Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Gynecological cancers, encompassing endometrial, ovarian, and cervical cancer, pose significant challenges in clinical practice, often marked by high mortality rates and treatment resistance. Despite advances in standard therapies, including chemoradiation and surgery, tumor recurrence and metastasis remain formidable obstacles. In this context, there is a pressing need to explore novel therapeutic strategies that offer improved efficacy and reduced side effects. Herbal medicine, particularly compounds like resveratrol, has garnered attention for its diverse biological properties, including anticancer effects. Resveratrol, a multipotential nutraceutical, holds promise in gynecological cancer therapy through its modulation of key cellular and molecular processes. This review aims to provide an overview of the current status, challenges, and opportunities in utilizing resveratrol for gynecological cancer treatment. We discuss its role in miRNA regulation, clinical trial findings, and the development of effective formulations. By elucidating the underlying mechanisms of resveratrol's anticancer effects and exploring innovative delivery systems, we aim to shed light on the potential avenues for optimizing its therapeutic benefits in gynecological cancers.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673290941240430171146
2025-07-01
2025-09-03
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. ZhangX.Q. LiL. A meta-analysis of XRCC1 single nucleotide polymorphism and susceptibility to gynecological malignancies.Medicine202110050e2803010.1097/MD.000000000002803034918657
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  4. ChanJ.K. ChowS. BhowmikS. MannA. KappD.S. ColemanR.L. Metastatic gynecologic malignancies: Advances in treatment and management.Clin. Exp. Metastasis2018355-652153310.1007/s10585‑018‑9889‑729931499
    [Google Scholar]
  5. KhazaeiZ. The incidence and mortality of ovarian cancer, its association with body mass index and human development index: An ecological study.World Cancer Research Journal2019612
    [Google Scholar]
  6. AssidiM. YahyaF.M. Al-ZahraniM.H. ElkhatibR. ZariA. ElaimiA. Al-MaghrabiJ. DallolA. BuhmeidaA. Abu-ElmagdM. Leptin protein expression and promoter methylation in ovarian cancer: A strong prognostic value with theranostic promises.Int. J. Mol. Sci.202122231287210.3390/ijms22231287234884678
    [Google Scholar]
  7. BishayeeA. DhirN. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis.Chem. Biol. Interact.20091792-313114410.1016/j.cbi.2008.11.01519073162
    [Google Scholar]
  8. AsensiM. MedinaI. OrtegaA. CarreteroJ. BañoM.C. ObradorE. EstrelaJ.M. Inhibition of cancer growth by resveratrol is related to its low bioavailability.Free Radic. Biol. Med.200233338739810.1016/S0891‑5849(02)00911‑512126761
    [Google Scholar]
  9. YuL. SunZ.J. WuS.L. PanC.E. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer.World J. Gastroenterol.20039102341234310.3748/wjg.v9.i10.234114562407
    [Google Scholar]
  10. LiuH.S. PanC.E. YangW. LiuX.M. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice.World J. Gastroenterol.2003971474147610.3748/wjg.v9.i7.147412854144
    [Google Scholar]
  11. HarperC.E. CookL.M. PatelB.B. WangJ. EltoumI.A. ArabshahiA. ShiraiT. LamartiniereC.A. Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats.Prostate200969151668168210.1002/pros.2101719670229
    [Google Scholar]
  12. SeeniA. TakahashiS. TakeshitaK. TangM. SugiuraS. SatoS.Y. ShiraiT. Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model.Asian Pac. J. Cancer Prev.20089171418439064
    [Google Scholar]
  13. NarayananN.K. NargiD. RandolphC. NarayananB.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice.Int. J. Cancer200912511810.1002/ijc.2433619326431
    [Google Scholar]
  14. MalaguarneraL. Influence of resveratrol on the immune response.Nutrients201911594610.3390/nu1105094631035454
    [Google Scholar]
  15. OhW.Y. ShahidiF. Antioxidant activity of resveratrol ester derivatives in food and biological model systems.Food Chem.201826126727310.1016/j.foodchem.2018.03.08529739593
    [Google Scholar]
  16. Riveiro-NaveiraR.R. Valcárcel-AresM.N. Almonte-BecerrilM. Vaamonde-GarcíaC. LoureiroJ. Hermida-CarballoL. López-PeláezE. BlancoF.J. López-ArmadaM.J. Resveratrol lowers synovial hyperplasia, inflammatory markers and oxidative damage in an acute antigen-induced arthritis model.Rheumatology201655101889190010.1093/rheumatology/kew25527354682
    [Google Scholar]
  17. RenJ. ZhangY. Targeting autophagy in aging and aging-related cardiovascular diseases.Trends Pharmacol. Sci.201839121064107610.1016/j.tips.2018.10.00530458935
    [Google Scholar]
  18. DengS. ShanmugamM.K. KumarA.P. YapC.T. SethiG. BishayeeA. Targeting autophagy using natural compounds for cancer prevention and therapy.Cancer201912581228124610.1002/cncr.3197830748003
    [Google Scholar]
  19. PourhanifehM.H. Abbaszadeh-GoudarziK. GoodarziM. PiccirilloS.G.M. ShafieeA. HajighadimiS. MoradizarmehriS. AsemiZ. MirzaeiH. Resveratrol: A new potential therapeutic agent for melanoma?Curr. Med. Chem.202128468771110.2174/1875533XMTAyAOTQy131830881
    [Google Scholar]
  20. ParkS.J. AhmadF. PhilpA. BaarK. WilliamsT. LuoH. KeH. RehmannH. TaussigR. BrownA.L. KimM.K. BeavenM.A. BurginA.B. ManganielloV. ChungJ.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.Cell2012148342143310.1016/j.cell.2012.01.01722304913
    [Google Scholar]
  21. XiaoB. MaW. ZhengY. LiZ. LiD. ZhangY. LiY. WangD. Effects of resveratrol on the inflammatory response and renal injury in hyperuricemic rats.Nutr. Res. Pract.2021151263710.4162/nrp.2021.15.1.2633542790
    [Google Scholar]
  22. FernandesL. CasalS. PereiraJ.A. SaraivaJ.A. RamalhosaE. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health.J. Food Compos. Anal.201760385010.1016/j.jfca.2017.03.017
    [Google Scholar]
  23. Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Farkhondeh, T. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state. Phytotherapy Research., 2016, 30(8), 1345-53. 10.3233/JAD‑16108828059794
  24. PourhanifehM.H. ShafabakhshR. ReiterR.J. AsemiZ. The effect of resveratrol on neurodegenerative disorders: Possible protective actions against autophagy, apoptosis, inflammation and oxidative stress.Curr. Pharm. Des.201925192178219110.2174/138161282566619071711093231333112
    [Google Scholar]
  25. SimãoF. MattéA. PagnussatA.S. NettoC.A. SalbegoC.G. Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways.Eur. J. Neurosci.20123672899290510.1111/j.1460‑9568.2012.08229.x22817531
    [Google Scholar]
  26. ChongE. ChangS.L. HsiaoY.W. SinghalR. LiuS.H. LehaT. LinW.Y. HsuC.P. ChenY.C. ChenY.J. WuT.J. HigaS. ChenS.A. Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation.Heart Rhythm20151251046105610.1016/j.hrthm.2015.01.04425640634
    [Google Scholar]
  27. SungM.M. DasS.K. LevasseurJ. ByrneN.J. FungD. KimT.T. MassonG. BoisvenueJ. SoltysC.L. OuditG.Y. DyckJ.R.B. Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism.Circ. Heart Fail.20158112813710.1161/CIRCHEARTFAILURE.114.00167725394648
    [Google Scholar]
  28. AhmadI. HodaM. Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy.Pharmacol. Res.202016110511210.1016/j.phrs.2020.10511232758636
    [Google Scholar]
  29. SinghN. AgrawalM. DoréS. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models.ACS Chem. Neurosci.2013481151116210.1021/cn400094w23758534
    [Google Scholar]
  30. ZhangY. YangS. YangY. LiuT. Resveratrol induces immunogenic cell death of human and murine ovarian carcinoma cells.Infect. Agent. Cancer20191412710.1186/s13027‑019‑0247‑431636696
    [Google Scholar]
  31. ChassotL.N. ScolaroB. RoschelG.G. CogliatiB. CavalcantiM.F. AbdallaD.S.P. CastroI.A. Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr (−/−) mice.J. Nutr. Biochem.201861485510.1016/j.jnutbio.2018.07.01430184518
    [Google Scholar]
  32. HammadA.S.A. AhmedA.S.F. HeebaG.H. TayeA. Heme oxygenase-1 contributes to the protective effect of resveratrol against endothelial dysfunction in STZ-induced diabetes in rats.Life Sci.201923911706510.1016/j.lfs.2019.11706531751579
    [Google Scholar]
  33. FournyN. LanC. SéréeE. BernardM. DesroisM. Protective effect of resveratrol against ischemia-reperfusion injury via enhanced high energy compounds and eNOS-SIRT1 expression in type 2 diabetic female rat heart.Nutrients201911110510.3390/nu1101010530621358
    [Google Scholar]
  34. DolinskyV.W. ChakrabartiS. PereiraT.J. OkaT. LevasseurJ. BekerD. ZordokyB.N. MortonJ.S. NagendranJ. LopaschukG.D. DavidgeS.T. DyckJ.R.B. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice.Biochim. Biophys. Acta Mol. Basis Dis.20131832101723173310.1016/j.bbadis.2013.05.01823707558
    [Google Scholar]
  35. TeimouriM. Homayouni-TabriziM. RajabianA. AmiriH. HosseiniH. Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials.Complement. Ther. Med.20227010286310.1016/j.ctim.2022.10286335905799
    [Google Scholar]
  36. Valcárcel-AresM.N. Riveiro-NaveiraR.R. Vaamonde- GarcíaC. LoureiroJ. Hermida-CarballoL. BlancoF.J. López-ArmadaM.J. Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes.Rheumatology20145371332134310.1093/rheumatology/keu01624609059
    [Google Scholar]
  37. BruynG A W. TateG. CaeiroF. Maldonado-CoccoJ. WesthovensR. TannenbaumH. BellM. ForreO. BjorneboeO. TakP.P. AbeywickramaK.H. BernhardtP. van RielP.L.C. RADD Study Group Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: A 3- month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study.Ann. Rheum. Dis.20086781090109510.1136/ard.2007.07880818037627
    [Google Scholar]
  38. YanH. ZhouH.F. HuY. PhamC.T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation.J Rheum Dis Treat.201511510.23937/2469‑5726/151000526120598
    [Google Scholar]
  39. YinH. WuH. ChenY. ZhangJ. ZhengM. ChenG. LiL. LuQ. The therapeutic and pathogenic role of autophagy in autoimmune diseases.Front. Immunol.20189151210.3389/fimmu.2018.0151230108582
    [Google Scholar]
  40. ZhuL. WangH. WuY. HeZ. QinY. ShenQ. The autophagy level is increased in the synovial tissues of patients with active rheumatoid arthritis and is correlated with disease severity.Mediators Inflamm.20171910.1155/2017/762314528255205
    [Google Scholar]
  41. EspinozaJ.L. TrungL.Q. InaokaP.T. YamadaK. AnD.T. MizunoS. NakaoS. TakamiA. The repeated administration of resveratrol has measurable effects on circulating T-cell subsets in humans.Oxid. Med. Cell. Longev.2017201711010.1155/2017/678187228546852
    [Google Scholar]
  42. ZhuangY. WuH. WangX. HeJ. HeS. YinY. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway.Oxid. Med. Cell. Longev.201911410.1155/2019/759184031885814
    [Google Scholar]
  43. ZhangD.Q. SunP. JinQ. LiX. ZhangY. ZhangY.J. WuY.L. NanJ.X. LianL.H. Resveratrol regulates activated hepatic stellate cells by modulating NF-κB and the PI3K/Akt signaling pathway.J. Food Sci.2016811H240H24510.1111/1750‑3841.1315726613251
    [Google Scholar]
  44. WangW. LiP. XuJ. WuX. GuoZ. FanL. SongR. WangJ. WeiL. TengH. Resveratrol attenuates high glucose-induced nucleus pulposus cell apoptosis and senescence through activating the ROS-mediated PI3K/Akt pathway.Biosci. Rep.2018382BSR2017145410.1042/BSR2017145429273676
    [Google Scholar]
  45. LeiJ. ChenQ. Resveratrol attenuates brain damage in permanent focal cerebral ischemia via activation of PI3K/Akt signaling pathway in rats.Neurol. Res.201840121014102010.1080/01616412.2018.150982630156477
    [Google Scholar]
  46. TurnerR.S. ThomasR.G. CraftS. van DyckC.H. MintzerJ. ReynoldsB.A. BrewerJ.B. RissmanR.A. RamanR. AisenP.S. MintzerJ. ReynoldsB.A. KarlawishJ. GalaskoD. HeidebrinkJ. AggarwalN. Graff-RadfordN. SanoM. PetersenR. BellK. DoodyR. SmithA. BernickC. PorteinssonA. TariotP. MulnardR. LernerA. SchneiderL. BurnsJ. RaskindM. FerrisS. JichaG. QuicenoM. ObisesanT. RosenbergP. WeintraubD. KieburtzK. MillerB. KryscioR. AlexopoulisG. Alzheimer’s Disease Cooperative Study A randomized, double-blind, placebo- controlled trial of resveratrol for Alzheimer disease.Neurology201585161383139110.1212/WNL.000000000000203526362286
    [Google Scholar]
  47. GiordoR. ZinelluA. EidA.H. PintusG. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders.Molecules202126485610.3390/molecules2604085633562030
    [Google Scholar]
  48. HouC.Y. TainY.L. YuH.R. HuangL.T. The effects of resveratrol in the treatment of metabolic syndrome.Int. J. Mol. Sci.201920353510.3390/ijms2003053530695995
    [Google Scholar]
  49. FerlayJ. Global cancer observatory: Cancer today.International agency for research on cancerLyon, France2018202019
    [Google Scholar]
  50. IslamiF. Goding SauerA. MillerK.D. SiegelR.L. FedewaS.A. JacobsE.J. McCulloughM.L. PatelA.V. MaJ. SoerjomataramI. FlandersW.D. BrawleyO.W. GapsturS.M. JemalA. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States.CA Cancer J. Clin.2018681315410.3322/caac.2144029160902
    [Google Scholar]
  51. ZhuY. HeW. GaoX. LiB. MeiC. XuR. ChenH. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells.Sci. Rep.2015511773010.1038/srep1773026635117
    [Google Scholar]
  52. SelvarajS. SunY. SukumaranP. SinghB.B. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway.Mol. Carcinog.201655581883110.1002/mc.2232425917875
    [Google Scholar]
  53. LangF. QinZ. LiF. ZhangH. FangZ. HaoE. Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells.PLoS One2015106e012919610.1371/journal.pone.012919626067645
    [Google Scholar]
  54. FukudaM. OgasawaraY. HayashiH. InoueK. SakashitaH. Resveratrol inhibits proliferation and induces autophagy by blocking SREBP1 expression in oral cancer cells.Molecules20222723825010.3390/molecules2723825036500345
    [Google Scholar]
  55. ElAttarT.M.A. VirjiA.S. Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation.Anticancer Drugs199910218719410.1097/00001813‑199902000‑0000710211549
    [Google Scholar]
  56. ZhouH.B. YanY. SunY.N. ZhuJ.R. Resveratrol induces apoptosis in human esophageal carcinoma cells.World J. Gastroenterol.20039340841110.3748/wjg.v9.i3.40812632486
    [Google Scholar]
  57. RojoD. MadridA. MartínS.S. PárragaM. Silva PinhalM.A. VillenaJ. Valenzuela-ValderramaM. Resveratrol decreases the invasion potential of gastric cancer cells.Molecules20222710304710.3390/molecules2710304735630523
    [Google Scholar]
  58. YangZ. XiaL. Resveratrol inhibits the proliferation, invasion, and migration, and induces the apoptosis of human gastric cancer cells through the MALAT1/miR-383-5p/DDIT4 signaling pathway.J. Gastrointest. Oncol.202213398599610.21037/jgo‑22‑30735837196
    [Google Scholar]
  59. KarabekirS.C. ÖzgörgülüA. Possible protective effects of resveratrol in hepatocellular carcinoma.Iran. J. Basic Med. Sci.2020231717832405350
    [Google Scholar]
  60. FramptonG.A. LazcanoE.A. LiH. MohamadA. DeMorrowS. Resveratrol enhances the sensitivity of cholangiocarcinoma to chemotherapeutic agents.Lab. Invest.20109091325133810.1038/labinvest.2010.9920458282
    [Google Scholar]
  61. QinX. LuoH. DengY. YaoX. ZhangJ. HeB. Resveratrol inhibits proliferation and induces apoptosis via the Hippo/YAP pathway in human colon cancer cells.Biochem. Biophys. Res. Commun.2022636Pt119720410.1016/j.bbrc.2022.10.07736335870
    [Google Scholar]
  62. KhayatM.T. ZarkaM.A. El-TelbanyD.F.A. El-HalawanyA.M. KutbiH.I. ElkhatibW.F. NoreddinA.M. KhayyatA.N. El-TelbanyR.F.A. HammadS.F. Abdel-NaimA.B. AlolayanE.M. Al-SawahliM.M. Intensification of resveratrol cytotoxicity, pro-apoptosis, oxidant potentials in human colorectal carcinoma HCT-116 cells using zein nanoparticles.Sci. Rep.20221211523510.1038/s41598‑022‑18557‑236075939
    [Google Scholar]
  63. AubergerP. Tamburini-BonnefoyJ. PuissantA. Drug resistance in hematological malignancies.MDPI20206091
    [Google Scholar]
  64. ZandA. Effect of age, gender and blood group on blood cancer types.Kowsar Med J2010152111114
    [Google Scholar]
  65. RafiqS. RazaM.H. YounasM. NaeemF. AdeebR. IqbalJ. AnwarP. SajidU. ManzoorH.M. Molecular targets of curcumin and future therapeutic role in leukemia.J. Biosci. Med.201864335010.4236/jbm.2018.64003
    [Google Scholar]
  66. Siedlecka-KroplewskaK. WozniakM. KmiecZ. The wine polyphenol resveratrol modulates autophagy and induces apoptosis in MOLT-4 and HL-60 human leukemia cells.J. Physiol. Pharmacol.201970632084644
    [Google Scholar]
  67. MengJ. LiuG.J. SongJ.Y. ChenL. WangA.H. GaoX.X. WangZ.J. Preliminary results indicate resveratrol affects proliferation and apoptosis of leukemia cells by regulating PTEN/PI3K/AKT pathway.Eur. Rev. Med. Pharmacol. Sci.201923104285429231173300
    [Google Scholar]
  68. FrazziR. GuardiM. Cellular and molecular targets of resveratrol on lymphoma and leukemia cells.Molecules201722688510.3390/molecules2206088528555002
    [Google Scholar]
  69. AgarwalA. KhandelwalA. PalK. KhareN.K. JadhavV. GurjarM. PunatarS. GokarnA. BondaA. NayakL. KannanS. GotaV. KhattryN. MittraI. A novel pro-oxidant combination of resveratrol and copper reduces transplant related toxicities in patients receiving high dose melphalan for multiple myeloma (RESCU 001).PLoS One2022172e026221210.1371/journal.pone.026221235120140
    [Google Scholar]
  70. MaR. YuD. PengY. YiH. WangY. ChengT. ShiB. YangG. LaiW. WuX. LuY. ShiJ. Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells.Acta Biochim. Biophys. Sin. (Shanghai)202153677578310.1093/abbs/gmab04233891090
    [Google Scholar]
  71. GengW. GuoX. ZhangL. MaY. WangL. LiuZ. JiH. XiongY. Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1- mediated Wnt/β-catenin signaling pathway.Biomed. Pharmacother.201810748449410.1016/j.biopha.2018.08.00330107344
    [Google Scholar]
  72. JinH.G. WuG.Z. WuG.H. BaoY.G. Combining the mammalian target of rapamycin inhibitor, rapamycin, with resveratrol has a synergistic effect in multiple myeloma.Oncol. Lett.20181556257626410.3892/ol.2018.817829731844
    [Google Scholar]
  73. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.2126225651787
    [Google Scholar]
  74. KothaA. SekharamM. CilentiL. SiddiqueeK. KhaledA. ZervosA.S. CarterB. TurksonJ. JoveR. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein.Mol. Cancer Ther.20065362162910.1158/1535‑7163.MCT‑05‑026816546976
    [Google Scholar]
  75. El-BenhawyS.A. MorsiM.I. FahmyE.I. SoulaM.A. KhalilF.A. ArabA. Role of resveratrol as radiosensitizer by targeting cancer stem cells in radioresistant prostate cancer cells (PC-3).Asian Pac. J. Cancer Prev.202122123823383710.31557/APJCP.2021.22.12.382334967561
    [Google Scholar]
  76. HsiehT. WuJ.M. Resveratrol suppresses prostate cancer epithelial cell scatter/invasion by targeting inhibition of hepatocyte growth factor (HGF) secretion by prostate stromal cells and upregulation of E-cadherin by prostate cancer epithelial cells.Int. J. Mol. Sci.2020215176010.3390/ijms2105176032143478
    [Google Scholar]
  77. KumarS. StokesJ.III SinghU.P. Scissum-GunnK. SinghR. ManneU. MishraM.K. Prolonged exposure of resveratrol induces reactive superoxide species–independent apoptosis in murine prostate cells.Tumour Biol.20173910101042831771503910.1177/101042831771503929065794
    [Google Scholar]
  78. LuqmaniY.A. Mechanisms of drug resistance in cancer chemotherapy.Med. Princ. Pract.200514Suppl. 1354810.1159/00008618316103712
    [Google Scholar]
  79. NguyenD.P. ThalmannG.N. Contemporary update on neoadjuvant therapy for bladder cancer.Nat. Rev. Urol.201714634835810.1038/nrurol.2017.3028290459
    [Google Scholar]
  80. BaiY. MaoQ.Q. QinJ. ZhengX.Y. WangY.B. YangK. ShenH.F. XieL.P. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo.Cancer Sci.2010101248849310.1111/j.1349‑7006.2009.01415.x20028382
    [Google Scholar]
  81. García MedieroJ.M. Ferruelo AlonsoA. Páez BordaA. Luján GalánM. Angulo CuestaJ. Chiva RoblesV. Berenguer SánchezA. Effect of polyphenols from the Mediterranean diet on proliferation and mediators of in vitro invasiveness of the MB-49 murine bladder cancer cell line.Actas Urol. Esp.200529874374916304905
    [Google Scholar]
  82. BaylinS.B. HermanJ.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics.Trends Genet.200016416817410.1016/S0168‑9525(99)01971‑X10729832
    [Google Scholar]
  83. Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, SR. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology. 2015; 96 (3-4), 112-7.
  84. JemalA. SiegelR. WardE. MurrayT. XuJ. SmigalC. ThunM.J. Cancer statistics, 2006.CA Cancer J. Clin.200656210613010.3322/canjclin.56.2.10616514137
    [Google Scholar]
  85. SinghC.K. NdiayeM.A. AhmadN. Resveratrol and cancer: Challenges for clinical translation.Biochim. Biophys. Acta Mol. Basis Dis.2015185261178118510.1016/j.bbadis.2014.11.00425446990
    [Google Scholar]
  86. KimC. BaekS.H. UmJ.Y. ShimB.S. AhnK.S. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma.BMC Nephrol.20161711910.1186/s12882‑016‑0233‑726911335
    [Google Scholar]
  87. LiuQ. FangQ. JiS. HanZ. ChengW. ZhangH. Resveratrol-mediated apoptosis in renal cell carcinoma via the p53/AMP-activated protein kinase/mammalian target of rapamycin autophagy signaling pathway.Mol. Med. Rep.201817150250829115429
    [Google Scholar]
  88. KmaL. Synergistic effect of resveratrol and radiotherapy in control of cancers.Asian Pac. J. Cancer Prev.201314116197620810.7314/APJCP.2013.14.11.619724377505
    [Google Scholar]
  89. GuptaS.C. KannappanR. ReuterS. KimJ.H. AggarwalB.B. Chemosensitization of tumors by resveratrol.Ann. N. Y. Acad. Sci.20111215115016010.1111/j.1749‑6632.2010.05852.x21261654
    [Google Scholar]
  90. SprouseA.A. HerbertB.S. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells.Anticancer Res.201434105363537425275030
    [Google Scholar]
  91. MinZ. WeiC.L. MinZ. PingG.J. YingW. DanZ. SenZ. Resveratrol enhances chemosensitivity of renal cell carcinoma to paclitaxel.Front. Biosci.20192481452146110.2741/479031136990
    [Google Scholar]
  92. WangW. ZhouM. XuY. PengW. ZhangS. LiR. ZhangH. ZhangH. ChengS. WangY. WeiX. YueC. YangQ. ChenC. Resveratrol-loaded TPGS-resveratrol-solid lipid nanoparticles for multidrug-resistant therapy of breast cancer: In vivo and in vitro study.Front. Bioeng. Biotechnol.2021976248910.3389/fbioe.2021.76248934950642
    [Google Scholar]
  93. WuK.L. LeeK.C. YenC.K. ChenC.N. ChangS.F. HuangW.S. Visfatin and resveratrol differentially regulate the expression of thymidylate synthase to control the sensitivity of human colorectal cancer cells to capecitabine cytotoxicity.Life20211112137110.3390/life1112137134947902
    [Google Scholar]
  94. InbarajB.S. HuaL.H. ChenB.H. Comparative study on inhibition of pancreatic cancer cells by resveratrol gold nanoparticles and a resveratrol nanoemulsion prepared from grape skin.Pharmaceutics20211311187110.3390/pharmaceutics1311187134834286
    [Google Scholar]
  95. FerraresiA. EspositoA. GironeC. VallinoL. SalwaA. GhezziI. ThongchotS. VidoniC. DhanasekaranD.N. IsidoroC. Resveratrol contrasts LPA-induced ovarian cancer cell migration and platinum resistance by rescuing hedgehog-mediated autophagy.Cells20211011321310.3390/cells1011321334831435
    [Google Scholar]
  96. GaoP. RenG. Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis.Aging20211319232452326110.18632/aging.20361634633989
    [Google Scholar]
  97. BostanM. MihailaM. Petrica-MateiG.G. RaduN. HainarosieR. StefanescuC.D. RomanV. DiaconuC.C. Resveratrol modulation of apoptosis and cell cycle response to cisplatin in head and neck cancer cell lines.Int. J. Mol. Sci.20212212632210.3390/ijms2212632234204834
    [Google Scholar]
  98. JozkowiakM. Dyszkiewicz-KonwinskaM. RamlauP. KrancW. SpaczynskaJ. WierzchowskiM. KaczmarekM. Jodynis-LiebertJ. Piotrowska-KempistyH. Individual and combined treatments with methylated resveratrol analogue dmu-214 and gefitinib inhibit tongue cancer cells growth via apoptosis induction and EGFR inhibition.Int. J. Mol. Sci.20212212618010.3390/ijms2212618034201116
    [Google Scholar]
  99. XiongL. LinX.M. NieJ.H. YeH.S. LiuJ. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo.Nanotheranostics20215214315410.7150/ntno.5384433457193
    [Google Scholar]
  100. KimJ.Y. ChoK.H. JeongB.Y. ParkC.G. LeeH.Y. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol.Exp. Mol. Med.20205271152116310.1038/s12276‑020‑0474‑132728068
    [Google Scholar]
  101. SudhaT. El-FarA.H. MousaD.S. MousaS.A. Resveratrol and its nanoformulation attenuate growth and the angiogenesis of xenograft and orthotopic colon cancer models.Molecules2020256141210.3390/molecules2506141232244860
    [Google Scholar]
  102. JiangQ. YangM. QuZ. ZhouJ. ZhangQ. Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells.BMC Complement. Altern. Med.201717147710.1186/s12906‑017‑1956‑028978315
    [Google Scholar]
  103. LiuZ.L. LiH. LiuJ. WuM.L. ChenX.Y. LiuL.H. WangQ. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication.Oncol. Lett.20171422239224310.3892/ol.2017.645828781663
    [Google Scholar]
  104. YangZ. XieQ. ChenZ. NiH. XiaL. ZhaoQ. ChenZ. ChenP. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition.Exp. Ther. Med.20191731569157830783423
    [Google Scholar]
  105. LinY. YngveA. LagergrenJ. LuY. A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer.Br. J. Nutr.2014112122002200910.1017/S000711451400305525345471
    [Google Scholar]
  106. JuncoJ.J. ManchaA. MalikG. WeiS.J. KimD.J. LiangH. SlagaT.J. Resveratrol and P-glycoprotein inhibitors enhance the anti-skin cancer effects of ursolic acid.Mol. Cancer Res.201311121521152910.1158/1541‑7786.MCR‑13‑023724072817
    [Google Scholar]
  107. XuW. BurkeJ.F. PillaS. ChenH. Jaskula-SztulR. GongS. Octreotide-functionalized and resveratrol-loaded unimolecular micelles for targeted neuroendocrine cancer therapy.Nanoscale20135209924993310.1039/c3nr03102k23986296
    [Google Scholar]
  108. WalleT. HsiehF. DeLeggeM.H. OatisJ.E.Jr WalleU.K. High absorption but very low bioavailability of oral resveratrol in humans.Drug Metab. Dispos.200432121377138210.1124/dmd.104.00088515333514
    [Google Scholar]
  109. KucinskaM. PiotrowskaH. LuczakM.W. Mikula-PietrasikJ. KsiazekK. WozniakM. WierzchowskiM. DudkaJ. JägerW. MuriasM. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line.Chem. Biol. Interact.20142099611010.1016/j.cbi.2013.12.00924398169
    [Google Scholar]
  110. MuriasM. JägerW. HandlerN. ErkerT. HorvathZ. SzekeresT. NohlH. GilleL. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure–activity relationship.Biochem. Pharmacol.200569690391210.1016/j.bcp.2004.12.00115748702
    [Google Scholar]
  111. SaikoP. HorvathZ. MuriasM. HandlerN. JaegerW. ErkerT. Fritzer-SzekeresM. SzekeresT. Antitumor effects of 3,3′,4,4′,5,5′-hexahydroxystilbene in HL-60 human promyelocytic leukemia cells.Nucleosides Nucleotides Nucleic Acids2006259-111013101710.1080/1525777060089062417065056
    [Google Scholar]
  112. ErtemG. Awareness of cervical cancer risk factors and screening behaviour among nurses in a rural region of Turkey.Asian Pac. J. Cancer Prev.200910573573820104960
    [Google Scholar]
  113. LorussoD. PetrelliF. CoinuA. RaspagliesiF. BarniS. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer.Gynecol. Oncol.2014133111712310.1016/j.ygyno.2014.01.04224486604
    [Google Scholar]
  114. DasariS. Bernard TchounwouP. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.02525058905
    [Google Scholar]
  115. BakerL.H. OpipariM.I. WilsonH. BottomleyR. ColtmanJr C.A. Mitomycin, vincristine, and bleomycin therapy for advanced cervical cancer.Obstet. Gynecol.197852214615079991
    [Google Scholar]
  116. KimJ.S. JeongS.K. OhS.J. LeeC.G. KangY.R. JoW.S. JeongM.H. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth.Int. J. Oncol.20205661405141610.3892/ijo.2020.501732236622
    [Google Scholar]
  117. ZhaoY. YuanX. LiX. ZhangY. Resveratrol significantly inhibits the occurrence and development of cervical cancer by regulating phospholipid scramblase 1.J. Cell. Biochem.201912021527153110.1002/jcb.2733530350320
    [Google Scholar]
  118. LiL. QiuR.L. LinY. CaiY. BianY. FanY. GaoX.J. Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways.Oncol. Lett.20181569845985110.3892/ol.2018.857129928358
    [Google Scholar]
  119. ZhangP. LiH. YangB. YangF. ZhangL.L. KongQ.Y. ChenX.Y. WuM.L. LiuJ. Biological significance and therapeutic implication of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells.Genes Cancer201455-615416410.18632/genesandcancer.1525061499
    [Google Scholar]
  120. JiangB. TianQ. ShuC. ZhaoJ. XueM. ZhuS. Resveratrol enhances the anti-cancer effects of Cis-platinum on human cervical cancer cell lines by activating the SIRT3 relative anti-oxidative pathway.Front. Pharmacol.20221391687610.3389/fphar.2022.91687635865961
    [Google Scholar]
  121. JiangJ. LiuZ. ZhouX. PengF. WangZ. LiF. LiM. Resveratrol induces apoptosis, suppresses migration, and invasion of cervical cancer cells by inhibiting the hedgehog signaling pathway.BioMed Res. Int.2022202211010.1155/2022/845301136246980
    [Google Scholar]
  122. KimY.S. SullJ.W. SungH.J. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells.Mol. Biol. Rep.20123998709871610.1007/s11033‑012‑1728‑322696189
    [Google Scholar]
  123. LiuZ. LiY. SheG. ZhengX. ShaoL. WangP. PangM. XieS. SunY. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a.Pharmazie202075625025432539920
    [Google Scholar]
  124. ChatterjeeK. MukherjeeS. VanmanenJ. BanerjeeP. FataJ.E. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an hpv e6-positive cervical cancer model: An in vitro and in vivo analysis.Front. Oncol.2019935210.3389/fonc.2019.0035231143704
    [Google Scholar]
  125. SunX. FuP. XieL. ChaiS. XuQ. ZengL. WangX. JiangN. SangM. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes.Int. J. Mol. Med.202047133534510.3892/ijmm.2020.478933236130
    [Google Scholar]
  126. WangP. WuQ. PengQ. KangZ. XiaoS. ZhengP. LiJ. ChenY. Comparative analysis of the molecular mechanism of inhibiting proliferation and migration in cervical cancer HeLa cell by curcumin and resveratrol.Nat. Prod. Res.202337234032403710.1080/14786419.2022.216251736597703
    [Google Scholar]
  127. Hong BinW. DaL.H. XueY. JingB. Pterostilbene (3′,5′-dimethoxy-resveratrol) exerts potent antitumor effects in HeLa human cervical cancer cells via disruption of mitochondrial membrane potential, apoptosis induction and targeting m-TOR/PI3K/Akt signalling pathway.J. BUON20182351384138930570862
    [Google Scholar]
  128. ShinH.J. HanJ.M. ChoiY.S. JungH.J. Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol.Molecules202025122810.3390/molecules2501022831935877
    [Google Scholar]
  129. LeeK.W. ChungK.S. LeeJ.H. ChoiJ.H. ChoiS.Y. KimS. LeeJ.Y. LeeK.T. Resveratrol analog, N-(4-methoxyphenyl)-3,5-dimethoxybenzamide induces G2/M phase cell cycle arrest and apoptosis in HeLa human cervical cancer cells.Food Chem. Toxicol.201912410111110.1016/j.fct.2018.11.06230508562
    [Google Scholar]
  130. KimJ.Y. ChoiH.E. LeeH.H. ShinJ.S. ShinD.H. ChoiJ.H. LeeY.S. LeeK.T. Resveratrol analogue (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl) ethenyl]-quinazoline induces G2/M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells.Oncol. Rep.20153352639264710.3892/or.2015.387125812484
    [Google Scholar]
  131. HaoX. SunX. ZhuH. XieL. WangX. JiangN. FuP. SangM. Hydroxypropyl-β-cyclodextrin-complexed resveratrol enhanced antitumor activity in a cervical cancer model: In vivo analysis.Front. Pharmacol.20211257390910.3389/fphar.2021.57390933935691
    [Google Scholar]
  132. TomoaiaG. HorovitzO. MocanuA. NitaA. AvramA. RaczC.P. SoritauO. CenariuM. Tomoaia-CotiselM. Effects of doxorubicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell lines.Colloids Surf. B Biointerfaces201513572673410.1016/j.colsurfb.2015.08.03626340362
    [Google Scholar]
  133. SunX. XuQ. ZengL. XieL. ZhaoQ. XuH. WangX. JiangN. FuP. SangM. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3 Tyr705 phosphorylation.Cancer Med.20209228685870010.1002/cam4.351033040485
    [Google Scholar]
  134. RuízG. Valencia-GonzálezH.A. León-GaliciaI. García-VillaE. García-CarrancáA. GariglioP. Inhibition of RAD51 by siRNA and resveratrol sensitizes cancer stem cells derived from hela cell cultures to apoptosis.Stem Cells Int.2018201811110.1155/2018/249386929681946
    [Google Scholar]
  135. García-ZepedaS.P. García-VillaE. Díaz-ChávezJ. Hernández-PandoR. GariglioP. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy.Eur. J. Cancer Prev.201322657758410.1097/CEJ.0b013e328360345f23603746
    [Google Scholar]
  136. DhandayuthapaniS. MarimuthuP. HörmannV. Kumi- DiakaJ. RathinaveluA. Induction of apoptosis in HeLa cells via caspase activation by resveratrol and genistein.J. Med. Food201316213914610.1089/jmf.2012.014123356442
    [Google Scholar]
  137. KramerM.P. Węsierska-GądekJ. Monitoring of long-term effects of resveratrol on cell cycle progression of human HeLa cells after administration of a single dose.Ann. N. Y. Acad. Sci.20091171125726310.1111/j.1749‑6632.2009.04884.x19723063
    [Google Scholar]
  138. HsuK.F. WuC.L. HuangS.C. WuC.M. HsiaoJ.R. YoY.T. ChenY.H. ShiauA.L. ChouC.Y. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells.Autophagy20095445146010.4161/auto.5.4.766619164894
    [Google Scholar]
  139. ZoberiI. BradburyC.M. CurryH.A. BishtK.S. GoswamiP.C. Roti RotiJ.L. GiusD. Radiosensitizing and anti-proliferative effects of resveratrol in two human cervical tumor cell lines.Cancer Lett.2002175216517310.1016/S0304‑3835(01)00719‑411741744
    [Google Scholar]
  140. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics.CA Cancer J. Clin.71173310.3322/caac.2165433433946
    [Google Scholar]
  141. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  142. Ashrafizadeh, M.; Zarrabi, A.; Orouei, S.; Hushmandi, K.; Hakimi, A.; Zabolian, A.; Daneshi, S.; Samarghandian, S.; Baradaran, B.; Najafi, M. MicroRNA-mediated autophagy regulation in cancer therapy: the role in chemoresistance/chemosensitivity. European Journal of Pharmacology., 2021, 5, 892:173660.
  143. KurokiL. GuntupalliS.R. Treatment of epithelial ovarian cancer.BMJ2020371m377310.1136/bmj.m377333168565
    [Google Scholar]
  144. VaughanS. CowardJ.I. BastR.C.Jr BerchuckA. BerekJ.S. BrentonJ.D. CoukosG. CrumC.C. DrapkinR. EtemadmoghadamD. FriedlanderM. GabraH. KayeS.B. LordC.J. LengyelE. LevineD.A. McNeishI.A. MenonU. MillsG.B. NephewK.P. OzaA.M. SoodA.K. StronachE.A. WalczakH. BowtellD.D. BalkwillF.R. Rethinking ovarian cancer: Recommendations for improving outcomes.Nat. Rev. Cancer2011111071972510.1038/nrc314421941283
    [Google Scholar]
  145. Mikuła-PietrasikJ. SosińskaP. KsiążekK. Resveratrol inhibits ovarian cancer cell adhesion to peritoneal mesothelium in vitro by modulating the production of α5β1 integrins and hyaluronic acid.Gynecol. Oncol.2014134362463010.1016/j.ygyno.2014.06.02224995580
    [Google Scholar]
  146. KangN.H. HwangK.A. LeeH.R. ChoiD.W. ChoiK.C. Resveratrol regulates the cell viability promoted by 17β-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor α and insulin growth factor-1 receptor in BG-1 ovarian cancer cells.Food Chem. Toxicol.20135937337910.1016/j.fct.2013.06.02923810794
    [Google Scholar]
  147. VergaraD. SimeoneP. ToraldoD. Del BoccioP. VergaroV. LeporattiS. PieragostinoD. TinelliA. De DomenicoS. AlbertiS. UrbaniA. SalzetM. SantinoA. MaffiaM. Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells.Mol. Biosyst.2012841078108710.1039/c2mb05486h22234583
    [Google Scholar]
  148. CaoZ. FangJ. XiaC. ShiX. JiangB.H. trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells.Clin. Cancer Res.200410155253526310.1158/1078‑0432.CCR‑03‑058815297429
    [Google Scholar]
  149. LinC. CrawfordD.R. LinS. HwangJ. SebuyiraA. MengR. WestfallJ.E. TangH.Y. LinS. YuP.Y. DavisP.J. LinH.Y. Inducible COX-2-dependent apoptosis in human ovarian cancer cells.Carcinogenesis2011321192610.1093/carcin/bgq21221187340
    [Google Scholar]
  150. NessaM.U. BealeP. ChanC. YuJ.Q. HuqF. Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells.Anticancer Res.2012321535922213288
    [Google Scholar]
  151. ChenJ. HuangS.T. ChenJ.G. HeJ.H. LinW.M. HuangZ.H. YeH.Y. HeS.Y. Resveratrol reduces lactate production and modifies the ovarian cancer immune microenvironment.Neoplasma20226951129113710.4149/neo_2022_220414N41036131607
    [Google Scholar]
  152. PouyafarA. Zadi HeydarabadM. AghdamS.B. KhaksarM. AzimiA. RahbarghaziR. TalebiM. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro.J. Cell. Biochem.201912058430843710.1002/jcb.2812930609135
    [Google Scholar]
  153. OrfanelliT. JeongJ.M. DoulaverisG. HolcombK. WitkinS.S. Involvement of autophagy in cervical, endometrial and ovarian cancer.Int. J. Cancer2014135351952810.1002/ijc.2852424122662
    [Google Scholar]
  154. WangH. PengY. WangJ. GuA. LiQ. MaoD. GuoL. Effect of autophagy on the resveratrol-induced apoptosis of ovarian cancer SKOV3 cells.J. Cell. Biochem.201912057788779310.1002/jcb.2805330450764
    [Google Scholar]
  155. ZhongL.X. NieJ.H. LiuJ. LinL.Z. Correlation of ARHI upregulation with growth suppression and STAT3 inactivation in resveratrol-treated ovarian cancer cells.Cancer Biomark.201821478779510.3233/CBM‑17048329504523
    [Google Scholar]
  156. KimS.H. ChoK.H. KimY.N. JeongB.Y. ParkC.G. HurG.M. LeeH.Y. Resveratrol attenuates norepinephrine-induced ovarian cancer invasiveness through downregulating hTERT expression.Arch. Pharm. Res.201639224024810.1007/s12272‑015‑0666‑826428673
    [Google Scholar]
  157. LiuY. TongL. LuoY. LiX. ChenG. WangY. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway.J. Cell. Biochem.201811976162617210.1002/jcb.2682229663499
    [Google Scholar]
  158. WenW. LoweG. RobertsC. FinlayJ. HanE. GlackinC. DellingerT. Pterostilbene suppresses ovarian cancer growth via induction of apoptosis and blockade of cell cycle progression involving inhibition of the STAT3 pathway.Int. J. Mol. Sci.2018197198310.3390/ijms1907198329986501
    [Google Scholar]
  159. Mikuła-PietrasikJ. SosińskaP. MuriasM. WierzchowskiM. Brewińska-OlchowikM. PiwockaK. SzpurekD. KsiążekK. High potency of a novel resveratrol derivative, 3,3′,4,4′-tetrahydroxy- trans -stilbene, against ovarian cancer is associated with an oxidative stress-mediated imbalance between dna damage accumulation and repair.Oxid. Med. Cell. Longev.201511510.1155/2015/13569126229578
    [Google Scholar]
  160. Piotrowska-KempistyH. RucińskiM. BorysS. KucińskaM. KaczmarekM. ZawieruchaP. WierzchowskiM. ŁażewskiD. MuriasM. Jodynis-LiebertJ. 3′-hydroxy-3,4,5,4′-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model.Sci. Rep.2016613262710.1038/srep3262727585955
    [Google Scholar]
  161. NowickiA. Skupin-MrugalskaP. JozkowiakM. WierzchowskiM. RucinskiM. RamlauP. Krajka-KuzniakV. Jodynis-LiebertJ. Piotrowska-KempistyH. The effect of 3′-hydroxy-3,4,5,4′-tetramethoxy -stilbene, the metabolite of the resveratrol analogue DMU-212, on the motility and proliferation of ovarian cancer cells.Int. J. Mol. Sci.2020213110010.3390/ijms2103110032046103
    [Google Scholar]
  162. LongQ. ZhuW. GuoL. PuL. RGD-conjugated resveratrol HSA nanoparticles as a novel delivery system in ovarian cancer therapy.Drug Des. Devel. Ther.2020145747575610.2147/DDDT.S24895033408463
    [Google Scholar]
  163. BaribeauS. ChaudhryP. ParentS. AsselinÉ. Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines.PLoS One201491e8698710.1371/journal.pone.008698724466305
    [Google Scholar]
  164. SynowiecA. BrodaczewskaK. WcisłoG. MajewskaA. BorkowskaA. Filipiak-DulibanA. GawrylakA. WilkusK. PiwockaK. KominekA. WaśH. LewickiS. SiewieraJ. SzczylikC. SzenajchJ. KubiakJ.Z. KiedaC. Hypoxia, but not normoxia, reduces effects of resveratrol on cisplatin treatment in A2780 ovarian cancer cells: A challenge for resveratrol use in anticancer adjuvant cisplatin therapy.Int. J. Mol. Sci.2023246571510.3390/ijms2406571536982788
    [Google Scholar]
  165. VidoniC. FerraresiA. VallinoL. SalwaA. HaJ.H. SecaC. GaravagliaB. DhanasekaranD.N. IsidoroC. Glycolysis inhibition of autophagy drives malignancy in ovarian cancer: Exacerbation by IL-6 and attenuation by resveratrol.Int. J. Mol. Sci.2023242172310.3390/ijms2402172336675246
    [Google Scholar]
  166. MuhanmodeY. WenM.K. MaitinuriA. ShenG. Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant epithelial ovarian cancer cells via targeting P13K pathway.Hum. Exp. Toxicol.2022410960327122109592910.1177/0960327122109592935722665
    [Google Scholar]
  167. ChenF. KolbenT. MeisterS. CzogallaB. KolbenT.M. HesterA. BurgesA. TrillschF. SchmoeckelE. MayrD. MayerhoferA. MahnerS. JeschkeU. BeyerS. The role of resveratrol, Sirtuin1 and RXRα as prognostic markers in ovarian cancer.Arch. Gynecol. Obstet.202230561559157210.1007/s00404‑021‑06262‑w34870752
    [Google Scholar]
  168. YaoS. GaoM. WangZ. WangW. ZhanL. WeiB. Upregulation of MicroRNA-34a sensitizes ovarian cancer cells to resveratrol by targeting Bcl-2.Yonsei Med. J.202162869170110.3349/ymj.2021.62.8.69134296546
    [Google Scholar]
  169. El-kottA.F. ShatiA.A. Ali Al-kahtaniM. AlharbiS.A. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating miR-424-3p transcription.J. Food Biochem.20194312e1307210.1111/jfbc.1307231603261
    [Google Scholar]
  170. KimT. ParkJ. WooJ. Resveratrol induces cell death through ROS-dependent downregulation of Notch1/ PTEN/Akt signaling in ovarian cancer cells.Mol. Med. Rep.20191943353336010.3892/mmr.2019.996230816513
    [Google Scholar]
  171. TinoA.B. ChitcholtanK. SykesP.H. GarrillA. Resveratrol and acetyl-resveratrol modulate activity of VEGF and IL-8 in ovarian cancer cell aggregates via attenuation of the NF-κB protein.J. Ovarian Res.2016918410.1186/s13048‑016‑0293‑027906095
    [Google Scholar]
  172. FerraresiA. PhadngamS. MoraniF. GalettoA. AlabisoO. ChiorinoG. IsidoroC. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.Mol. Carcinog.20175631164118110.1002/mc.2258227787915
    [Google Scholar]
  173. ZhongL-X. ZhangY. WuM-L. LiuY-N. ZhangP. ChenX-Y. KongQ-Y. LiuJ. LiH. Resveratrol and STAT inhibitor enhance autophagy in ovarian cancer cells.Cell Death Discov.2016211507110.1038/cddiscovery.2015.7127551495
    [Google Scholar]
  174. EngelkeL.H. HamacherA. ProkschP. KassackM.U. Ellagic acid and resveratrol prevent the development of cisplatin resistance in the epithelial ovarian cancer cell line A2780.J. Cancer20167435336310.7150/jca.1375426918049
    [Google Scholar]
  175. GwakH. KimS. DhanasekaranD.N. SongY.S. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells.Cancer Lett.2016371234735310.1016/j.canlet.2015.11.03226704305
    [Google Scholar]
  176. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  177. Nuñez-OlveraS.I. Gallardo-RincónD. Puente-RiveraJ. Salinas-VeraY.M. MarchatL.A. Morales-VillegasR. López-CamarilloC. Autophagy machinery as a promising therapeutic target in endometrial cancer.Front. Oncol.20199132610.3389/fonc.2019.0132631850214
    [Google Scholar]
  178. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  179. Rodriguez-FreixinosV. KarakasisK. OzaA.M. New targeted agents in endometrial cancer: Are we really making progress?Curr. Oncol. Rep.20161842310.1007/s11912‑016‑0507‑z26922329
    [Google Scholar]
  180. StampoliouA. Arapantoni-DadiotiP. PavlakisK. Epigenetic mechanisms in endometrial cancer.J. BUON201621230130627273937
    [Google Scholar]
  181. RaglanO. KallialaI. MarkozannesG. CividiniS. GunterM.J. NautiyalJ. GabraH. ParaskevaidisE. Martin-HirschP. TsilidisK.K. KyrgiouM. Risk factors for endometrial cancer: An umbrella review of the literature.Int. J. Cancer201914571719173010.1002/ijc.3196130387875
    [Google Scholar]
  182. ChaudhryP. AsselinE. Resistance to chemotherapy and hormone therapy in endometrial cancer.Endocr. Relat. Cancer200916236338010.1677/ERC‑08‑026619190080
    [Google Scholar]
  183. YeramianA. GarcíaV. BergadàL. DomingoM. SantacanaM. VallsJ. Martinez-AlonsoM. CarcellerJ.A. CussacA.L. DolcetX. Matias-GuiuX. Bioluminescence imaging to monitor the effects of the Hsp90 inhibitor NVP-AUY922 on NF-κB pathway in endometrial cancer.Mol. Imaging Biol.201618454555610.1007/s11307‑015‑0907‑826604096
    [Google Scholar]
  184. KaneuchiM. SasakiM. TanakaY. YamamotoR. SakuragiN. DahiyaR. Resveratrol suppresses growth of Ishikawa cells through down-regulation of EGF.Int. J. Oncol.20032341167117210.3892/ijo.23.4.116712964000
    [Google Scholar]
  185. SextonÉ. Van ThemscheC. LeblancK. ParentS. LemoineP. AsselinE. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells.Mol. Cancer2006514510.1186/1476‑4598‑5‑4517044934
    [Google Scholar]
  186. SunX. ZhangY. WangJ. WeiL. LiH. HanleyG. ZhaoM. LiY. YinD. Beta-arrestin 2 modulates resveratrol-induced apoptosis and regulation of Akt/GSK3β pathways.Biochim. Biophys. Acta, Gen. Subj.20101800991291810.1016/j.bbagen.2010.04.01520457218
    [Google Scholar]
  187. ZhengY. ZhongZ. GuoX. Network pharmacology-based and molecular docking analysis of resveratrol’s pharmacological effects on type I endometrial cancer.Anticancer. Agents Med. Chem.202222101933194410.2174/187152062166621101514045534773964
    [Google Scholar]
  188. FukudaT. OdaK. Wada-HiraikeO. SoneK. InabaK. IkedaY. MakiiC. MiyasakaA. KashiyamaT. TanikawaM. ArimotoT. YanoT. KawanaK. OsugaY. FujiiT. Autophagy inhibition augments resveratrol-induced apoptosis in Ishikawa endometrial cancer cells.Oncol. Lett.20161242560256610.3892/ol.2016.497827698828
    [Google Scholar]
  189. DannJ.M. SykesP.H. MasonD.R. EvansJ.J. Regulation of vascular endothelial growth factor in endometrial tumour cells by resveratrol and EGCG.Gynecol. Oncol.2009113337437810.1016/j.ygyno.2009.02.01419321194
    [Google Scholar]
  190. WangY. ShenY. XuJ. HanK. ZhouY. YangS. YinJ. MinD. HuH. Pterostilbene suppresses human endometrial cancer cells in vitro by down-regulating miR-663b.Acta Pharmacol. Sin.201738101394140010.1038/aps.2017.6028552912
    [Google Scholar]
  191. BhatK.P. PezzutoJ.M. Resveratrol exhibits cytostatic and antiestrogenic properties with human endometrial adenocarcinoma (Ishikawa) cells.Cancer Res.200161166137614411507064
    [Google Scholar]
  192. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  193. SharmaG.N. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912622247839
    [Google Scholar]
  194. EcclesS.A. AboagyeE.O. AliS. AndersonA.S. ArmesJ. BerditchevskiF. BlaydesJ.P. BrennanK. BrownN.J. BryantH.E. BundredN.J. BurchellJ.M. CampbellA.M. CarrollJ.S. ClarkeR.B. ColesC.E. CookG.J.R. CoxA. CurtinN.J. DekkerL.V. dos Santos SilvaI. DuffyS.W. EastonD.F. EcclesD.M. EdwardsD.R. EdwardsJ. EvansD.G. FenlonD.F. FlanaganJ.M. FosterC. GallagherW.M. Garcia-ClosasM. GeeJ.M.W. GescherA.J. GohV. GrovesA.M. HarveyA.J. HarvieM. HennessyB.T. HiscoxS. HolenI. HowellS.J. HowellA. HubbardG. Hulbert-WilliamsN. HunterM.S. JasaniB. JonesL.J. KeyT.J. KirwanC.C. KongA. KunklerI.H. LangdonS.P. LeachM.O. MannD.J. MarshallJ.F. MartinL.A. MartinS.G. MacdougallJ.E. MilesD.W. MillerW.R. MorrisJ.R. MossS.M. MullanP. NatrajanR. O’ConnorJ.P.B. O’ConnorR. PalmieriC. PharoahP.D.P. RakhaE.A. ReedE. RobinsonS.P. SahaiE. SaxtonJ.M. SchmidP. SmalleyM.J. SpeirsV. SteinR. StinglJ. StreuliC.H. TuttA.N.J. VelikovaG. WalkerR.A. WatsonC.J. WilliamsK.J. YoungL.S. ThompsonA.M. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer.Breast Cancer Res.2013155R9210.1186/bcr349324286369
    [Google Scholar]
  195. NargisH.F. NawazH. DittaA. MahmoodT. MajeedM.I. RashidN. MuddassarM. BhattiH.N. SaleemM. JilaniK. BonnierF. ByrneH.J. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages.Spectrochim. Acta A Mol. Biomol. Spectrosc.201922211721010.1016/j.saa.2019.11721031176149
    [Google Scholar]
  196. KohJ. KimM.J. Introduction of a new staging system of breast cancer for radiologists: An emphasis on the prognostic stage.Korean J. Radiol.2019201698210.3348/kjr.2018.023130627023
    [Google Scholar]
  197. KoleA.J. ParkH.S. JohnsonS.B. KellyJ.R. MoranM.S. PatelA.A. Overall survival is improved when DCIS accompanies invasive breast cancer.Sci. Rep.201991993410.1038/s41598‑019‑46309‑231289308
    [Google Scholar]
  198. MakkiJ. Diversity of breast carcinoma: Histological subtypes and clinical relevance.Clin. Med. Insights Pathol.20158CPath_S3156310.4137/CPathS3156326740749
    [Google Scholar]
  199. DiabyV. TawkR. SanogoV. XiaoH. MonteroA.J. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer.Breast Cancer Res. Treat.20151511274010.1007/s10549‑015‑3383‑625893588
    [Google Scholar]
  200. BurguinA. DiorioC. DurocherF. Breast cancer treatments: Updates and new challenges.J. Pers. Med.202111880810.3390/jpm1108080834442452
    [Google Scholar]
  201. VargasJ.E. PugaR. LenzG. TrindadeC. Filippi-ChielaE. Cellular mechanisms triggered by the cotreatment of resveratrol and doxorubicin in breast cancer: A translational in vitro–in silico model.Oxid. Med. Cell. Longev.2020202012310.1155/2020/543265133204396
    [Google Scholar]
  202. FukuiM. ChoiH.J. WangP. ZhuB.T. Mechanism underlying resveratrol’s attenuation of paclitaxel cytotoxicity in human breast cancer cells: Role of the SIRT1-FOXO1-HER3 signaling pathway.Cancer Treat. Res. Commun.20212810038610.1016/j.ctarc.2021.10038634010730
    [Google Scholar]
  203. KomorowskaD. GajewskaA. HikiszP. BartoszG. RodackaA. Comparison of the effects of resveratrol and its derivatives on the radiation response of MCF-7 breast cancer cells.Int. J. Mol. Sci.20212217951110.3390/ijms2217951134502426
    [Google Scholar]
  204. LiangZ.J. WanY. ZhuD.D. WangM.X. JiangH.M. HuangD.L. LuoL.F. ChenM.J. YangW.P. LiH.M. WeiC.Y. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression.Front. Oncol.20211156929510.3389/fonc.2021.56929533747905
    [Google Scholar]
  205. YangM.D. SunY. ZhouW.J. XieX.Z. ZhouQ.M. LuY.Y. SuS.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer MDA-MB-231 cell models in vivo and in vitro.Molecules2021268220410.3390/molecules2608220433921192
    [Google Scholar]
  206. GiriP. CamarilloI.G. SundararajanR. Enhancement of reactive oxygen species production in triple negative breast cancer cells treated with electric pulses and resveratrol.Exploration of Targeted Anti-tumor Therapy202341425610.37349/etat.2023.0012236937321
    [Google Scholar]
  207. WangJ. HuangP. PanX. XiaC. ZhangH. ZhaoH. YuanZ. LiuJ. MengC. LiuF. Resveratrol reverses TGF -β1-mediated invasion and metastasis of breast cancer cells via the SIRT3 / AMPK /autophagy signal axis.Phytother. Res.202337121123010.1002/ptr.760836086852
    [Google Scholar]
  208. FatehiR. RashediniaM. AkbarizadehA.R. zamaniM. FirouzabadiN. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution.Biochem. Biophys. Res. Commun.202364413013910.1016/j.bbrc.2022.12.06936641965
    [Google Scholar]
  209. MondalA. BennettL.L. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage.Biomed. Pharmacother.2016841906191410.1016/j.biopha.2016.10.09627863838
    [Google Scholar]
  210. PanJ. ShenJ. SiW. DuC. ChenD. XuL. YaoM. FuP. FanW. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway.Oncotarget2017839657436575810.18632/oncotarget.1944529029468
    [Google Scholar]
  211. JinX. WeiY. LiuY. LuX. DingF. WangJ. YangS. Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer.Cancer Med.2019831246125710.1002/cam4.199330697969
    [Google Scholar]
  212. KumarV. HaldarS. DasN.S. GhoshS. DhankharP. SircarD. RoyP. Pterostilbene-isothiocyanate inhibits breast cancer metastasis by selectively blocking IKK-β/NEMO interaction in cancer cells.Biochem. Pharmacol.202119211471710.1016/j.bcp.2021.11471734352281
    [Google Scholar]
  213. Ashrafizadeh, M.; Ahmadi, Z.; Kotla, NG.; Afshar, EG.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells., 2019, 27;8(10), 1158.
  214. KimD.H. KimM.J. SungB. KangY.J. HwangS.Y. HwangN.L. KimN.D. Abstract 5261: Novel resveratrol analogue, HS-1793, inhibits hypoxia-induced HIF-1 and VEGF expressions and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model.Cancer Res.201676145261526110.1158/1538‑7445.AM2016‑5261
    [Google Scholar]
  215. Entezari, M.; Ghanbarirad, M.; Taheriazam, A.; Sadrkhanloo, M.; Zabolian, A.; Goharrizi, M.A.S.B.; Hushmandi, K.p; Aref, A.R.; Ashrafizadeh, M.; Zarrabi, A.; and Nabavi, N. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomedicine & Pharmacotherapy, 2022, 150, p.112963. 10.3892/ol.2022.1341035928802
  216. KimD.H. SungB. KimJ.A. KangY.J. HwangS.Y. HwangN.L. SuhH. ChoiY.H. ImE. ChungH.Y. KimN.D. HS-1793, a resveratrol analogue, downregulates the expression of hypoxia-induced HIF-1 and VEGF and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model.Int. J. Oncol.201751271572310.3892/ijo.2017.405828656256
    [Google Scholar]
  217. ChoiY.J. HeoK. ParkH.S. YangK.M. JeongM.H. The resveratrol analog HS-1793 enhances radiosensitivity of mouse-derived breast cancer cells under hypoxic conditions.Int. J. Oncol.20164941479148810.3892/ijo.2016.364727498957
    [Google Scholar]
  218. SajadimajdS. AghazF. KhazaeiM. RayganiA.V. The anti-cancer effect of resveratrol nano-encapsulated supplements against breast cancer via the regulation of oxidative stress.J. Microencapsul.202340531832910.1080/02652048.2023.219802637017511
    [Google Scholar]
  219. BozorgiA. The anti-cancer effect of chitosan/resveratrol polymeric nanocomplex against triple-negative breast cancer; An in vitro assessment.IET Nanobiotechnol.20221729110236420812
    [Google Scholar]
  220. GadagS. NarayanR. NayakA.S. Catalina ArdilaD. SantS. NayakY. GargS. NayakU.Y. Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy.Int. J. Pharm.202160612087710.1016/j.ijpharm.2021.12087734252522
    [Google Scholar]
  221. GregoriouY. GregoriouG. YilmazV. KapnisisK. ProkopiM. AnayiotosA. StratiK. DietisN. ConstantinouA.I. AndreouC. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells.Nanotheranostics20215111312410.7150/ntno.5195533391978
    [Google Scholar]
  222. GuY. FeiZ. Mesoporous silica nanoparticles loaded with resveratrol are used for targeted breast cancer therapy.J. Oncol.202211110.1155/2022/847133136245986
    [Google Scholar]
  223. ShinG.R. KimH.E. JuH.J. KimJ.H. ChoiS. ChoiH.S. KimM.S. Injectable click-crosslinked hydrogel containing resveratrol to improve the therapeutic effect in triple negative breast cancer.Mater. Today Bio20221610038610.1016/j.mtbio.2022.10038635991627
    [Google Scholar]
  224. SchmidtB. FerreiraC. Alves PassosC.L. SilvaJ.L. FialhoE. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells.Int. J. Mol. Sci.20202115524410.3390/ijms2115524432721999
    [Google Scholar]
  225. Özdemi RF. SeverA. KeçeciY.Ö. IncesuZ. Resveratrol increases the sensitivity of breast cancer MDA-MB-231 cell line to cisplatin by regulating intrinsic apoptosis.Iran. J. Basic Med. Sci.2021241667233643572
    [Google Scholar]
  226. WuH. ChenL. ZhuF. HanX. SunL. ChenK. The cytotoxicity effect of resveratrol: Cell cycle arrest and induced apoptosis of breast cancer 4T1 cells.Toxins2019111273110.3390/toxins1112073131847250
    [Google Scholar]
  227. SunY. ZhouQ.M. LuY.Y. ZhangH. ChenQ.L. ZhaoM. SuS.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition.Molecules2019246113110.3390/molecules2406113130901941
    [Google Scholar]
  228. GomesL. SorgineM. PassosC.L.A. FerreiraC. de AndradeI.R. SilvaJ.L. AtellaG.C. MermelsteinC.S. FialhoE. Increase in fatty acids and flotillins upon resveratrol treatment of human breast cancer cells.Sci. Rep.2019911396010.1038/s41598‑019‑50416‑531562347
    [Google Scholar]
  229. García-QuirozJ. García-BecerraR. Santos-CuevasC. Ramírez-NavaG.J. Morales-GuadarramaG. Cárdenas-OchoaN. Segovia-MendozaM. Prado-GarciaH. Ordaz-RosadoD. AvilaE. Olmos-OrtizA. López-CisnerosS. LarreaF. DíazL. Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple negative breast cancer xenografts.Cancers20191111173910.3390/cancers1111173931698751
    [Google Scholar]
  230. LucasJ. HsiehT.C. HalickaH.D. DarzynkiewiczZ. WuJ. Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling.Int. J. Oncol.20185341469148010.3892/ijo.2018.451230066852
    [Google Scholar]
  231. GaoY. TollefsbolT. Combinational proanthocyanidins and resveratrol synergistically inhibit human breast cancer cells and impact epigenetic–mediating machinery.Int. J. Mol. Sci.2018198220410.3390/ijms1908220430060527
    [Google Scholar]
  232. Ferraz da CostaD.C. CamposN.P.C. SantosR.A. Guedes-da-SilvaF.H. Martins-DinisM.M.D.C. ZanphorlinL. RamosC. RangelL.P. SilvaJ.L. Resveratrol prevents p53 aggregation in vitro and in breast cancer cells.Oncotarget2018949291122912210.18632/oncotarget.2563130018739
    [Google Scholar]
  233. ChenJ.M. BaiJ.Y. YangK.X. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway.IUBMB Life201870649150010.1002/iub.174929637742
    [Google Scholar]
  234. KiskovaT. DemeckovaV. JendzelovskaZ. KiktavaM. VenglovskaK. BohmdorferM. JagerW. ThalhammerT. Nocturnal resveratrol administration inhibits chemically induced breast cancer formation in rats.J. Physiol. Pharmacol.201768686787529550799
    [Google Scholar]
  235. KimY.N. ChoeS.R. ChoK.H. ChoD.Y. KangJ. ParkC.G. LeeH.Y. Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis.Exp. Mol. Med.2017492e29610.1038/emm.2016.15128232662
    [Google Scholar]
  236. FuY. ChangH. PengX. BaiQ. YiL. ZhouY. ZhuJ. MiM. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.PLoS One201497e10253510.1371/journal.pone.010253525068516
    [Google Scholar]
  237. Esquela-KerscherA. SlackF.J. Oncomirs - microRNAs with a role in cancer.Nat. Rev. Cancer20066425926910.1038/nrc184016557279
    [Google Scholar]
  238. FriedmanR.C. FarhK.K.H. BurgeC.B. BartelD.P. Most mammalian mRNAs are conserved targets of microRNAs.Genome Res.20091919210510.1101/gr.082701.10818955434
    [Google Scholar]
  239. VenturaA. JacksT. MicroRNAs and cancer: Short RNAs go a long way.Cell2009136458659110.1016/j.cell.2009.02.00519239879
    [Google Scholar]
  240. ShenS. ZhangS. LiuP. WangJ. DuH. Potential role of microRNAs in the treatment and diagnosis of cervical cancer.Cancer Genet.2020248-249253010.1016/j.cancergen.2020.09.00332987255
    [Google Scholar]
  241. ChenS.N. ChangR. LinL.T. ChernC.U. TsaiH.W. WenZ.H. LiY.H. LiC.J. TsuiK.H. MicroRNA in ovarian cancer: Biology, pathogenesis, and therapeutic opportunities.Int. J. Environ. Res. Public Health2019169151010.3390/ijerph1609151031035447
    [Google Scholar]
  242. FavierA. RocherG. LarsenA.K. DelangleR. UzanC. SabbahM. CastelaM. DuvalA. MehatsC. CanlorbeG. MicroRNA as epigenetic modifiers in endometrial cancer: A systematic review.Cancers2021135113710.3390/cancers1305113733800944
    [Google Scholar]
  243. Jordan-AlejandreE. Campos-ParraA.D. Castro-LópezD.L. Silva-CázaresM.B. Potential miRNA use as a biomarker: From breast cancer diagnosis to metastasis.Cells202312452510.3390/cells1204052536831192
    [Google Scholar]
  244. FarooqiA. KhalidS. AhmadA. Regulation of cell signaling pathways and miRNAs by resveratrol in different cancers.Int. J. Mol. Sci.201819365210.3390/ijms1903065229495357
    [Google Scholar]
  245. OtsukaK. YamamotoY. OchiyaT. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer.Oncotarget2018937247182473010.18632/oncotarget.2533929872500
    [Google Scholar]
  246. ZhangW. JiangH. ChenY. RenF. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p.J. Cell. Biochem.20191209162831629210.1002/jcb.2891031155753
    [Google Scholar]
  247. VenkatadriR. MuniT. IyerA.K.V. YakisichJ.S. AzadN. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death.Cell Death Dis.201672e210410.1038/cddis.2016.626890143
    [Google Scholar]
  248. EspositoA. FerraresiA. SalwaA. VidoniC. DhanasekaranD.N. IsidoroC. Resveratrol contrasts IL-6 pro-growth effects and promotes autophagy-mediated cancer cell dormancy in 3D ovarian cancer: Role of miR-1305 and of its target ARH-I.Cancers2022149214210.3390/cancers1409214235565270
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673290941240430171146
Loading
/content/journals/cmc/10.2174/0109298673290941240430171146
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test