Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This review explores the enhancement of therapeutic efficacy through the innovative use of polymeric molecular envelope technology (MET). It delves into the diverse methods employed to achieve superior therapeutic outcomes, shedding light on strategies for improving drug delivery and bioavailability. MET is a promising approach to improve the solubility and bioavailability of poorly water-soluble drugs. This technology involves the use of a molecular envelope of cyclic oligosaccharides called cyclodextrins, which is a supramolecular assembly of amphiphilic molecules that encapsulate and solubilize hydrophobic drug molecules. This can further improve the solubility of the drug by increasing its surface area and reducing its crystallinity. Moreover, MET also protects the drug from degradation and enhances its permeability across biological membranes. Furthermore, the review thoroughly examines the MET, including its methods of preparation, applications in drug encapsulation, and the evaluation of its potential to optimize therapeutic outcomes. By adopting current research and key findings, this review provides valuable insights into the transformative potential of polymeric molecular envelope technology for advancing the field of therapeutics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673290370240425092350
2024-04-29
2025-10-09
Loading full text...

Full text loading...

References

  1. HaoH. ZhengX. WangG. Insights into drug discovery from natural medicines using reverse pharmacokinetics.Trends Pharmacol. Sci.201435416817710.1016/j.tips.2014.02.00124582872
    [Google Scholar]
  2. MooreF.A. Evidence-based medical information technology: the next generation.J. Trauma20076361195120510.1097/TA.0b013e31811ea25d18212638
    [Google Scholar]
  3. StarkeyE.S. SammonsH.M. Practical pharmacokinetics: what do you really need to know?Arch. Dis. Child. Educ. Pract. Ed.20151001374310.1136/archdischild‑2013‑30455525122157
    [Google Scholar]
  4. KapoorD.U. SinghS. SharmaP. PrajapatiB.G. Amorphization of low soluble drug with amino acids to improve its therapeutic efficacy: a state-of-art-review.AAPS Pharm. Sci. Tech.202324825310.1208/s12249‑023‑02709‑2
    [Google Scholar]
  5. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  6. AlshetailiA.S. AnsariM.J. AnwerM.K. GanaieM.A. IqbalM. AlshahraniS.M. AlalaiweA.S. AlsulaysB.B. AlshehriS. SultanA.S. Enhanced oral bioavailability of ibrutinib encapsulated poly (lactic-co- glycolic acid) nanoparticles: pharmacokinetic evaluation in rats.Curr. Pharm. Anal.201915666166810.2174/1573412915666190314124932
    [Google Scholar]
  7. SongP. TianY. HaoG. XuL. SunY. SunY. Preparation and evaluation of ibrutinib lipid-based formulations.J. Drug Deliv. Sci. Technol.20227710391210.1016/j.jddst.2022.103912
    [Google Scholar]
  8. AsharF. HaniU. OsmaniR.A.M. KazimS.M. SelvamuthukumarS. Preparation and optimization of ibrutinib-loaded nanoliposomes using response surface methodology.Polymers20221418388610.3390/polym1418388636146030
    [Google Scholar]
  9. JavadzadehY. AhadiF. DavaranS. MohammadiG. SabzevariA. AdibkiaK. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles.Coll. Surf. B Biointerfa.201081249850210.1016/j.colsurfb.2010.07.04720719477
    [Google Scholar]
  10. SailajaA.K. BanuJ. Preparation and evaluation of chitosan loaded naproxen nanoparticles by emulsion interfacial reaction method.Drug Deliv. Lett.201992899610.2174/2210303109666190211150117
    [Google Scholar]
  11. TuncC.U. KursunluogluG. AkdenizM. KutluA.U. HanM.I. YererM.B. AydinO. Investigation of gold nanoparticle naproxen-derived conjugations in ovarian cancer.ACS Mater. Au20233548349110.1021/acsmaterialsau.3c0003338089100
    [Google Scholar]
  12. PatelG.M. ShelatP.K. LalwaniA.N. QbD based development of proliposome of lopinavir for improved oral bioavailability.Eur. J. Pharm. Sci.2017108506110.1016/j.ejps.2016.08.05727586019
    [Google Scholar]
  13. YoshiokaC. ItoY. NagaiN. An oral formulation of cilostazol nanoparticles enhances intestinal drug absorption in rats.Exp. Ther. Med.201815145446029375698
    [Google Scholar]
  14. AghrbiI. FülöpV. JakabG. Kállai-SzabóN. BaloghE. AntalI. Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability.J. Drug Deliv. Sci. Technol.20216110216510.1016/j.jddst.2020.102165
    [Google Scholar]
  15. RaoM.R.P. GodboleR.V. BorateS.G. MahajanS. GangwalT. Nanosuspension coated multiparticulates for controlled delivery of albendazole.Drug Dev. Ind. Pharm.202147336737610.1080/03639045.2021.187983033492985
    [Google Scholar]
  16. RahmaniA. AlsahliM. AlyS. KhanM. AldebasiY. Role of curcumin in disease prevention and treatment.Adv. Biomed. Res.2018713810.4103/abr.abr_147_1629629341
    [Google Scholar]
  17. FereigS.A. El-ZaafaranyG.M. ArafaM.G. Abdel-MottalebM.M.A. Tacrolimus-loaded chitosan nanoparticles for enhanced skin deposition and management of plaque psoriasis.Carbohydr. Polym.202126811823810.1016/j.carbpol.2021.11823834127220
    [Google Scholar]
  18. MohammadG.V. GargV. NirmalJ. WarsiM.H. PanditaD. KesharwaniP. JainG.K. Topical tacrolimus progylcosomes nano-vesicles as a potential therapy for experimental dry eye syndrome.J. Pharm. Sci.2022111247948410.1016/j.xphs.2021.09.03834599998
    [Google Scholar]
  19. KhanK.U. AkhtarN. MinhasM.U. Poloxamer-407- Co-Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) cross-linked nanogels for solubility enhancement of olanzapine: synthesis, characterization, and toxicity evaluation.AAPS Pharm. Sci. Tech.202021514110.1208/s12249‑020‑01694‑032419084
    [Google Scholar]
  20. AjiboyeA.L. NandiU. GalliM. TrivediV. Olanzapine loaded nanostructured lipid carriers via high shear homogenization and ultrasonication.Sci. Pharm.20218922510.3390/scipharm89020025
    [Google Scholar]
  21. ChenK. MitraS. Incorporation of functionalized carbon nanotubes into hydrophobic drug crystals for enhancing aqueous dissolution.Coll. Surf. B Biointerfa.201917338639110.1016/j.colsurfb.2018.09.08030317125
    [Google Scholar]
  22. OntongJ.C. SinghS. SiriyongT. VoravuthikunchaiS.P. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections.Biotechnol. Lett.202446112714210.1007/s10529‑023‑03452‑138150096
    [Google Scholar]
  23. SinghS. DodiyaT.R. DodiyaR. UshirY.V. WidodoS. Lipid Nanoparticulate drug delivery systems: a revolution in dosage form design and development. JesúsL. GómezV. Drug CarriersIntechOpen Publishing2022722210.5772/intechopen.104510
    [Google Scholar]
  24. MohiteP. SinghS. PawarA. SangaleA. PrajapatiB.G. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs.Front. Drug Deliv.20233123201210.3389/fddev.2023.1232012
    [Google Scholar]
  25. SinghS. SupaweeraN. NwaborO.F. ChaichompooW. SuksamrarnA. ChittasuphoC. ChunglokW. Poly (vinyl alcohol)-gelatin-sericin copolymerized film fortified with vesicle-entrapped demethoxycurcumin/bisdemethoxycurcumin for improved stability, antibacterial, anti-inflammatory, and skin tissue regeneration.Int. J. Biol. Macromol.2024258Pt 212907110.1016/j.ijbiomac.2023.12907138159707
    [Google Scholar]
  26. SunnyC.H.S. HardikM. DhavalM. MoinuddinS. SudarshanS. BhupendraP. Lipids fortified nano phytopharmaceuticals: a breakthrough approach in delivering bio-actives for improved therapeutic efficacy.Pharm. Nanotechnol.20251317089
    [Google Scholar]
  27. PatelR.P. PatelG.K. PatelN. SinghS. ChittasuphoC. Alginate nanoparticles: a potential drug carrier in tuberculosis treatment.Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases. ShegokarR. PathakY. ChamSpringer International Publishing202320723410.1007/978‑3‑031‑14100‑3_11
    [Google Scholar]
  28. ModiC. PrajapatiB.G. SinghS. SinghA. MaheshwariS. Chapter 14 - Dendrimers in the management of Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies. PrajapatiB.G. ChellappanD.K. KendreP.N. Academic Press202423525110.1016/B978‑0‑443‑13205‑6.00028‑5
    [Google Scholar]
  29. KavanaughW.M. Antibody prodrugs for cancer.Expert Opin. Biol. Ther.202020216317110.1080/14712598.2020.169905331779489
    [Google Scholar]
  30. MuniandyA. LeeC.S. LimW.H. PichikaM.R. Investigation of hyperbranched Poly(glycerol esteramide) as potential drug carrier in solid dispersion for solubility enhancement of lovastatin.J. Drug Deliv. Sci. Technol.20216110223710.1016/j.jddst.2020.102237
    [Google Scholar]
  31. MohiteP. RajputT. PandhareR. SangaleA. SinghS. PrajapatiB.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects.Nanomanufacturing20233213916610.3390/nanomanufacturing3020010
    [Google Scholar]
  32. KhanS. ShaharyarM. FazilM. HassanM.Q. BabootaS. AliJ. Tacrolimus-loaded nanostructured lipid carriers for oral delivery-in vivo bioavailability enhancement.Eur. J. Pharm. Biopharm.201610914915710.1016/j.ejpb.2016.10.01127793753
    [Google Scholar]
  33. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  34. BansalK. AliA. RahmanM. SjöholmE. WilenC-E. RosenholmJ. Evaluation of solubilizing potential of functional poly(jasmine lactone) micelles for hydrophobic drugs: A comparison with commercially available polymers.Int. J. Polym. Mater.20227219
    [Google Scholar]
  35. PatelR. SinghS. SinghS. ShethN. GendleR. Development and characterization of curcumin loaded transfersome for transdermal delivery.J. Pharmaceut. Sci. Res.20091471
    [Google Scholar]
  36. PatelP. PalR. ButaniK. SinghS. PrajapatiB.G. Nanomedicine-fortified cosmeceutical serums for the mitigation of psoriasis and acne.Nanomedicine202318241769179310.2217/nnm‑2023‑014737990979
    [Google Scholar]
  37. SinghS. UshirY.V. PrajapatiB.G. Phytosomes and herbosomes: a vesicular drug delivery system for improving the bioavailability of natural products. PrajapatiB. Lipid-Based Drug Delivery Systems: Principles and Applications.LondonJenny Stanford Publishing202342346010.1201/9781003459811‑11
    [Google Scholar]
  38. ChittasuphoC. ChaobankrangK. SarawungkadA. SameeW. SinghS. HemsuwimonK. OkonogiS. KheawfuK. KiattisinK. ChaiyanaW. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. Virginia Leaf extract phytosomes and shape memory gel formulation.Gels2023927810.3390/gels902007836826248
    [Google Scholar]
  39. Kapoor DeveshC.S.C. Prajapati BhupendraG. PaulR. RavishP. SudarshanS. SankhaB. The astonishing accomplishment of biological drug delivery using lipid nanoparticles: an ubiquitous review.Curr. Pharm. Biotechnol.2024251519521968
    [Google Scholar]
  40. KouP. LevyE.S. NguyenA.D. ZhangD. ChenS. CuiY. ZhangX. BroccatelliF. PizzanoJ. CantleyJ. BortolonE. RousseauE. BerlinM. DragovichP. SethuramanV. Development of liposome systems for enhancing the PK properties of bivalent PROTACs.Pharmaceutics2023158209810.3390/pharmaceutics1508209837631312
    [Google Scholar]
  41. VergaraD. LópezO. SanhuezaC. Chávez-AravenaC. VillagraJ. BustamanteM. AcevedoF. Co-encapsulation of curcumin and α-tocopherol in bicosome systems: physicochemical properties and biological activity.Pharmaceutics2023157191210.3390/pharmaceutics1507191237514098
    [Google Scholar]
  42. BaraniM. PakniaF. RoostaeeM. KavyaniB. Kalantar-NeyestanakiD. AjalliN. AmirbeigiA. Niosome as an effective nanoscale solution for the treatment of microbial infections.BioMed. Res. Int.2023202311810.1155/2023/993328337621700
    [Google Scholar]
  43. Zaid AlkilaniA. MuslehB. HamedR. SwellmeenL. BasheerH.A. Preparation and characterization of patch loaded with clarithromycin nanovesicles for transdermal drug delivery.J. Funct. Biomater.20231425710.3390/jfb1402005736826856
    [Google Scholar]
  44. ReddyL.H. MurthyR.S.R. Pharmacokinetics and biodistribution studies of Doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles synthesized by two different techniques.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2004148216116610.5507/bp.2004.02915744366
    [Google Scholar]
  45. DevarakondaB. HillR.A. LiebenbergW. BritsM. de VilliersM.M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins.Int. J. Pharm.20053041-219320910.1016/j.ijpharm.2005.07.02316198076
    [Google Scholar]
  46. Merisko-LiversidgeE. LiversidgeG.G. CooperE.R. Nanosizing: a formulation approach for poorly-water-soluble compounds.Eur. J. Pharm. Sci.200318211312010.1016/S0928‑0987(02)00251‑812594003
    [Google Scholar]
  47. RibeiroP.C. CunhaC.J.D.D. SantosA.O.R.D. LucarevschiB.R. CésarA.C.G. NascimentoL.F.C. Association between exposure to air pollutants and hospitalization for SARS-CoV-2: an ecological time-series study.Sao Paulo Med. J.20221414e202221036197352
    [Google Scholar]
  48. UddinM.J. MohiteP. MundeS. AdeN. OladosuT.A. ChidrawarV.R. PatelR. BhattacharyaS. PaliwalH. SinghS. Extracellular vesicles: The future of therapeutics and drug delivery systems.Intell. Pharm.20241610.1016/j.ipha.2024.02.004
    [Google Scholar]
  49. LuuN.D.H. DangL.H. BuiH.M. NguyenT.T.T. NguyenB.T. HoangL.S. TranN.Q. Nanoencapsulation of Chromolaena odorata extract using pluronic F127 as an effectively herbal delivery system for wound healing.J. Nanomater.2021202111210.1155/2021/6663986
    [Google Scholar]
  50. SultanM.H. MoniS.S. MadkhaliO.A. BakkariM.A. AlshahraniS. AlqahtaniS.S. AlhakamyN.A. MohanS. GhazwaniM. BukharyH.A. AlmoshariY. SalawiA. AlshamraniM. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer.Sci. Rep.202212146810.1038/s41598‑021‑04427‑w35013493
    [Google Scholar]
  51. WangQ. ZhangD. LuJ. ZhangJ. XuanZ. GongL. YangM. JinL. LeJ. ZhuA. LiangH. Benjamin NamanC. ZhangJ. ZhaoL. HeS. WangQ. LiuH. YanX. ZhaoL. CuiW. PLGA-PEG-fucoxanthin nanoparticles protect against ischemic stroke in vivo.J. Funct. Foods20229910535910.1016/j.jff.2022.105359
    [Google Scholar]
  52. ShanJ. BudijonoS.J. HuG. YaoN. KangY. JuY. Prud’hommeR.K. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy.Adv. Funct. Mater.201121132488249510.1002/adfm.201002516
    [Google Scholar]
  53. KatoR. UesugiM. KomatsuY. OkamotoF. TanakaT. KitawakiF. YanoT. Highly stable polymer coating on silver nanoparticles for efficient plasmonic enhancement of fluorescence.ACS Omega2022754286429210.1021/acsomega.1c0601035155921
    [Google Scholar]
  54. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. Polymeric nanoparticles for drug delivery: recent developments and future prospects.Nanomaterials2020107104310.3390/nano1007140332707641PMC7408012
    [Google Scholar]
  55. SoundararajanR. WangG. PetkovaA. UchegbuI.F. SchätzleinA.G. Hyaluronidase coated molecular envelope technology nanoparticles enhance drug absorption via the subcutaneous route.Mol. Pharm.20201772599261110.1021/acs.molpharmaceut.0c0029432379457
    [Google Scholar]
  56. VieiraR. SoutoS.B. Sánchez-LópezE. MachadoA.L. SeverinoP. JoseS. SantiniA. FortunaA. GarcíaM.L. SilvaA.M. SoutoE.B. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome-review of classical and new compounds: Part-I.Pharmaceuticals201912415210.3390/ph1204015231658729
    [Google Scholar]
  57. BohreyS. ChourasiyaV. PandeyA. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study.Nano Converg.201631310.1186/s40580‑016‑0061‑228191413
    [Google Scholar]
  58. LigieroT.B. Cerqueira-CoutinhoC. de Souza AlbernazM. SzwedM. BernardesE.S. WassermanM.A.V. Santos-OliveiraR. Diagnosing gastrointestinal stromal tumours by single photon emission computed tomography using nano-radiopharmaceuticals based on bevacizumab monoclonal antibody.Biomed. Phys. Eng. Express20162404501710.1088/2057‑1976/2/4/045017
    [Google Scholar]
  59. KumarS. DilbaghiN. SaharanR. BhanjanaG. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs.Bionanoscience20122422725010.1007/s12668‑012‑0060‑7
    [Google Scholar]
  60. DhaundiyalA. JenaS.K. SamalS.K. SonvaneB. ChandM. SangamwarA.T. Alpha-lipoic acid–stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in-vivo pharmacokinetic and hepatotoxicity study.J. Pharm. Pharmacol.201668121535155010.1111/jphp.1264427709612
    [Google Scholar]
  61. Bindschaedler, C.; Gurny, R.; Doelker, E. Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase, the resulting powder and utilization therof. patent WO1988008011A1, 1988.
  62. WangY. LiP. Truong-Dinh TranT. ZhangJ. KongL. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer.Nanomaterials2016622610.3390/nano602002628344283
    [Google Scholar]
  63. EleyJ.G. PujariV.D. McLaneJ. Poly (lactide-co-glycolide) nanoparticles containing coumarin-6 for suppository delivery: in vitro release profile and in vivo tissue distribution.Drug Deliv.200411425526110.1080/1071754049046738415371107
    [Google Scholar]
  64. RaoJ.P. GeckelerK.E. Polymer nanoparticles: Preparation techniques and size-control parameters.Prog. Polym. Sci.201136788791310.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  65. BhokareS.G. MaratheR.P. GaikwadM.T. SalunkeP.B. Biodegradable polymer based nanoparticles: A novel approach.Int. J. Pharm. Sci. Rev. Res.20153514352
    [Google Scholar]
  66. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.00819447208
    [Google Scholar]
  67. ZumayaA.L.V. MartynekD. BautkinováT. ŠoóšM. UlbrichP. RaquezJ.M. DendisováM. MernaJ. VilčákováJ. KopeckýD. HassounaF. Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery.Eur. Polym. J.202013310979510.1016/j.eurpolymj.2020.109795
    [Google Scholar]
  68. SongZ. ShiY. HanQ. DaiG. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles.Biomed. Pharmacother.2018105182610.1016/j.biopha.2018.05.09529843041
    [Google Scholar]
  69. SyukriD.M. NwaborO.F. SinghS. OntongJ.C. WunnooS. PaosenS. MunahS. VoravuthikunchaiS.P. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections.J. Microbiol. Metho.202017410595510.1016/j.mimet.2020.10595532442657
    [Google Scholar]
  70. SinghS. NwaborO.F. SukriD.M. WunnooS. DumjunK. LethongkamS. KusolphatP. HemtanonN. KlinprathumK. SunghanJ. DejyongK. LertwittayanonK. PisuchpenS. VoravuthikunchaiS.P. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application.Int. J. Biol. Macromol.202221623525010.1016/j.ijbiomac.2022.06.17235780920
    [Google Scholar]
  71. Chorachoo OntongJ. SinghS. NwaborO.F. ChusriS. KaewnamW. KanokwiroonK. SeptamaA.W. PanichayupakaranantP. VoravuthikunchaiS.P. Microwave-assisted extract of rhodomyrtone from Rhodomyrtus tomentosa leaf: Anti-inflammatory, antibacterial, antioxidant, and safety assessment of topical rhodomyrtone formulation.Sep. Sci. Technol.202358592994310.1080/01496395.2023.2169162
    [Google Scholar]
  72. ShahS. PatelA.A. PandyaV. TrivediN. PatelS.G. PrajapatiB.G. SinghS. PatelR.J. Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment.J. Drug Deliv. Sci. Technol.20239010516010.1016/j.jddst.2023.105160
    [Google Scholar]
  73. OntongJ.C. SinghS. NwaborO.F. ChusriS. VoravuthikunchaiS.P. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin.Biotechnol. Lett.202042122653266410.1007/s10529‑020‑02971‑532683522
    [Google Scholar]
  74. SinghS. ChunglokW. NwaborO.F. UshirY.V. SinghS. PanpipatW. Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications.J. Polym. Environ.202230393895310.1007/s10924‑021‑02249‑5
    [Google Scholar]
  75. PieperS. OnafuyeH. MulacD. CinatlJ.Jr WassM.N. MichaelisM. LangerK. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity.Beilstein J. Nanotechnol.2019102062207210.3762/bjnano.10.20131728254
    [Google Scholar]
  76. VarshochianR Riazi-EsfahaniM Jeddi-TehraniM MahmoudiA-R AghazadehS MahbodM Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment.J. Biomed. Mater. Res. A2015103103148315610.1002/jbm.a.3544625773970
    [Google Scholar]
  77. PanditJ. SultanaY. AqilM. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration.Carbohydr. Polym.202126711821710.1016/j.carbpol.2021.11821734119171
    [Google Scholar]
  78. LiuJ. ZhangX. LiG. XuF. LiS. TengL. LiY. SunF. Anti-angiogenic activity of bevacizumab-bearing dexamethasone-loaded PLGA nanoparticles for potential intravitreal applications.Int. J. Nanomedicine2019148819883410.2147/IJN.S21703831819410
    [Google Scholar]
  79. XiaoB. ZhangZ. ViennoisE. KangY. ZhangM. HanM.K. ChenJ. MerlinD. Combination therapy for ulcerative colitis: orally targeted nanoparticles prevent mucosal damage and relieve inflammation.Theranostics20166122250226610.7150/thno.1571027924161
    [Google Scholar]
  80. YadavP. BandyopadhyayA. ChakrabortyA. SarkarK. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis.Carbohydr. Polym.201818218819810.1016/j.carbpol.2017.10.10229279114
    [Google Scholar]
  81. QiuF. MengT. ChenQ. ZhouK. ShaoY. MatlockG. MaX. WuW. DuY. WangX. DengG. MaJ. XuQ. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration.Mol. Pharm.20191651958197010.1021/acs.molpharmaceut.8b0131930912953
    [Google Scholar]
  82. SalamaH.A. GhorabM. MahmoudA.A. Abdel HadyM. PLGA nanoparticles as subconjunctival injection for management of glaucoma.AAPS PharmSciTech20171872517252810.1208/s12249‑017‑0710‑828224390
    [Google Scholar]
  83. HanJ. YangW. LiY. LiJ. JiangF. XieJ. HuangX. Combining doxorubicin-conjugated polymeric nanoparticles and 5-aminolevulinic acid for enhancing radiotherapy against lung cancer.Bioconjug. Chem.202233465466510.1021/acs.bioconjchem.2c0006635385661
    [Google Scholar]
  84. KimY.I. FluckigerL. HoffmanM. Lartaud-IdjouadieneI. AtkinsonJ. MaincentT. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats.Br. J. Pharmacol.1997120339940410.1038/sj.bjp.07009109031742
    [Google Scholar]
  85. AnwerM.K. Al-MansoorM.A. JamilS. Al-ShdefatR. AnsariM.N. ShakeelF. Development and evaluation of PLGA polymer based nanoparticles of quercetin.Int. J. Biol. Macromol.20169221321910.1016/j.ijbiomac.2016.07.00227381585
    [Google Scholar]
  86. GugulothuD. KulkarniA. PatravaleV. DandekarP. pH-sensitive nanoparticles of curcumin-celecoxib combination: Evaluating drug synergy in ulcerative colitis model.J. Pharm. Sci.2014103268769610.1002/jps.2382824375287
    [Google Scholar]
  87. YallapuMM JaggiM. Curcumin nanoformulations: a future nanomedicine for cancer.Drug Discov. Tod.2012171-2718010.1016/j.drudis.2011.09.00921959306PMC3259195
    [Google Scholar]
  88. KaliA. BhuvaneshwarD. CharlesP.V. SeethaK. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates.J. Basic Clin. Pharm.201673939610.4103/0976‑0105.18326527330262
    [Google Scholar]
  89. BishtS. FeldmannG. SoniS. RaviR. KarikarC. MaitraA. MaitraA. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy.J. Nanobiotechnology200751310.1186/1477‑3155‑5‑317439648
    [Google Scholar]
  90. WangX. HangY. LiuJ. HouY. WangN. WangM. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell.Oncol. Lett.20171364825483110.3892/ol.2017.605328599484
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673290370240425092350
Loading
/content/journals/cmc/10.2174/0109298673290370240425092350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test