Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Improvements in cancer treatment are largely influenced by more people knowing about it and developing new ways to diagnose and treat it. New methods such as nanotheranostics and the use of tiny particles have greatly improved the diagnosis, control and treatment of cancer. They have also helped overcome problems with traditional treatments. Nanotheranostics contribute to personalized medicine by helping doctors choose the right treatment, track how well the treatment works, and plan future treatments. Polymers have many advantages as smart or durable drug formulations among small therapeutic platforms. These small sacks, which can be used for drug delivery and imaging, are not harmful to natural tissues and are becoming more popular. Scientists have found a special group of tiny particles made of polymers that can carry active ingredients. These particles show the potential of creating a useful platform for the diagnosis and treatment of diseases on a very small scale. In the past ten years, people have become more interested in polymersomes. They have been used for various medical purposes, such as controlling blood sugar, treating cancer and fighting bacteria. Polymers are stronger and more stable than liposomes. Biocompatible and biodegradable polymers are very important for faster translation and creation of useful medical formulations. Recent progress in this field includes the creation of intelligent, centralized and responsive containers. In this review, we will examine and provide information about polymersomes. We will discuss their properties and how they can be used as drug delivery systems.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673303351240507113603
2025-07-01
2025-09-03
Loading full text...

Full text loading...

References

  1. YounisN.K. YassineH.M. EidA.H. Nanomedicine for cancer.Curr. Med. Chem.202330232592259410.2174/092986733066622122812194736579388
    [Google Scholar]
  2. DasA. LavanyaK.J. Nandini KaurK. JaitakV. Effectiveness of selective estrogen receptor modulators in breast cancer therapy: An update.Curr. Med. Chem.202330293287331410.2174/092986732966622100611052836201273
    [Google Scholar]
  3. UllahA. Molecular mechanisms of Sanguinarine in cancer prevention and treatment.Anticancer Agents Med Chem202323776577810.2174/1871520622666220831124321
    [Google Scholar]
  4. ArdevinesS. Marqués-LópezE. HerreraR.P. Heterocycles in breast cancer treatment: The use of pyrazole derivatives.Curr. Med. Chem.202330101145117410.2174/092986732966622082909183036043746
    [Google Scholar]
  5. SadeghiM. KashanianS. NaghibS.M. AskariE. HaghiralsadatF. TofighiD. A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells.Nanotechnol. Rev.202211179381010.1515/ntrev‑2022‑0047
    [Google Scholar]
  6. PetoR. BorehamJ. LopezA.D. ThunM. HeathC.Jr. Mortality from tobacco in developed countries: Indirect estimation from national vital statistics.Lancet199233988041268127810.1016/0140‑6736(92)91600‑D1349675
    [Google Scholar]
  7. GholivandK. FaraghiM. PooyanM. BabaeeL.S. MalekshahR.E. PirastehfarF. VahabiradM. Anti- cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation.Curr. Med. Chem.202330303486350310.2174/092986733066622102715271636305155
    [Google Scholar]
  8. LaiC. LiL. LuoB. ShenJ. ShaoJ. Current advances and prospects in carbon nanomaterials-based drug deliver systems for cancer therapy.Curr. Med. Chem.202330242710273310.2174/092986732966622082119535336017849
    [Google Scholar]
  9. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. SeyfooriA. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents.Sci. Rep.20211111740410.1038/s41598‑021‑97081‑134465842
    [Google Scholar]
  10. RahimzadehZ. NaghibS.M. AskariE. MolaabasiF. SadrA. ZareY. AfsharpadM. RheeK.Y. A rapid nanobiosensing platform based on herceptin-conjugated graphene for ultrasensitive detection of circulating tumor cells in early breast cancer.Nanotechnol. Rev.202110174475310.1515/ntrev‑2021‑0049
    [Google Scholar]
  11. SainiA. Cancer causes and treatments.Int. J. Pharm. Sci. Res.202011731213134
    [Google Scholar]
  12. PatelV.K. ShirbhateE. TiwariP. KoreR. VeerasamyR. MishraA. RajakH. Multi-targeted HDAC inhibitors as anticancer agents: Current status and future prospective.Curr. Med. Chem.202330242762279510.2174/092986732966622092210561536154583
    [Google Scholar]
  13. YanA. SongX. LiuB. ZhuK. IGF2BP3 worsens lung cancer through modifying long non-coding RNA CERS6-AS1/microRNA-1202 axis.Curr. Med. Chem.202330787889110.2174/092986732966622061409144535702784
    [Google Scholar]
  14. LeafC. Why we're losing the war on cancer (and how to win it). Fortune200414967682
    [Google Scholar]
  15. DilnawazF. AcharyaS. Nanoparticle-based CRISPR/Cas delivery: An emerging tactic for cancer therapy.Curr. Med. Chem.202330313562358110.2174/092986732966622100611261536201269
    [Google Scholar]
  16. MiD. LiY. ChenY. Small-molecule modulators targeting SHP2 for cancer therapy. Anticancer Agents Med Chem2023235498504
    [Google Scholar]
  17. DennahyI.S. HanZ. MacCuaigW.M. ChalfantH.M. CondacseA. HagoodJ.M. Claros-SortoJ.C. RazaqW. Holter-ChakrabartyJ. SquiresR. EdilB.H. JainA. McNallyL.R. Nanotheranostics for image-guided cancer treatment.Pharmaceutics202214591710.3390/pharmaceutics1405091735631503
    [Google Scholar]
  18. GorainB. ChoudhuryH. PandeyM. KesharwaniP. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy.Mater. Sci. Eng. C20189186888010.1016/j.msec.2018.05.05430033322
    [Google Scholar]
  19. KhosraviN. PishavarE. BaradaranB. OroojalianF. MokhtarzadehA. Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics.J. Control. Release202234870672210.1016/j.jconrel.2022.06.02635732250
    [Google Scholar]
  20. LuomaM.L. Hakamies-BlomqvistL. The meaning of quality of life in patients being treated for advanced breast cancer: A qualitative study.Psychooncology2004131072973910.1002/pon.78815386642
    [Google Scholar]
  21. OroojalianF. CharbgooF. HashemiM. AmaniA. Yazdian-RobatiR. MokhtarzadehA. RamezaniM. HamblinM.R. Recent advances in nanotechnology-based drug delivery systems for the kidney.J. Control. Release202032144246210.1016/j.jconrel.2020.02.02732067996
    [Google Scholar]
  22. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.466130570109
    [Google Scholar]
  23. TongC.W.S. WuM. ChoW.C.S. ToK.K.W. Recent advances in the treatment of breast cancer.Front. Oncol.2018822710.3389/fonc.2018.0022729963498
    [Google Scholar]
  24. RajS. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy.Seminars in cancer biology.Elsevier202110.1016/j.semcancer.2019.11.002
    [Google Scholar]
  25. AbtahiN.A. NaghibS.M. GhalekohnehS.J. MohammadpourZ. NazariH. MosaviS.M. GheibihayatS.M. HaghiralsadatF. RezaJ.Z. DoulabiB.Z. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: In vitro and in vivo studies.Chem. Eng. J.202242913209010.1016/j.cej.2021.132090
    [Google Scholar]
  26. AkhlaghiM. TaebpourM. LotfabadiN.N. NaghibS.M. JaliliN. FarahmandL. HaghiralsadatB.F. RahmanianM. TofighiD. Synthesis and characterization of smart stimuli-responsive herbal drug-encapsulated nanoniosome particles for efficient treatment of breast cancer.Nanotechnol. Rev.20221111364138510.1515/ntrev‑2022‑0080
    [Google Scholar]
  27. AbtahiN.A. NaghibS.M. HaghiralsadatF. RezaJ.Z. HakimianF. YazdianF. TofighiD. Smart stimuli-responsive biofunctionalized niosomal nanocarriers for programmed release of bioactive compounds into cancer cells in vitro and in vivo.Nanotechnol. Rev.20211011895191110.1515/ntrev‑2021‑0119
    [Google Scholar]
  28. AfereydoonS. HaghiralsadatF. HamzianN. ShamsA. HematiM. NaghibS.M. ShabaniM. Zandieh-doulabiB. TofighiD. Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy.Front. Bioeng. Biotechnol.20221091736810.3389/fbioe.2022.91736836046674
    [Google Scholar]
  29. MoulahoumH. GhorbanizamaniF. ZihniogluF. TimurS. Surface biomodification of liposomes and polymersomes for efficient targeted drug delivery.Bioconjug. Chem.20213281491150210.1021/acs.bioconjchem.1c0028534283580
    [Google Scholar]
  30. HuangH. LovellJ.F. Advanced functional nanomaterials for theranostics.Adv. Funct. Mater.2017272160352410.1002/adfm.20160352428824357
    [Google Scholar]
  31. MuthuM.S. MeiL. FengS.S. Nanotheranostics: Advanced nanomedicine for the integration of diagnosis and therapy.Nanomedicine2014991277128010.2217/nnm.14.8325204816
    [Google Scholar]
  32. BhujwallaZ.M. KakkadS. ChenZ. JinJ. HapuarachchigeS. ArtemovD. PenetM.F. Theranostics and metabolotheranostics for precision medicine in oncology.J. Magn. Reson.201829114115110.1016/j.jmr.2018.03.00429705040
    [Google Scholar]
  33. LuskJ.M. FaterK. A concept analysis of patient-centered care.Nursing forum.Wiley Online Library201310.1111/nuf.12019
    [Google Scholar]
  34. SalehiS. NaghibS.M. GarshasbiH.R. GhorbanzadehS. ZhangW. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review.Front. Bioeng. Biotechnol.202311110412610.3389/fbioe.2023.110412636911200
    [Google Scholar]
  35. YaghoubiF. NaghibS.M. MotlaghN.S.H. HaghiralsadatF. JalianiH.Z. TofighiD. MoradiA. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy.Nanotechnol. Rev.20211011838185210.1515/ntrev‑2021‑0110
    [Google Scholar]
  36. AdirO. PoleyM. ChenG. FroimS. KrinskyN. ShkloverJ. Shainsky-RoitmanJ. LammersT. SchroederA. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.20190198931286573
    [Google Scholar]
  37. GrodzinskiP. Integrating nanotechnology into cancer care.ACS Publications201910.1021/acsnano.9b04266
    [Google Scholar]
  38. SimS. WongN. Nanotechnology and its use in imaging and drug delivery (Review).Biomed. Rep.20211454210.3892/br.2021.141833728048
    [Google Scholar]
  39. LaneR.J. KhinN.Y. PavlakisN. HughT.J. ClarkeS.J. MagnussenJ. RoganC. FlekserR.L. Challenges in chemotherapy delivery: Comparison of standard chemotherapy delivery to locoregional vascular mass fluid transfer.Future Oncol.201814764766310.2217/fon‑2017‑054629513086
    [Google Scholar]
  40. PallaviP. HariniK. GowthamP. GirigoswamiK. GirigoswamiA. Fabrication of polymersomes: A macromolecular architecture in nanotherapeutics.Chemistry2022431028104310.3390/chemistry4030070
    [Google Scholar]
  41. LeeJ.S. FeijenJ. Polymersomes for drug delivery: Design, formation and characterization.J. Control. Release2012161247348310.1016/j.jconrel.2011.10.00522020381
    [Google Scholar]
  42. UpadhyayK.K. BhattA.N. MishraA.K. DwarakanathB.S. JainS. SchatzC. Le MeinsJ.F. FarooqueA. ChandraiahG. JainA.K. MisraA. LecommandouxS. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes.Biomaterials201031102882289210.1016/j.biomaterials.2009.12.04320053435
    [Google Scholar]
  43. AntoniettiM. FörsterS. Vesicles and liposomes: A self-assembly principle beyond lipids.Adv. Mater.200315161323133310.1002/adma.200300010
    [Google Scholar]
  44. DuJ. O’ReillyR.K. Advances and challenges in smart and functional polymer vesicles.Soft Matter20095193544356110.1039/b905635a
    [Google Scholar]
  45. MengF. ZhongZ. Polymersomes spanning from nano-to microscales: Advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking.J. Phys. Chem. Lett.20112131533153910.1021/jz200007h
    [Google Scholar]
  46. LiuG. TanJ. CenJ. ZhangG. HuJ. LiuS. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning.Nat. Commun.202213158510.1038/s41467‑022‑28227‑635102153
    [Google Scholar]
  47. SharmaA.K. PrasherP. AljabaliA.A. MishraV. GandhiH. KumarS. MutalikS. ChellappanD.K. TambuwalaM.M. DuaK. KapoorD.N. Emerging era of “somes”: Polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy.Drug Deliv. Transl. Res.20201051171119010.1007/s13346‑020‑00789‑232504410
    [Google Scholar]
  48. SunJ. RijpkemaS.J. LuanJ. ZhangS. WilsonD.A. Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion.Nat. Commun.2021121223510.1038/s41467‑021‑22563‑933854061
    [Google Scholar]
  49. KimK.T. MeeuwissenS.A. NolteR.J.M. van HestJ.C.M. Smart nanocontainers and nanoreactors.Nanoscale20102684485810.1039/b9nr00409b20648280
    [Google Scholar]
  50. LiuG. MaS. LiS. ChengR. MengF. LiuH. ZhongZ. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes.Biomaterials201031297575758510.1016/j.biomaterials.2010.06.02120599266
    [Google Scholar]
  51. PangburnT.O. Peptide-and aptamer-functionalized nanovectors for targeted delivery of therapeutics.J Biomech Eng.2009131707400510.1115/1.3160763
    [Google Scholar]
  52. ChenW. MengF. ChengR. ZhongZ. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles.J. Control. Release20101421404610.1016/j.jconrel.2009.09.02319804803
    [Google Scholar]
  53. LiS. ByrneB. WelshJ. PalmerA.F. Self-assembled poly(butadiene)- b -poly(ethylene oxide) polymersomes as paclitaxel carriers.Biotechnol. Prog.200723127828510.1021/bp06020817269699
    [Google Scholar]
  54. DischerD.E. EisenbergA. Polymer vesicles.Science2002297558396797310.1126/science.107497212169723
    [Google Scholar]
  55. PhotosP.J. BacakovaL. DischerB. BatesF.S. DischerD.E. Polymer vesicles in vivo: Correlations with PEG molecular weight.J. Control. Release200390332333410.1016/S0168‑3659(03)00201‑312880699
    [Google Scholar]
  56. Prakash JainJ. Yenet AyenW. KumarN. Self assembling polymers as polymersomes for drug delivery.Curr. Pharm. Des.2011171657910.2174/13816121179504982221342115
    [Google Scholar]
  57. CavalliR. SosterM. ArgenzianoM. Nanobubbles: A promising efficienft tool for therapeutic delivery.Ther. Deliv.20167211713810.4155/tde.15.9226769397
    [Google Scholar]
  58. ThambiT. DeepaganV.G. KoH. LeeD.S. ParkJ.H. Bioreducible polymersomes for intracellular dual-drug delivery.J. Mater. Chem.20122241220282203610.1039/c2jm34546c
    [Google Scholar]
  59. MengF. ZhongZ. FeijenJ. Stimuli-responsive polymersomes for programmed drug delivery.Biomacromolecules200910219720910.1021/bm801127d19123775
    [Google Scholar]
  60. MeerovichI. DashA.K. Polymersomes for drug delivery and other biomedical applications.Materials for biomedical engineering.Elsevier201926930910.1016/B978‑0‑12‑818433‑2.00008‑X
    [Google Scholar]
  61. PegoraroC. CecchinD. GraciaL.S. WarrenN. MadsenJ. ArmesS.P. LewisA. MacNeilS. BattagliaG. Enhanced drug delivery to melanoma cells using PMPC-PDPA polymersomes.Cancer Lett.2013334232833710.1016/j.canlet.2013.02.00723402813
    [Google Scholar]
  62. BejR. AchaziK. HaagR. GhoshS. Polymersome formation by amphiphilic polyglycerol-b-polydisulfide-b-polyglycerol and glutathione-triggered intracellular drug delivery.Biomacromolecules20202183353336310.1021/acs.biomac.0c0077532589015
    [Google Scholar]
  63. LinJ.J. GhoroghchianP.P. ZhangY. HammerD.A. Adhesion of antibody-functionalized polymersomes.Langmuir20062293975397910.1021/la052445c16618135
    [Google Scholar]
  64. OnacaO. EneaR. HughesD.W. MeierW. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery.Macromol. Biosci.20099212913910.1002/mabi.20080024819107717
    [Google Scholar]
  65. SogaO. van NostrumC.F. FensM. RijckenC.J.F. SchiffelersR.M. StormG. HenninkW.E. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.J. Control. Release2005103234135310.1016/j.jconrel.2004.12.00915763618
    [Google Scholar]
  66. LeeJ.S. GroothuisT. CusanC. MinkD. FeijenJ. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy.Biomaterials201132349144915310.1016/j.biomaterials.2011.08.03621872328
    [Google Scholar]
  67. YildizM.E. Prud’hommeR.K. RobbI. AdamsonD.H. Formation and characterization of polymersomes made by a solvent injection method.Polym. Adv. Technol.200718642743210.1002/pat.858
    [Google Scholar]
  68. LiaoJ. WangC. WangY. LuoF. QianZ. Recent advances in formation, properties, and applications of polymersomes.Curr. Pharm. Des.201218233432344110.2174/13816121280122705022632981
    [Google Scholar]
  69. DischerB.M. WonY.Y. EgeD.S. LeeJ.C.M. BatesF.S. DischerD.E. HammerD.A. Polymersomes: Tough vesicles made from diblock copolymers.Science199928454171143114610.1126/science.284.5417.114310325219
    [Google Scholar]
  70. ShumH.C. Santanach-CarrerasE. KimJ.W. EhrlicherA. BibetteJ. WeitzD.A. Dewetting-induced membrane formation by adhesion of amphiphile-laden interfaces.J. Am. Chem. Soc.2011133124420442610.1021/ja108673h21381735
    [Google Scholar]
  71. HuY. QiuL. Polymersomes: Preparation and characterization.Pharm. Nanotechnol.201924726510.1007/978‑1‑4939‑9516‑5_17
    [Google Scholar]
  72. LefleyJ. WaldronC. BecerC.R. Macromolecular design and preparation of polymersomes.Polym. Chem.202011457124713610.1039/D0PY01247E
    [Google Scholar]
  73. ArasteF. AliabadiA. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment.J. Control. Release202133050252810.1016/j.jconrel.2020.12.02733358973
    [Google Scholar]
  74. DischerD.E. AhmedF. Polymersomes.Annu. Rev. Biomed. Eng.20068132334110.1146/annurev.bioeng.8.061505.09583816834559
    [Google Scholar]
  75. MatooriS. LerouxJ.C. Twenty-five years of polymersomes: Lost in translation?Mater. Horiz.2020751297130910.1039/C9MH01669D
    [Google Scholar]
  76. RideauE. DimovaR. SchwilleP. WurmF.R. LandfesterK. Liposomes and polymersomes: A comparative review towards cell mimicking.Chem. Soc. Rev.201847238572861010.1039/C8CS00162F30177983
    [Google Scholar]
  77. RijpkemaS.J. ToebesB.J. MaasM.N. de KlerN.R.M. WilsonD.A. Designing molecular building blocks for functional polymersomes.Isr. J. Chem.2019591092894410.1002/ijch.201900039
    [Google Scholar]
  78. ZhangJ. JiangJ. LinS. CornelE.J. LiC. DuJ. Polymersomes: From macromolecular self-assembly to particle assembly †.Chin. J. Chem.202240151842185510.1002/cjoc.202200182
    [Google Scholar]
  79. SalvaR. Le MeinsJ.F. SandreO. BrûletA. SchmutzM. GuenounP. LecommandouxS. Polymersome shape transformation at the nanoscale.ACS Nano20137109298931110.1021/nn403958924047230
    [Google Scholar]
  80. SvensonS. Theranostics: Are we there yet?Mol. Pharm.201310384885610.1021/mp300644n23379301
    [Google Scholar]
  81. ThevenotJ. OliveiraH. LecommandouxS. Polymersomes for theranostics.J. Drug Deliv. Sci. Technol.2013231384610.1016/S1773‑2247(13)50005‑0
    [Google Scholar]
  82. ZavvarT. BabaeiM. AbnousK. TaghdisiS.M. NekooeiS. RamezaniM. AlibolandiM. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model.Int. J. Pharm.202057811909110.1016/j.ijpharm.2020.11909132007591
    [Google Scholar]
  83. AliI. AlsehliM. ScottiL. Tullius ScottiM. TsaiS.T. YuR.S. HsiehM.F. ChenJ.C. Progress in polymeric nano-medicines for theranostic cancer treatment.Polymers202012359810.3390/polym1203059832155695
    [Google Scholar]
  84. AibaniN. NesbittH. MarinoN. JurekJ. O’NeillC. MartinC. Di BariI. ShengY. LoganK. HawthorneS. McHaleA. CallanJ.F. CallanB. Electroneutral polymersomes for combined cancer chemotherapy.Acta Biomater.20188032734010.1016/j.actbio.2018.09.00530201433
    [Google Scholar]
  85. SuiX. KujalaP. JanssenG-J. de JongE. ZuhornI.S. van HestJ.C.M. Robust formation of biodegradable polymersomes by direct hydration.Polym. Chem.20156569169610.1039/C4PY01288G
    [Google Scholar]
  86. BleulR. ThiermannR. MaskosM. Techniques to control polymersome size.Macromolecules201548207396740910.1021/acs.macromol.5b01500
    [Google Scholar]
  87. AlbuquerqueL.J.C. SincariV. JägerA. KonefałR. PánekJ. ČernochP. PavlovaE. ŠtěpánekP. GiacomelliF.C. JägerE. Microfluidic-assisted engineering of quasi-monodisperse pH-responsive polymersomes toward advanced platforms for the intracellular delivery of hydrophilic therapeutics.Langmuir20193525acs.langmuir.9b0100910.1021/acs.langmuir.9b0100931199159
    [Google Scholar]
  88. HabelJ. OgbonnaA. LarsenN. CherréS. KyndeS. MidtgaardS.R. KinoshitaK. KrabbeS. JensenG.V. HansenJ.S. AlmdalK. Hèlix-NielsenC. Selecting analytical tools for characterization of polymersomes in aqueous solution.RSC Advances2015597799247994610.1039/C5RA16403F
    [Google Scholar]
  89. WongC.K. StenzelM.H. ThordarsonP. Non-spherical polymersomes: Formation and characterization.Chem. Soc. Rev.201948154019403510.1039/C8CS00856F31187792
    [Google Scholar]
  90. NomaniA. NosratiH. ManjiliH. KhesalpourL. DanafarH. Preparation and characterization of copolymeric polymersomes for protein delivery.Drug Res.201767845846510.1055/s‑0043‑10605128561240
    [Google Scholar]
  91. Muso-CachumbaJ.J. Ruiz-LaraG. MonteiroG. Rangel-YaguiC.O. Challenges in estimating the encapsulation efficiency of proteins in polymersomes - Which is the best method?Braz. J. Pharm. Sci.202359e2336510.1590/s2175‑97902023e23365
    [Google Scholar]
  92. KompocholiE. Parameters affecting the APIs release profile from polymersomes.From Current to Future Trends in Pharmaceutical Technology.Elsevier202439142210.1016/B978‑0‑323‑91111‑5.00011‑1
    [Google Scholar]
  93. ChangH.Y. ShengY.J. TsaoH.K. Structural and mechanical characteristics of polymersomes.Soft Matter201410346373638110.1039/C4SM01092B25062328
    [Google Scholar]
  94. De OliveiraH. ThevenotJ. LecommandouxS. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20124552554610.1002/wnan.118322761061
    [Google Scholar]
  95. BrinkhuisR.P. RutjesF.P.J.T. van HestJ.C.M. Polymeric vesicles in biomedical applications.Polym. Chem.2011271449146210.1039/c1py00061f
    [Google Scholar]
  96. KimK.T. ZhuJ. MeeuwissenS.A. CornelissenJ.J.L.M. PochanD.J. NolteR.J.M. van HestJ.C.M. Polymersome stomatocytes: Controlled shape transformation in polymer vesicles.J. Am. Chem. Soc.201013236125221252410.1021/ja104154t20718470
    [Google Scholar]
  97. LinJ.J. SilasJ.A. BermudezH. MilamV.T. BatesF.S. HammerD.A. The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes.Langmuir200420135493550010.1021/la036417a15986691
    [Google Scholar]
  98. GarcíaM.C. Stimuli-responsive polymersomes for drug delivery applications.Stimuli responsive polymeric nanocarriers for drug delivery applications.Elsevier201934539210.1016/B978‑0‑08‑101995‑5.00019‑2
    [Google Scholar]
  99. DanN. Core–shell drug carriers: Liposomes, polymersomes, and niosomes.Nanostructures for drug delivery.Elsevier20176310510.1016/B978‑0‑323‑46143‑6.00002‑6
    [Google Scholar]
  100. TianY. TirrellM.V. LaBelleJ.L. Harnessing the therapeutic potential of biomacromolecules through intracellular delivery of nucleic acids, peptides, and proteins.Adv. Healthc. Mater.20221112210260010.1002/adhm.20210260035285167
    [Google Scholar]
  101. KarayianniM. PispasS. Block copolymer solution self-assembly: Recent advances, emerging trends, and applications.J. Polym. Sci.202159171874189810.1002/pol.20210430
    [Google Scholar]
  102. FerreroC. CasasM. CaraballoI. Redox-responsive polymersomes as smart doxorubicin delivery systems.Pharmaceutics2022148172410.3390/pharmaceutics1408172436015350
    [Google Scholar]
  103. HasanniaM. AliabadiA. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Synthesis of block copolymers used in polymersome fabrication: Application in drug delivery.J. Control. Release20223419511710.1016/j.jconrel.2021.11.01034774891
    [Google Scholar]
  104. IqbalS. BlennerM. Alexander-BryantA. LarsenJ. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: From design to therapeutic applications.Biomacromolecules20202141327135010.1021/acs.biomac.9b0175432078290
    [Google Scholar]
  105. MukerabigwiJ.F. YinW. ZhaZ. KeW. WangY. ChenW. JapirA.A.W.M.M. WangY. GeZ. Polymersome nanoreactors with tumor pH-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy.J. Control. Release201930320922210.1016/j.jconrel.2019.04.03231026547
    [Google Scholar]
  106. LinF.Y. ChengC-Y. ChuangY-H. TungS-H. Polymersomes with high loading capacity prepared by direct self-assembly of block copolymers in drugs.Polymer201813411712410.1016/j.polymer.2017.11.060
    [Google Scholar]
  107. PhanH. CavanaghR. JacobP. DestouchesD. VacherotF. BrugnoliB. HowdleS. TarescoV. CouturaudB. Synthesis of multifunctional polymersomes prepared by polymerization-induced self-assembly.Polymers20231514307010.3390/polym1514307037514459
    [Google Scholar]
  108. KuperkarK. PatelD. AtanaseL.I. BahadurP. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles.Polymers20221421470210.3390/polym1421470236365696
    [Google Scholar]
  109. AhmedF. PakunluR.I. BrannanA. BatesF. MinkoT. DischerD.E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug.J. Control. Release2006116215015810.1016/j.jconrel.2006.07.01216942814
    [Google Scholar]
  110. AhmedF. PakunluR.I. SrinivasG. BrannanA. BatesF. KleinM.L. MinkoT. DischerD.E. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: PH-triggered release through copolymer degradation.Mol. Pharm.20063334035010.1021/mp050103u16749866
    [Google Scholar]
  111. MessagerL. GaitzschJ. ChiericoL. BattagliaG. Novel aspects of encapsulation and delivery using polymersomes.Curr. Opin. Pharmacol.20141810411110.1016/j.coph.2014.09.01725306248
    [Google Scholar]
  112. L’AmoreauxN. AliA. IqbalS. LarsenJ. Persistent prolate polymersomes for enhanced co-delivery of hydrophilic and hydrophobic drugs.Nanotechnology2020311717510310.1088/1361‑6528/ab6bf131940601
    [Google Scholar]
  113. XuJ. ZhaoQ. JinY. QiuL. High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy.Nanomedicine201410234935810.1016/j.nano.2013.08.00423969103
    [Google Scholar]
  114. MarguetM. EdembeL. LecommandouxS. Polymersomes in polymersomes: Multiple loading and permeability control.Angew. Chem. Int. Ed.20125151173117610.1002/anie.20110641022190263
    [Google Scholar]
  115. KattermanC. PierceC. LarsenJ. Combining nanoparticle shape modulation and polymersome technology in drug delivery.ACS Appl. Bio Mater.2021442853286210.1021/acsabm.1c0020335014381
    [Google Scholar]
  116. LeongJ. TeoJ.Y. AakaluV.K. YangY.Y. KongH. Engineering polymersomes for diagnostics and therapy.Adv. Healthc. Mater.201878170127610.1002/adhm.20170127629334183
    [Google Scholar]
  117. KothaR. KaraD.D. RoychowdhuryR. TanviK. RathnanandM. Polymersomes based versatile nanoplatforms for controlled drug delivery and imaging.Adv. Pharm. Bull.202313221823210.34172/apb.2023.02837342386
    [Google Scholar]
  118. LiM.H. KellerP. Stimuli-responsive polymer vesicles.Soft Matter20095592793710.1039/b815725a
    [Google Scholar]
  119. YuJ. ZhangY. YeY. DiSantoR. SunW. RansonD. LiglerF.S. BuseJ.B. GuZ. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.Proc. Natl. Acad. Sci. USA2015112278260826510.1073/pnas.150540511226100900
    [Google Scholar]
  120. YuJ. QianC. ZhangY. CuiZ. ZhuY. ShenQ. LiglerF.S. BuseJ.B. GuZ. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery.Nano Lett.201717273373910.1021/acs.nanolett.6b0384828079384
    [Google Scholar]
  121. MartinT.J. ProcházkaK. MunkP. WebberS.E. pH-dependent micellization of poly(2-vinylpyridine)- block -poly(ethylene oxide).Macromolecules199629186071607310.1021/ma960629f
    [Google Scholar]
  122. JoM.J. ShinH.J. YoonM.S. KimS.Y. JinC.E. ParkC.W. KimJ.S. ShinD.H. Evaluation of pH-sensitive polymeric micelles using citraconic amide bonds for the co-delivery of paclitaxel, etoposide, and rapamycin.Pharmaceutics202315115410.3390/pharmaceutics1501015436678783
    [Google Scholar]
  123. LiX. YangW. ZouY. MengF. DengC. ZhongZ. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes.J. Control. Release2015220Pt B70471410.1016/j.jconrel.2015.08.05826348387
    [Google Scholar]
  124. ChenW. DuJ. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery.Sci. Rep.201331216210.1038/srep0216223831819
    [Google Scholar]
  125. HsuC.W. HsiehM.H. XiaoM.C. ChouY.H. WangT.H. ChiangW.H. pH-responsive polymeric micelles self-assembled from benzoic-imine-containing alkyl-modified PEGylated chitosan for delivery of amphiphilic drugs.Int. J. Biol. Macromol.20201631106111610.1016/j.ijbiomac.2020.07.11032679318
    [Google Scholar]
  126. JiangY. ZhouY. ZhangC.Y. FangT. Co-delivery of paclitaxel and doxorubicin by pH-responsive prodrug micelles for cancer therapy.Int. J. Nanomedicine2020153319333110.2147/IJN.S24914432494132
    [Google Scholar]
  127. SonI. LeeY. BaekJ. ParkM. HanD. MinS.K. LeeD. KimB.S. pH-Responsive amphiphilic polyether micelles with superior stability for smart drug delivery.Biomacromolecules20212252043205610.1021/acs.biomac.1c0016333835793
    [Google Scholar]
  128. NutanB. Singh ChandelA.K. JewrajkaS.K. Synthesis and multi-responsive self-assembly of cationic poly (caprolactone)–poly (ethylene glycol) multiblock copolymers.Chemistry201723348166817010.1002/chem.20170190028455876
    [Google Scholar]
  129. HanH. ShinB. ChoiH. Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): Drug release behavior and stability in the presence of serum.Eur. J. Pharm. Biopharm.200662111011610.1016/j.ejpb.2005.07.00616183268
    [Google Scholar]
  130. WeiH. ZhangX.Z. ChenW.Q. ChengS.X. ZhuoR.X. Self-assembled thermosensitive micelles based on poly( L -lactide-star block- N -isopropylacrylamide) for drug delivery.J. Biomed. Mater. Res. A200783A498098910.1002/jbm.a.3129517584891
    [Google Scholar]
  131. ChenX. DingX. ZhengZ. PengY. A self-assembly approach to temperature-responsive polymer nanocontainers.Macromol. Rapid Commun.200425171575157810.1002/marc.200400232
    [Google Scholar]
  132. HanH.D. KimT.W. ShinB.C. ChoiH.S. Release of calcein from temperature-sensitive liposomes.Macromol. Res.2005131546110.1007/BF03219015
    [Google Scholar]
  133. Couffin-HoarauA.C. LerouxJ.C. Report on the use of poly(organophosphazenes) for the design of stimuli-responsive vesicles.Biomacromolecules2004562082208710.1021/bm040052715530020
    [Google Scholar]
  134. NaK. BaeY. pH-sensitive polymers for drug delivery.Polymeric drug delivery systems2005148149
    [Google Scholar]
  135. SunG. HuM. SunD. DengY. MaJ. LuT. Temperature induced self-healing capability transition phenomenon of bitumens.Fuel202026311669810.1016/j.fuel.2019.116698
    [Google Scholar]
  136. ZhouY. YanD. DongW. TianY. Temperature-responsive phase transition of polymer vesicles: real-time morphology observation and molecular mechanism.J. Phys. Chem. B200711161262127010.1021/jp067356317243669
    [Google Scholar]
  137. OroojalianF. BabaeiM. TaghdisiS.M. AbnousK. RamezaniM. AlibolandiM. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin.J. Control. Release2018288456110.1016/j.jconrel.2018.08.03930171978
    [Google Scholar]
  138. ZhangY. LuY. XuY. ZhouZ. LiY. LingW. SongW. Bio-inspired drug delivery systems: From synthetic polypeptide vesicles to outer membrane vesicles.Pharmaceutics202315236810.3390/pharmaceutics1502036836839691
    [Google Scholar]
  139. NapoliA. BoerakkerM.J. TirelliN. NolteR.J.M. SommerdijkN.A.J.M. HubbellJ.A. Glucose-oxidase based self-destructing polymeric vesicles.Langmuir20042093487349110.1021/la035705415875368
    [Google Scholar]
  140. Power-BillardK.N. SpontakR.J. MannersI. Redox-active organometallic vesicles: Aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block.Angew. Chem. Int. Ed.200443101260126410.1002/anie.20035281914991793
    [Google Scholar]
  141. JiangJ. TongX. ZhaoY. A new design for light-breakable polymer micelles.J. Am. Chem. Soc.2005127238290829110.1021/ja052101915941255
    [Google Scholar]
  142. JiangY. WangY. MaN. WangZ. SmetM. ZhangX. Reversible self-organization of a UV-responsive PEG-terminated malachite green derivative: Vesicle formation and photoinduced disassembly.Langmuir20072374029403410.1021/la063305l17311435
    [Google Scholar]
  143. KimM.R. CheongI.W. Stimuli-triggered formation of polymersomes from W/O/W multiple double emulsion droplets containing poly(styrene)- block -poly( N -isopropylacrylamide- co -spironaphthoxazine methacryloyl).Langmuir201632369223922810.1021/acs.langmuir.6b0217827584798
    [Google Scholar]
  144. ThambiT. LeeD.S. Stimuli-responsive polymersomes for cancer therapy.Stimuli responsive polymeric nanocarriers for drug delivery applications.Woodhead Publishing Series in Biomaterials2019234539210.1016/B978‑0‑08‑101995‑5.00016‑7
    [Google Scholar]
  145. ChiangW.H. HsuY-H. TangF-F. ChernC-S. ChiuH-C. Temperature/pH-induced morphological regulations of shell cross-linked graft copolymer assemblies.Polymer201051266248625710.1016/j.polymer.2010.10.038
    [Google Scholar]
  146. XuH. MengF. ZhongZ. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release.J. Mater. Chem.200919244183419010.1039/b901141b
    [Google Scholar]
  147. CerritelliS. VellutoD. HubbellJ.A. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery.Biomacromolecules2007861966197210.1021/bm070085x17497921
    [Google Scholar]
  148. BeygiM. Recent progress in functionalized polymersomes and chimeric polymeric nanotheranostic platforms for cancer therapy.Prog. Mater. Sci.202310119010.1016/j.pmatsci.2023.101190
    [Google Scholar]
  149. SunZ. LiuG. HuJ. LiuS. Photo-and reduction-responsive polymersomes for programmed release of small and macromolecular payloads.Biomacromolecules20181962071208110.1021/acs.biomac.8b0025329630839
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673303351240507113603
Loading
/content/journals/cmc/10.2174/0109298673303351240507113603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test