20163711145131453610.1007/s13277‑016‑5364‑827651162
    [Google Scholar]
  17. MotykaS. JafernikK. EkiertH. Sharifi-RadJ. CalinaD. Al-OmariB. SzopaA. ChoW.C. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy.Biomed. Pharmacother.202315811414510.1016/j.biopha.2022.11414536586242
    [Google Scholar]
  18. PirintsosS. PanagiotopoulosA. BariotakisM. DaskalakisV. LionisC. SourvinosG. KarakasiliotisI. KampaM. CastanasE. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples.Molecules20222713406010.3390/molecules2713406035807306
    [Google Scholar]
  19. RahamanM.M. HossainR. Herrera-BravoJ. IslamM.T. AtolaniO. AdeyemiO.S. OwolodunO.A. KambiziL. DaştanS.D. CalinaD. Sharifi-RadJ. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr.202311416571670
    [Google Scholar]
  20. GarzoliS. Alarcón-ZapataP. SeitimovaG. Alarcón-ZapataB. MartorellM. SharopovF. FokouP.V.T. DizeD. YamtheL.R.T. LesF. CásedasG. LópezV. IritiM. RadJ.S. GürerE.S. CalinaD. PezzaniR. VitaliniS. Natural essential oils as a new therapeutic tool in colorectal cancer.Cancer Cell Int.202222140710.1186/s12935‑022‑02806‑536514100
    [Google Scholar]
  21. IslamM.T. Andrographolide, a new hope in the prevention and treatment of metabolic syndrome.Front. Pharmacol.2017857110.3389/fphar.2017.0057128878680
    [Google Scholar]
  22. Baru VenkataR. PrasanthD.S.N.B.K. PasalaP.K. PandaS.P. TatipamulaV.B. MulukuriS. KotaR.K. RudrapalM. KhanJ. AldosariS. AlshehriB. BanawasS. ChallaM.C. KammiliJ.K. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies.Front. Nutr.202310118523610.3389/fnut.2023.118523637324729
    [Google Scholar]
  23. KumarS. SinghB. BajpaiV. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance.J. Ethnopharmacol.202127511405410.1016/j.jep.2021.11405433831465
    [Google Scholar]
  24. KaewdechA. NawalerspanyaS. AssawasuwannakitS. ChamroonkulN. JandeeS. SripongpunP. The use of Andrographis paniculata and its effects on liver biochemistry of patients with gastrointestinal problems in Thailand during the COVID-19 pandemic: A cross sectional study.Sci. Rep.20221211821310.1038/s41598‑022‑23189‑736309577
    [Google Scholar]
  25. MondalM. SarkarC. SahaS. HossainM.N. NorouziR. MubarakM.S. SiyadatpanahA. WilairatanaP. HossainR. IslamM.T. CoutinhoH.D.M. Hepatoprotective activity of andrographolide possibly through antioxidative defense mechanism in Sprague-dawley rats.Toxicol. Rep.202291013102210.1016/j.toxrep.2022.04.00736518448
    [Google Scholar]
  26. World Flora Online. www.worldfloraonline.org/ Accesed on 19 July 2023.
  27. PubChem. pubchem.ncbi.nlm.nih.gov/ Accesed on 11 July 2023.
  28. WangS. LiH. ChenS. WangZ. YaoY. ChenT. YeZ. LinP. Andrographolide induces apoptosis in human osteosarcoma cells via the ROS/JNK pathway.Int. J. Oncol.20205661417142810.3892/ijo.2020.503232236589
    [Google Scholar]
  29. BrahmachariG. Andrographolide: A molecule of antidiabetic promise.Discovery and Development of Antidiabetic Agents from Natural Products. BrahmachariG. 2016127
    [Google Scholar]
  30. XiaoX. XuZ. ZengQ.D. ChenX.B. JiW.H. HanY. WuP. RenJ. ZengB.B. Construction of the isocopalane skeleton: Application of a desulfinylative 1,7-hydrogen atom transfer strategy.Chemistry201521238351835410.1002/chem.20150079425907201
    [Google Scholar]
  31. WeiS. TangY.B. HuaH. OhkoshiE. GotoM. WangL.T. LeeK.H. XiaoZ. Discovery of novel andrographolide derivatives as cytotoxic agents.Bioorg. Med. Chem. Lett.201323144056406010.1016/j.bmcl.2013.05.06123768904
    [Google Scholar]
  32. ChinthalaY. KM. SharmaP. KvnS.S. JonnalaK. ArigariN.K. KhanF. OhS. Synthesis and cytotoxicity evaluation of novel andrographolide-1,2,3-triazole derivatives.J. Heterocycl. Chem.20165361902191010.1002/jhet.2505
    [Google Scholar]
  33. DevendarP. KumarA.N. BethuM.S. ZehraA. PamanjiR. Venkateswara RaoJ. TiwariA.K. SridharB. Satya SrinivasK.V.N. KumarJ.K. Highly selective one pot synthesis and biological evaluation of novel 3-(allyloxy)-propylidene acetals of some natural terpenoids.RSC Advances20155113931229313010.1039/C5RA18517C
    [Google Scholar]
  34. StielowM. WitczyńskaA. KubryńN. FijałkowskiŁ. NowaczykJ. NowaczykA. The bioavailability of drugs-the current state of knowledge.Molecules20232824803810.3390/molecules2824803838138529
    [Google Scholar]
  35. YangQ. FanL. HaoE. HouX. DengJ. XiaZ. DuZ. Construction of an oral bioavailability prediction model based on machine learning for evaluating molecular modifications.J. Pharm. Sci.202411351155116710.1016/j.xphs.2024.02.02638430955
    [Google Scholar]
  36. SongvutP. BoonyarattanasoonthornT. NuengchamnongN. JunsaiT. KongratanapasertT. SupannapanK. KhemawootP. Enhancing oral bioavailability of andrographolide using solubilizing agents and bioenhancer: Comparative pharmacokinetics of Andrographis paniculata formulations in beagle dogs.Pharm. Biol.202462118319410.1080/13880209.2024.231120138351624
    [Google Scholar]
  37. PanossianA. HovhannisyanA. MamikonyanG. AbrahamianH. HambardzumyanE. GabrielianE. GoukasovaG. WikmanG. WagnerH. Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human.Phytomedicine20007535136410.1016/S0944‑7113(00)80054‑911081986
    [Google Scholar]
  38. YeL. WangT. TangL. LiuW. YangZ. ZhouJ. ZhengZ. CaiZ. HuM. LiuZ. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein.J. Pharm. Sci.2011100115007501710.1002/jps.2269321721007
    [Google Scholar]
  39. HeX. LiJ. GaoH. QiuF. HuK. CuiX. YaoX. Identification of a rare sulfonic acid metabolite of andrographolide in rats.Drug Metab. Dispos.200331898398510.1124/dmd.31.8.98312867485
    [Google Scholar]
  40. KhanI. KhanF. FarooquiA. AnsariI.A. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level.Nutr. Cancer201870578780310.1080/01635581.2018.147064929781715
    [Google Scholar]
  41. MalikZ. ParveenR. ParveenB. ZahiruddinS. Aasif KhanM. KhanA. MasseyS. AhmadS. HusainS.A. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action.J. Ethnopharmacol.202127211393610.1016/j.jep.2021.11393633610710
    [Google Scholar]
  42. RajagopalS. KumarR.A. DeeviD.S. SatyanarayanaC. RajagopalanR. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.J. Exp. Ther. Oncol.20033314715810.1046/j.1359‑4117.2003.01090.x14641821
    [Google Scholar]
  43. CheungH.Y. CheungS.H. LiJ. CheungC.S. LaiW.P. FongW.F. LeungF.M. Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells.Planta Med.200571121106111110.1055/s‑2005‑87312816395645
    [Google Scholar]
  44. ShiM.D. LinH.H. LeeY.C. ChaoJ.K. LinR.A. ChenJ.H. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide.Chem. Biol. Interact.2008174320121010.1016/j.cbi.2008.06.00618619950
    [Google Scholar]
  45. GeethangiliM. RaoY.K. FangS.H. TzengY.M. Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in jurkat cells.Phytother. Res.200822101336134110.1002/ptr.249318546141
    [Google Scholar]
  46. BanerjeeM. ChattopadhyayS. ChoudhuriT. BeraR. KumarS. ChakrabortyB. MukherjeeS.K. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line.J. Biomed. Sci.20162314010.1186/s12929‑016‑0257‑027084510
    [Google Scholar]
  47. ManikamS.T. StanslasJ. Andrographolide inhibits growth of acute promyelocytic leukaemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis.J. Pharm. Pharmacol.2010611697810.1211/jpp.61.01.001019126299
    [Google Scholar]
  48. SatyanarayanaC. DeeviD.S. RajagopalanR. SrinivasN. RajagopalS. DRF 3188 a novel semi-synthetic analog of andrographolide: Cellular response to MCF 7 breast cancer cells.BMC Cancer2004412610.1186/1471‑2407‑4‑2615207007
    [Google Scholar]
  49. KumarS. PatilH.S. SharmaP. KumarD. DasariS. PuranikV.G. ThulasiramH.V. KunduG.C. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway.Curr. Mol. Med.201212895296610.2174/15665241280248082622804248
    [Google Scholar]
  50. LiJ. CheungH.Y. ZhangZ. ChanG.K.L. FongW.F. Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species.Eur. J. Pharmacol.20075681-3314410.1016/j.ejphar.2007.04.02717512926
    [Google Scholar]
  51. JiangC-G. LiJ-B. LiuF-R. WuT. YuM. XuH-M. Andrographolide inhibits the adhesion of gastric cancer cells to endothelial cells by blocking E-selectin expression.Anticancer Res.2007274B2439244717695536
    [Google Scholar]
  52. ZhangX-S. WeiR-J. HeD.L. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis.Asian J. Androl.201820220020410.4103/aja.aja_30_1728869219
    [Google Scholar]
  53. DengY. BiR. GuoH. YangJ. DuY. WangC. WeiW. Andrographolide enhances TRAIL-induced apoptosis via p53-mediated death receptors up-regulation and suppression of the NF-кB pathway in bladder cancer cells.Int. J. Biol. Sci.201915368870010.7150/ijbs.3084730745855
    [Google Scholar]
  54. ZhouJ. LuG.D. OngC.S. OngC.N. ShenH.M. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation.Mol. Cancer Ther.2008772170218010.1158/1535‑7163.MCT‑08‑007118645026
    [Google Scholar]
  55. ChunJ.Y. TummalaR. NadimintyN. LouW. LiuC. YangJ. EvansC.P. ZhouQ. GaoA.C. Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth.Genes Cancer20101886887610.1177/194760191038341621442031
    [Google Scholar]
  56. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  57. BugaA.M. DoceaA. AlbuC. MalinR. BranisteanuD. IanosiG. IanosiS. IordacheA. CalinaD. Molecular and cellular stratagem of brain metastases associated with melanoma (Review).Oncol. Lett.20191754170417510.3892/ol.2019.993330944612
    [Google Scholar]
  58. PearngamP. KumkateS. OkadaS. JanvilisriT. Andrographolide inhibits cholangiocarcinoma cell migration by down-regulation of Claudin-1 via the p-38 signaling pathway.Front. Pharmacol.20191082710.3389/fphar.2019.0082731404237
    [Google Scholar]
  59. ZhaiZ. QuX. LiH. OuyangZ. YanW. LiuG. LiuX. FanQ. TangT. DaiK. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression.Mol Med Rep.20151121139114510.3892/mmr.2014.2872
    [Google Scholar]
  60. PengT. HuM. WuT.-T. ZhangC. ChenZ. HuangS. ZhouX.-H. Andrographolide suppresses proliferation of nasopharyngeal carcinoma cells via attenuating NF-κB pathway.Biomed. Res. Int.2015201573505610.1155/2015/735056
    [Google Scholar]
  61. DudleyA.C. GriffioenA.W. Pathological angiogenesis: Mechanisms and therapeutic strategies.Angiogenesis202326331334710.1007/s10456‑023‑09876‑737060495
    [Google Scholar]
  62. PathakA. PalA.K. RoyS. NandaveM. JainK. Role of angiogenesis and its biomarkers in development of targeted tumor therapies.Stem Cells Int.2024202412310.1155/2024/907792638213742
    [Google Scholar]
  63. GaitskellK. RogozińskaE. PlattS. ChenY. Abd El AzizM. TattersallA. MorrisonJ. Angiogenesis inhibitors for the treatment of epithelial ovarian cancer.Cochrane Database Syst. Rev.202344CD00793037185961
    [Google Scholar]
  64. HuW. WuX. JinZ. WangZ. GuoQ. ChenZ. ZhuS. ZhangH. HuoJ. ZhangL. ZhouX. YangL. XuH. ShiL. WangY. Andrographolide promotes interaction between endothelin-dependent EDNRA/EDNRB and Myocardin-SRF to regulate pathological vascular remodeling.Front. Cardiovasc. Med.2022878387210.3389/fcvm.2021.78387235127859
    [Google Scholar]
  65. WangL.J. ZhouX. WangW. TangF. QiC.L. YangX. WuS. LinY.Q. WangJ.T. GengJ.G. Andrographolide inhibits oral squamous cell carcinogenesis through NF-κB inactivation.J. Dent. Res.201190101246125210.1177/002203451141834121841043
    [Google Scholar]
  66. NaomiR. BahariH. OngZ.Y. KeongY.Y. EmbongH. RajandramR. TeohS.H. OthmanF. HashamR. YinK.B. KaniappanP. YazidM.D. ZakariaZ.A. Mechanisms of natural extracts of Andrographis paniculata that target lipid-dependent cancer pathways: A view from the signaling pathway.Int. J. Mol. Sci.20222311597210.3390/ijms2311597235682652
    [Google Scholar]
  67. SheejaK. KuttanG. Activation of cytotoxic T lymphocyte responses and attenuation of tumor growth in vivo by Andrographis paniculata extract and andrographolide.Immunopharmacol. Immunotoxicol.2007291819310.1080/0892397070128272617464769
    [Google Scholar]
  68. ZhouJ. ZhangS. Choon-NamO. ShenH.M. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells.Biochem. Pharmacol.200672213214410.1016/j.bcp.2006.04.01916740251
    [Google Scholar]
  69. HungS.-K. HungL.-C. KuoC.-D. LeeK.-Y. LeeM.-S. LinH.-Y. ChenY.-J. FuS.-L. Andrographolide sensitizes Ras-transformed cells to radiation in vitro and in vivo.Int. J. Radiat. Oncol. Biol. Phys.201077412321239
    [Google Scholar]
  70. HuX.Y. WuR.H. LogueM. BlondelC. LaiL.Y.W. StuartB. FlowerA. FeiY.T. MooreM. ShepherdJ. LiuJ.P. LewithG. Andrographis paniculata (Chuān Xīn Lián) for symptomatic relief of acute respiratory tract infections in adults and children: A systematic review and meta-analysis.PLoS One2017128e018178010.1371/journal.pone.018178028783743
    [Google Scholar]
  71. DaiY. ChenS.-R. ChaiL. ZhaoJ. WangY. WangY. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide.Crit. Rev. Food Sci. Nutr.201959sup1S17S2910.1080/10408398.2018.1501657
    [Google Scholar]
  72. SukardimanH. WidyawaruyantiA. SismindariS. ZainiN.C. Apoptosis inducing effect of andrographolide on TD-47 human breast cancer cell line.Afr. J. Tradit. Complement. Altern. Med.20074334535120161898
    [Google Scholar]
  73. Ajaya KumarR. SrideviK. Vijaya KumarN. NanduriS. RajagopalS. Anticancer and immunostimulatory compounds from Andrographis paniculata.J. Ethnopharmacol.2004922-329129510.1016/j.jep.2004.03.00415138014
    [Google Scholar]
  74. ChaoH.P. KuoC.D. ChiuJ.H. FuS.L. Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity.Planta Med.201076161827183310.1055/s‑0030‑125003920539971
    [Google Scholar]
  75. ChuriyahP. PongtuluranO.B. RofaaniE. Tarwadi Antiviral and immunostimulant activities of Andrographis paniculata.Hayati J. Biosci.2015222677210.4308/hjb.22.2.67
    [Google Scholar]
  76. MatsudaT. KuroyanagiM. SugiyamaS. UmeharaK. UenoA. NishiK. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees.Chem. Pharm. Bull.19944261216122510.1248/cpb.42.12168069972
    [Google Scholar]
  77. YangL. WuD. LuoK. WuS. WuP. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells.Cancer Lett.2009276218018810.1016/j.canlet.2008.11.01519097688
    [Google Scholar]
  78. GuoH. ZhangZ. SuZ. SunC. ZhangX. ZhaoX. LaiX. SuZ. LiY. ZhanJ.Y. Enhanced anti-tumor activity and reduced toxicity by combination andrographolide and bleomycin in ascitic tumor-bearing mice.Eur. J. Pharmacol.2016776526310.1016/j.ejphar.2016.02.03226874212
    [Google Scholar]
  79. CastañedaA.M. MeléndezC.M. UribeD. Pedroza-DíazJ. Synergistic effects of natural compounds and conventional chemotherapeutic agents: recent insights for the development of cancer treatment strategies.Heliyon202286e0951910.1016/j.heliyon.2022.e0951935669542
    [Google Scholar]
  80. CheonC. KoS.G. Synergistic effects of natural products in combination with anticancer agents in prostate cancer: A scoping review.Front. Pharmacol.20221396331710.3389/fphar.2022.96331736172195
    [Google Scholar]
  81. GuoQ. JinY. ChenX. YeX. ShenX. LinM. ZengC. ZhouT. ZhangJ. NF-κB in biology and targeted therapy: New insights and translational implications.Signal Transduct. Target. Ther.2024915310.1038/s41392‑024‑01757‑938433280
    [Google Scholar]
  82. ZhaoY. WangC. GoelA. Andrographis overcomes 5-fluorouracil-associated chemoresistance through inhibition of DKK1 in colorectal cancer.Carcinogenesis202142681482510.1093/carcin/bgab02733822896
    [Google Scholar]
  83. HodrojM.H. JardalyA. abi RaadS. ZoueinA. RizkS. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway.Cancer Manag. Res.2018101079108810.2147/CMAR.S16092429785137
    [Google Scholar]
  84. VarmaA. PadhH. ShrivastavaN. Andrographolide: A new plant-derived antineoplastic entity on horizon.Evid. Based Complement. Alternat. Med.201120111910.1093/ecam/nep13519752167
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673295496240530100728
Loading
/content/journals/cmc/10.2174/0109298673295496240530100728
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test