Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Recently, considerable attention has been focused on the recovery and re-use of waste plant matrices as promising sources of bioactive compounds with health effects. As the Mediterranean diet involves the consumption of great amounts of fruits and vegetables, large quantities of agro-food by-products are generated, causing economic and environmental problems. Such by-products contain a great variety of bioactive compounds whose potential health benefits include anti-inflammatory, antioxidant, anti- cancer, antimicrobial, hypoglycemic, antidepressant, cardio- and neuro-protective activities. Therefore, in this review, by-products from the most common fruits and vegetables processed in the Mediterranean area, such as tomato, olive, citrus fruit, almond, pomegranate, carob, date, and grape, were taken into account, pointing out the content of bioactive ingredients in extracts obtained from different parts of plants, fruits, and vegetables. Furthermore, studies performed to assess the beneficial effects of extracts obtained from Mediterranean agro-food by-products were reviewed, highlighting the potential benefits of waste plant matrices re-usage in the pharmaceutical, nutraceutical, and cosmetic fields.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309549240723054831
2024-07-25
2025-10-10
Loading full text...

Full text loading...

References

  1. VilariñoM.V. FrancoC. QuarringtonC. Food loss and waste reduction as an integral part of a circular economy.Front. Environ. Sci.201752110.3389/fenvs.2017.00021
    [Google Scholar]
  2. GrizzettiB. PretatoU. LassallettaL. BillenG. GarnierJ. The contribution of food waste to global and european nitrogen pollution.Environ. Sci. Pol.201313186195
    [Google Scholar]
  3. ParfittJ. BarthelM. MacnaughtonS. Food waste within food supply chains: Quantification and potential for change to 2050.Phil. Trans. Biol. Sci.201036530653081
    [Google Scholar]
  4. D’AmatoD. KorhonenJ. Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework.Ecol. Econ.202118810714310.1016/j.ecolecon.2021.107143
    [Google Scholar]
  5. NayakA. BhushanB. An overview of the recent trends on the waste valorization techniques for food wastes.J. Environ. Manage.201923335237010.1016/j.jenvman.2018.12.04130590265
    [Google Scholar]
  6. SagarN.A. PareekS. SharmaS. YahiaE.M. LoboM.G. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization.Compr. Rev. Food Sci. Food Saf.201817351253110.1111/1541‑4337.1233033350136
    [Google Scholar]
  7. AyoubM. de CamargoA.C. ShahidiF. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals.Food Chem.2016197Pt A22123210.1016/j.foodchem.2015.10.10726616944
    [Google Scholar]
  8. MachadoA.P.F. GeraldiM.V. do NascimentoR.P. MoyaA.M.T.M. VezzaT. Diez-EchaveP. GálvezJ.J. CazarinC.B.B. Maróstica JúniorM.R. Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments.Food Res. Int.202114011001810.1016/j.foodres.2020.11001833648249
    [Google Scholar]
  9. Montenegro-LandívarM.F. Tapia-QuirósP. VecinoX. ReigM. ValderramaC. GranadosM. CortinaJ.L. SaurinaJ. Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology.J. Environ. Chem. Eng.20219410533010.1016/j.jece.2021.105330
    [Google Scholar]
  10. QueroJ. Jiménez-MorenoN. EsparzaI. OsadaJ. CerradaE. Ancín-AzpilicuetaC. Rodríguez-YoldiM.J. Grape stem extracts with potential anticancer and antioxidant properties.Antioxidants202110224310.3390/antiox1002024333562442
    [Google Scholar]
  11. RodríguezL.G.R. GasgaV.M.Z. PescumaM. NieuwenhoveC.V. MozziF. BurgosJ.A.S. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages.Food Res. Int.202114010985410.1016/j.foodres.2020.10985433648172
    [Google Scholar]
  12. Villacís-ChiribogaJ. VeraE. Van CampJ. RualesJ. ElstK. Valorization of byproducts from tropical fruits: A review, Part 2: Applications, economic, and environmental aspects of biorefinery via supercritical fluid extraction.Compr. Rev. Food Sci. Food Saf.20212032305233110.1111/1541‑4337.1274433864344
    [Google Scholar]
  13. FidelisM. de MouraC. Kabbas JuniorT. PapN. MattilaP. MäkinenS. PutnikP. Bursać KovačevićD. TianY. YangB. GranatoD. Fruit seeds as sources of bioactive compounds: sustainable production of high value-added ingredients from by-products within circular economy.Molecules20192421385410.3390/molecules2421385431731548
    [Google Scholar]
  14. CeylanH. DemirY. BeydemirŞ. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study.Protein Pept. Lett.201926536437010.2174/092986652666619030111512230827223
    [Google Scholar]
  15. ÖzaslanM.S. SağlamtaşR. DemirY. GençY. Saraçoğluİ. Gülçinİ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity.Chem. Biodivers.2022198e20220028010.1002/cbdv.20220028035796520
    [Google Scholar]
  16. BayrakS. ÖztürkC. DemirY. AlımZ. KüfreviogluÖ.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity.Protein Pept. Lett.202027318719210.2174/092986652666619100214230131577197
    [Google Scholar]
  17. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  18. TürkeşC. DemirY. BeydemirŞ. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as ar and sdh inhibitors**.ChemistrySelect2022748e20220405010.1002/slct.202204050
    [Google Scholar]
  19. AgajA. PeršurićŽ. PavelićS.K. Mediterranean food industry by-products as a novel source of phytochemicals with a promising role in cancer prevention.Molecules20222724865510.3390/molecules2724865536557789
    [Google Scholar]
  20. NardellaS. ConteA. Del NobileM.A. State-of-art on the recycling of by-products from fruits and vegetables of mediterranean countries to prolong food shelf life.Foods202211566510.3390/foods1105066535267298
    [Google Scholar]
  21. PanebiancoS. PellegritiM.G. FinocchiaroC. MusumarraA. BaroneG. CaggianiM.C. CirvilleriG. LanzafameG. PulvirentiA. ScordinoA. MazzoleniP. XRF analysis searching for fingerprint elemental profile in south-eastern Sicily tomatoes.Sci. Rep.20231311373910.1038/s41598‑023‑40124‑637612357
    [Google Scholar]
  22. AlsaffarA.A. Sustainable diets: The interaction between food industry, nutrition, health and the environment.Food Sci. Technol. Int.201622210211110.1177/108201321557202925680370
    [Google Scholar]
  23. Valdez-MoralesM. Espinosa-AlonsoL.G. Espinoza- TorresL.C. Delgado-VargasF. Medina-GodoyS. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts.J. Agric. Food Chem.201462235281528910.1021/jf501237424792924
    [Google Scholar]
  24. Rodríguez-AntónJ.M. Rubio-AndradaL. Celemín-PedrocheM.S. Ruíz-PeñalverS.M. From the circular economy to the sustainable development goals in the European Union: an empirical comparison.Int. Environ. Agreement Polit. Law Econ.2022221679510.1007/s10784‑021‑09553‑434744532
    [Google Scholar]
  25. AlbizzatiP.F. ToniniD. AstrupT.F. A quantitative sustainability assessment of food waste management in the european union.Environ. Sci. Technol.20215523160991610910.1021/acs.est.1c0394034784465
    [Google Scholar]
  26. Silva-BeltránN.P. Ruiz-CruzS. Cira-ChávezL.A. Estrada-AlvaradoM.I. Ornelas-PazJ.J. López-MataM.A. Del-Toro-SánchezC.L. Ayala-ZavalaJ.F. Márquez-RíosE. Total phenolic, flavonoid, tomatine, and tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant.Int. J. Anal. Chem.2015201511010.1155/2015/28407126609308
    [Google Scholar]
  27. SantonocitoD. CampisiA. PellitteriR. SpositoG. BasilicataM.G. AquinoG. PepeG. SarpietroM.G. PittalàM.G.G. SchoubbenA. PignatelloR. PugliaC. Lipid nanoparticles loading steroidal alkaloids of tomatoes affect neuroblastoma cell viability in an in vitro model.Pharmaceutics20231511257310.3390/pharmaceutics1511257338004552
    [Google Scholar]
  28. FujimakiJ. SayamaN. ShiotaniS. SuzukiT. NonakaM. UezonoY. OyabuM. KameiY. NukayaH. WakabayashiK. MoritaA. SatoT. MiuraS. The steroidal alkaloid tomatidine and tomatidine-rich tomato leaf extract suppress the human gastric cancer-derived 85as2 cells in vitro and in vivo via modulation of interferon-stimulated genes.Nutrients2022145102310.3390/nu1405102335267998
    [Google Scholar]
  29. KumarM. TomarM. BhuyanD.J. PuniaS. GrassoS. SáA.G.A. CarciofiB.A.M. ArrutiaF. ChanganS. Radha SinghS. DhumalS. SenapathyM. SatankarV. AnithaT. SharmaA. PandiselvamR. AmarowiczR. MekhemarM. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities.Biomed. Pharmacother.202114211201810.1016/j.biopha.2021.11201834449317
    [Google Scholar]
  30. ChoeU. SunJ. BailoniE. ChenP. LiY. GaoB. WangT.T.Y. RaoJ. YuL.L. Chemical composition of tomato seed flours, and their radical scavenging, anti-inflammatory and gut microbiota modulating properties.Molecules2021265147810.3390/molecules2605147833803186
    [Google Scholar]
  31. HeW.S. LiL. RuiJ. LiJ. SunY. CuiD. XuB. Tomato seed oil attenuates hyperlipidemia and modulates gut microbiota in C57BL/6J mice.Food Funct.20201154275429010.1039/D0FO00133C32356546
    [Google Scholar]
  32. GharbiS. RendaG. La BarberaL. AmriM. MessinaC.M. SantulliA. Tunisian tomato by-products, as a potential source of natural bioactive compounds.Nat. Prod. Res.201731662663110.1080/14786419.2016.120967127686856
    [Google Scholar]
  33. SantonocitoD. RacitiG. CampisiA. SpositoG. PanicoA. SicilianoE. SarpietroM. DamianiE. PugliaC. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: formulation development and optimization.Nanomaterials (Basel)202111239110.3390/nano1102039133546352
    [Google Scholar]
  34. GokulK. Muralidhara Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson’s disease.Neurochem. Res.20143971382139410.1007/s11064‑014‑1323‑124831121
    [Google Scholar]
  35. FuentesE.J. AstudilloL.A. GutiérrezM.I. ContrerasS.O. BustamanteL.O. RubioP.I. Moore-CarrascoR. AlarcónM.A. FuentesJ.A. GonzálezD.E. PalomoI.F. Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity.Blood Coagul. Fibrinolysis201223210911710.1097/MBC.0b013e32834d78dd22185934
    [Google Scholar]
  36. SzaboK. DiaconeasaZ. CătoiA.F. VodnarD.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities.Antioxidants20198829210.3390/antiox808029231398838
    [Google Scholar]
  37. TaveiraM. SilvaL.R. Vale-SilvaL.A. PintoE. ValentãoP. FerreresF. Guedes de PinhoP. AndradeP.B. Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent.J. Agric. Food Chem.201058179529953610.1021/jf102215g20707344
    [Google Scholar]
  38. PapaefstathiouE. AgapiouA. GiannopoulosS. KokkinoftaR. Nutritional characterization of carobs and traditional carob products.Food Sci. Nutr.2018682151216110.1002/fsn3.77630510716
    [Google Scholar]
  39. SantonocitoD. GranataG. GeraciC. PanicoA. SicilianoE.A. RacitiG. PugliaC. Carob seeds: food waste or source of bioactive compounds?Pharmaceutics20201211109010.3390/pharmaceutics1211109033202757
    [Google Scholar]
  40. FidanH. StankovS. PetkovaN. PetkovaZ. IlievA. StoyanovaM. IvanovaT. ZhelyazkovN. IbrahimS. StoyanovaA. ErcisliS. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds.J. Food Sci. Technol.20205772404241310.1007/s13197‑020‑04274‑z32549590
    [Google Scholar]
  41. LakkabI. OuakilA. El HajajiH. LachkarN. LefterR. CiobicaA. El BaliB. DobrinR. HritcuL.D. LachkarM. Carob seed peels effect on cognitive impairment and oxidative stress status in methionine-induced mice models of schizophrenia.Brain Sci.20221212166010.3390/brainsci1212166036552121
    [Google Scholar]
  42. TeixeiraA. BaenasN. Dominguez-PerlesR. BarrosA. RosaE. MorenoD. Garcia-VigueraC. Garcia-VigueraC. Natural bioactive compounds from winery by-products as health promoters: a review.Int. J. Mol. Sci.2014159156381567810.3390/ijms15091563825192288
    [Google Scholar]
  43. OtoguroM. SuzukiS. Status and future of disease protection and grape berry quality alteration by micro-organisms in viticulture.Lett. Appl. Microbiol.201867210611210.1111/lam.1303329908033
    [Google Scholar]
  44. Ferrer-GallegoR. SilvaP. The wine industry by-products: applications for food industry and health benefits.Antioxidants20221110202510.3390/antiox1110202536290748
    [Google Scholar]
  45. RuggieriL. CadenaE. Martínez-BlancoJ. GasolC.M. RieradevallJ. GabarrellX. GeaT. SortX. SánchezA. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process.J. Clean. Prod.200917983083810.1016/j.jclepro.2008.12.005
    [Google Scholar]
  46. UedaJ.M. GrieblerK.R. FinimundyT.C. RodriguesD.B. VeríssimoL. PiresT.C.S.P. GonçalvesJ. FernandesI.P. PereiraE. BarrosL. HelenoS.A. CalhelhaR.C. Polyphenol composition by hplc-dad- (esi-) ms/ms and bioactivities of extracts from grape agri-food wastes.Molecules20232821736810.3390/molecules2821736837959787
    [Google Scholar]
  47. PozueloM.J. Agis-TorresA. Hervert-HernándezD. Elvira López-OlivaM. Muñoz-MartínezE. RotgerR. GoñiI. Grape antioxidant dietary fiber stimulates lactobacillus growth in rat cecum.J. Food Sci.2012772H59H6210.1111/j.1750‑3841.2011.02520.x22224928
    [Google Scholar]
  48. ZhuF. DuB. ZhengL. LiJ. Advance on the bioactivity and potential applications of dietary fibre from grape pomace.Food Chem.201518620721210.1016/j.foodchem.2014.07.05725976812
    [Google Scholar]
  49. Grace NirmalaJ. Evangeline CelsiaS. SwaminathanA. NarendhirakannanR.T. ChatterjeeS. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells.Cytotechnology201870253755410.1007/s10616‑017‑0125‑028983752
    [Google Scholar]
  50. LeoneA. LongoC. GerardiC. TroskoJ.E. Pro-apoptotic effect of grape seed extract on MCF-7 involves transient increase of gap junction intercellular communication and Cx43 up-regulation: A mechanism of chemoprevention.Int. J. Mol. Sci.20192013324410.3390/ijms2013324431269652
    [Google Scholar]
  51. BocsanI.C. PopR.M. SabinO. SarkandyE. BoarescuP.M. RoşianŞ.H. LeruP.M. ChedeaV.S. SocaciS.A. BuzoianuA.D. Comparative protective effect of Nigella sativa oil and Vitis vinifera seed oil in an experimental model of isoproterenol-induced acute myocardial ischemia in rats.Molecules20212611322110.3390/molecules2611322134072098
    [Google Scholar]
  52. IsmailA.F.M. SalemA.A.M. EassawyM.M.T. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat.J. Photochem. Photobiol. B201616011010.1016/j.jphotobiol.2016.03.02727085796
    [Google Scholar]
  53. Millan-LinaresM.C. BermudezB. MartinM.E. MuñozE. AbiaR. MillanF. MurianaF.J.G. Montserrat-de la PazS. Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes.Food Funct.2018942517252310.1039/C8FO00063H29664082
    [Google Scholar]
  54. LoizzoM.R. SicariV. PellicanòT. XiaoJ. PoianaM. TundisR. Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of italian Vitis vinifera by-products for a sustainable agro-industry.Food Chem. Toxicol.201912712713410.1016/j.fct.2019.03.00730878529
    [Google Scholar]
  55. DaniC. OliboniL.S. AgostiniF. FunchalC. SerafiniL. HenriquesJ.A. SalvadorM. Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage.Toxicol. In Vitro201024114815310.1016/j.tiv.2009.08.00619699291
    [Google Scholar]
  56. FrémontL. Biological effects of resveratrol.Life Sci.200066866367310.1016/S0024‑3205(99)00410‑510680575
    [Google Scholar]
  57. IntagliataS. ModicaM.N. SantagatiL.M. MontenegroL. Strategies to improve resveratrol systemic and topical bioavailability: an update.Antioxidants20198824410.3390/antiox808024431349656
    [Google Scholar]
  58. KingR.E. BomserJ.A. MinD.B. Bioactivity of resveratrol.Compr. Rev. Food Sci. Food Saf.200653657010.1111/j.1541‑4337.2006.00001.x
    [Google Scholar]
  59. BalanovP.E. SmotraevaI. AbdullaevaM.S. VolkovaD.A. IvanchenkoO.B. Study on resveratrol content in grapes and wine products.E3S Web Conf.202124701063
    [Google Scholar]
  60. CadenaP.G. PereiraM.A. CordeiroR.B.S. CavalcantiI.M.F. Barros NetoB. PimentelM.C.C.B. Lima FilhoJ.L. SilvaV.L. Santos-MagalhãesN.S. Nanoencapsulation of quercetin and resveratrol into elastic liposomes.Biochim. Biophys. Acta Biomembr.20131828230931610.1016/j.bbamem.2012.10.02223103506
    [Google Scholar]
  61. WalleT. Bioavailability of resveratrol.Ann. N. Y. Acad. Sci.20111215191510.1111/j.1749‑6632.2010.05842.x21261636
    [Google Scholar]
  62. MontenegroL. ParentiC. TurnaturiR. PasquinucciL. Resveratrol-loaded lipid nanocarriers: correlation between in vitro occlusion factor and in vivo skin hydrating effect.Pharmaceutics2017945810.3390/pharmaceutics904005829232856
    [Google Scholar]
  63. SinghG. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential.Nanomedicine (Lond.)202015282801281710.2217/nnm‑2020‑028933191840
    [Google Scholar]
  64. MontenegroL. LaiF. OffertaA. SarpietroM.G. MicicchèL. MaccioniA.M. ValentiD. FaddaA.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics.J. Drug Deliv. Sci. Technol.20163210011210.1016/j.jddst.2015.10.003
    [Google Scholar]
  65. MontenegroL. Nanocarriers for skin delivery of cosmetic antioxidants.J. Pharm. Pharmacogn. Res.201421739210.56499/jppres14.033_2.4.73
    [Google Scholar]
  66. FerreiraS.M. SantosL. A potential valorization strategy of wine industry by-products and their application in cosmetics-case study: grape pomace and grapeseed.Molecules202227396910.3390/molecules2703096935164233
    [Google Scholar]
  67. MoY. MaJ. GaoW. ZhangL. LiJ. LiJ. ZangJ. Pomegranate peel as a source of bioactive compounds: a mini review on their physiological functions.Front. Nutr.2022988711310.3389/fnut.2022.88711335757262
    [Google Scholar]
  68. AinH.B.U. TufailT. BashirS. IjazN. HussainM. IkramA. FarooqM.A. SaewanS.A. Nutritional importance and industrial uses of pomegranate peel: A critical review.Food Sci. Nutr.20231162589259810.1002/fsn3.332037324891
    [Google Scholar]
  69. SinghB. SinghJ.P. KaurA. SinghN. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review.Food Chem.2018261758610.1016/j.foodchem.2018.04.03929739608
    [Google Scholar]
  70. LiuC. GuoH. DaSilvaN.A. LiD. ZhangK. WanY. GaoX.H. ChenH.D. SeeramN.P. MaH. Pomegranate (Punica granatum) phenolics ameliorate hydrogen peroxide-induced oxidative stress and cytotoxicity in human keratinocytes.J. Funct. Foods20195455956710.1016/j.jff.2019.02.01534079588
    [Google Scholar]
  71. MastrogiovanniF. MukhopadhyaA. LaceteraN. RyanM.T. RomaniA. BerniniR. SweeneyT. Anti-Inflammatory effects of pomegranate peel extracts on in vitro human intestinal Caco-2 cells and ex vivo porcine colonic tissue explants.Nutrients201911354810.3390/nu1103054830841512
    [Google Scholar]
  72. DengY. LiY. YangF. ZengA. YangS. LuoY. ZhangY. XieY. YeT. XiaY. YinW. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells.Biomed. Pharmacother.20179397698410.1016/j.biopha.2017.07.00828724216
    [Google Scholar]
  73. PugliaC. SantonocitoD. BonaccorsoA. MusumeciT. RuoziB. PignatelloR. CarboneC. ParentiC. ChiechioS. Lipid nanoparticle inclusion prevents capsaicin-induced TRPV1 defunctionalization.Pharmaceutics202012433910.3390/pharmaceutics1204033932290081
    [Google Scholar]
  74. SantonocitoD. Vivero-LopezM. LauroM.R. TorrisiC. CastelliF. SarpietroM.G. PugliaC. Design of nanotechnological carriers for ocular delivery of mangiferin: preformulation study.Molecules2022274132810.3390/molecules2704132835209120
    [Google Scholar]
  75. SguizzatoM. FerraraF. HallanS.S. BaldisserottoA. DrechslerM. MalatestaM. CostanzoM. CortesiR. PugliaC. ValacchiG. EspositoE. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox1005076834066018
    [Google Scholar]
  76. EspositoE. RavaniL. MarianiP. HuangN. BoldriniP. DrechslerM. ValacchiG. CortesiR. PugliaC. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin.Eur. J. Pharm. Biopharm.201486212113210.1016/j.ejpb.2013.12.01124361485
    [Google Scholar]
  77. PugliaC. BlasiP. OstacoloC. SommellaE. BucoloC. PlataniaC.B.M. RomanoG.L. GeraciF. DragoF. SantonocitoD. AlbertiniB. CampigliaP. PuglisiG. PignatelloR. Innovative nanoparticles enhance n-palmitoylethanolamide intraocular delivery.Front. Pharmacol.2018928510.3389/fphar.2018.0028529643808
    [Google Scholar]
  78. AndishmandH. Azadmard-damirchiS. HamishekarH. TorbatiM. KharazmiM.S. SavageG.P. TanC. JafariS.M. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel.Adv. Colloid Interface Sci.202331110283310.1016/j.cis.2022.10283336610103
    [Google Scholar]
  79. Baradaran RahimiV. GhadiriM. RamezaniM. AskariV.R. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies.Phytother. Res.202034468572010.1002/ptr.656531908068
    [Google Scholar]
  80. CheshomiH. BahramiA.R. RafatpanahH. MatinM.M. The effects of ellagic acid and other pomegranate ( Punica granatum L.) derivatives on human gastric cancer AGS cells.Hum. Exp. Toxicol.20224110.1177/0960327121106453435179410
    [Google Scholar]
  81. KhwairakpamA.D. BordoloiD. ThakurK.K. MonishaJ. ArfusoF. SethiG. MishraS. KumarA.P. KunnumakkaraA.B. Possible use of Punica granatum (Pomegranate) in cancer therapy.Pharmacol. Res.2018133536410.1016/j.phrs.2018.04.02129729421
    [Google Scholar]
  82. ChavesF.M. PavanI.C.B. da SilvaL.G.S. de FreitasL.B. RostagnoM.A. AntunesA.E.C. BezerraR.M.N. SimabucoF.M. Pomegranate juice and peel extracts are able to inhibit proliferation, migration and colony formation of prostate cancer cell lines and modulate the akt/mtor/s6k signaling pathway.Plant Foods Hum. Nutr.2020751546210.1007/s11130‑019‑00776‑031838616
    [Google Scholar]
  83. AdamsL.S. ZhangY. SeeramN.P. HeberD. ChenS. Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro.Cancer Prev. Res. (Phila.)20103110811310.1158/1940‑6207.CAPR‑08‑022520051378
    [Google Scholar]
  84. NazS. SiddiqiR. AhmadS. RasoolS.A. SayeedS.A. Antibacterial activity directed isolation of compounds from Punica granatum.J. Food Sci.2007729M341M34510.1111/j.1750‑3841.2007.00533.x18034726
    [Google Scholar]
  85. DeR. SarkarA. GhoshP. GangulyM. KarmakarB.C. SahaD.R. HalderA. ChowdhuryA. MukhopadhyayA.K. Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice.J. Antimicrob. Chemother.20187361595160310.1093/jac/dky07929566160
    [Google Scholar]
  86. SongC.Q. ZhouB.H. YiH.L. WuY. Antibacterial activity of tannins from Pericarpium Granati (TPG) and its antibacterial mechanism against Staphylococcus aureus.Zhongguo Yiyuan Yaoxue Zazhi201636259265
    [Google Scholar]
  87. FerrazzanoG.F. SciosciaE. SaterialeD. PastoreG. ColicchioR. PagliucaC. CantileT. AlcidiB. CodaM. IngenitoA. ScaglioneE. CicatielloA.G. VolpeM.G. Di StasioM. SalvatoreP. PagliaruloC. In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria.BioMed Res. Int.201720171710.1155/2017/215274929209624
    [Google Scholar]
  88. FawoleO.A. MakungaN.P. OparaU.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract.BMC Complement. Altern. Med.201212120010.1186/1472‑6882‑12‑20023110485
    [Google Scholar]
  89. MaganganaT.P. MakungaN.P. FawoleO.A. StanderM.A. OparaU.L. Antioxidant, antimicrobial, and metabolomic characterization of blanched pomegranate peel extracts: effect of cultivar.Molecules2022279297910.3390/molecules2709297935566329
    [Google Scholar]
  90. SayedS. AlotaibiS.S. El-ShehawiA.M. HassanM.M. ShukryM. AlkafafyM. SolimanM.M. The anti-inflammatory, anti-apoptotic, and antioxidant effects of a pomegranate-peel extract against acrylamide-induced hepatotoxicity in rats.Life (Basel)202212222410.3390/life1202022435207511
    [Google Scholar]
  91. MastrogiovanniF. BerniniR. BasiricòL. BernabucciU. CampoM. RomaniA. SantiL. LaceteraN. Antioxidant and anti-inflammatory effects of pomegranate peel extracts on bovine mammary epithelial cells BME-UV1.Nat. Prod. Res.202034101465146910.1080/14786419.2018.150814930278781
    [Google Scholar]
  92. ThitipramoteN. MaisakunT. ChomchuenC. PradmeeteekulP. NimkamnerdJ. VongnititornP. PintathongP. Bioactive compounds and antioxidant activities from pomegranate peel and seed extracts.Food Appl Biosci J20197152161
    [Google Scholar]
  93. RomaniA. IeriF. UrciuoliS. NoceA. MarroneG. NedianiC. BerniniR. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L.Nutrients2019118177610.3390/nu1108177631374907
    [Google Scholar]
  94. GoldsmithC. VuongQ. SadeqzadehE. StathopoulosC. RoachP. ScarlettC. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells.Molecules2015207129921300410.3390/molecules20071299226193251
    [Google Scholar]
  95. Barrajón-CatalánE. TaamalliA. Quirantes-PinéR. Roldan-SeguraC. Arráez-RománD. Segura-CarreteroA. MicolV. ZarroukM. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line.J. Pharm. Biomed. Anal.201510515616210.1016/j.jpba.2014.11.04825560707
    [Google Scholar]
  96. AcquavivaR. Di GiacomoC. SorrentiV. GalvanoF. SantangeloR. CardileV. GangiaS. D’OrazioN. AbrahamN.G. VanellaL. Antiproliferative effect of oleuropein in prostate cell lines.Int. J. Oncol.2012411313822484302
    [Google Scholar]
  97. RomaniA. PinelliP. IeriF. BerniniR. Sustainability, innovation, and green chemistry in the production and valorization of phenolic extracts from Olea europaea L.Sustainability (Basel)2016810100210.3390/su8101002
    [Google Scholar]
  98. Acar-TekN. AğagündüzD. Olive leaf (Olea europaea L. folium): potential effects on glycemia and lipidemia.Ann. Nutr. Metab.2020761101510.1159/00050550831901903
    [Google Scholar]
  99. BaliE. ErginV. RackovaL. BayraktarO. KüçükboyacıN. KarasuÇ. Olive leaf extracts protect cardiomyocytes against 4-hydroxynonenal-induced toxicity in vitro: comparison with oleuropein, hydroxytyrosol, and quercetin.Planta Med.2014801298499210.1055/s‑0034‑138288125098929
    [Google Scholar]
  100. Al-AzzawieH.F. AlhamdaniM.S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits.Life Sci.200678121371137710.1016/j.lfs.2005.07.02916236331
    [Google Scholar]
  101. MansourH.M.M. ZeitounA.A. Abd-RabouH.S. El EnshasyH.A. DailinD.J. ZeitounM.A.A. El-SohaimyS.A. Antioxidant and anti-diabetic properties of olive (Olea europaea) leaf extracts: in vitro and in vivo evaluation.Antioxidants2023126127510.3390/antiox1206127537372005
    [Google Scholar]
  102. LockyerS. RowlandI. SpencerJ.P.E. YaqoobP. StonehouseW. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial.Eur. J. Nutr.20175641421143210.1007/s00394‑016‑1188‑y26951205
    [Google Scholar]
  103. MateosR. SarriaB. BravoL. Nutritional and other health properties of olive pomace oil.Crit. Rev. Food Sci. Nutr.202060203506352110.1080/10408398.2019.169800531822114
    [Google Scholar]
  104. González-RámilaS. SarriáB. SeguidoM.Á. García- CorderoJ. Bravo-ClementeL. MateosR. Effect of olive pomace oil on cardiovascular health and associated pathologies.Nutrients20221419392710.3390/nu1419392736235579
    [Google Scholar]
  105. PeršurićŽ. Saftić MartinovićL. ZenginG. ŠarolićM. Kraljević PavelićS. Characterization of phenolic and triacylglycerol compounds in the olive oil by-product pâté and assay of its antioxidant and enzyme inhibition activity.Lebensm. Wiss. Technol.202012510922510.1016/j.lwt.2020.109225
    [Google Scholar]
  106. HoS.C. LinC.C. Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels.J. Agric. Food Chem.200856177976798210.1021/jf801434c18683945
    [Google Scholar]
  107. PatsalouM. SamanidesC.G. ProtopapaE. StavrinouS. VyridesI. KoutinasM. A citrus peel waste biorefinery for ethanol and methane production.Molecules20192413245110.3390/molecules2413245131277372
    [Google Scholar]
  108. SepúlvedaL. Laredo-AlcaláE. Buenrostro-FigueroaJ.J. Ascacio-ValdésJ.A. GenishevaZ. AguilarC. TeixeiraJ. Ellagic acid production using polyphenols from orange peel waste by submerged fermentation.Electron. J. Biotechnol.2020431710.1016/j.ejbt.2019.11.002
    [Google Scholar]
  109. Nair SA. SrR.K. NairA.S. BabyS. Citrus peels prevent cancer.Phytomedicine20185023123710.1016/j.phymed.2017.08.01130466983
    [Google Scholar]
  110. KoolajiN. ShammugasamyB. SchindelerA. DongQ. DehghaniF. ValtchevP. Citrus peel flavonoids as potential cancer prevention agents.Curr. Dev. Nutr.202045nzaa02510.1093/cdn/nzaa02532391511
    [Google Scholar]
  111. GohJ.X.H. TanL.T.H. GohJ.K. ChanK.G. PusparajahP. LeeL.H. GohB.H. Nobiletin and derivatives: functional compounds from citrus fruit peel for colon cancer chemoprevention.Cancers (Basel)201911686710.3390/cancers1106086731234411
    [Google Scholar]
  112. SuzukiT. ShimizuM. YamauchiY. SatoR. Orange peel extract reduces the inflammatory state of skeletal muscle after downhill running via an increase in IL-1RA.Biosci. Biotechnol. Biochem.20218561506151310.1093/bbb/zbab04933739383
    [Google Scholar]
  113. SuD. LiuH. QiX. DongL. ZhangR. ZhangJ. Citrus peel flavonoids improve lipid metabolism by inhibiting miR-33 and miR-122 expression in HepG2 cells.Biosci. Biotechnol. Biochem.20198391747175510.1080/09168451.2019.160880731017523
    [Google Scholar]
  114. LeoC.H. FooS.Y. TanJ.C.W. TanU.X. ChuaC.K. OngE.S. Green extraction of orange peel waste reduces TNFα-induced vascular inflammation and endothelial dysfunction.Antioxidants2022119176810.3390/antiox1109176836139842
    [Google Scholar]
  115. TomishimaH. LuoK. MitchellA.E. The almond (Prunus dulcis): chemical properties, utilization, and valorization of coproducts.Annu. Rev. Food Sci. Technol.202213114516610.1146/annurev‑food‑052720‑11194234936815
    [Google Scholar]
  116. Garcia-PerezP. XiaoJ. MunekataP.E.S. LorenzoJ.M. BarbaF.J. RajokaM.S.R. BarrosL. Mascoloti SpreaR. AmaralJ.S. PrietoM.A. Simal-GandaraJ. Revalorization of almond by-products for the design of novel functional foods: an updated review.Foods2021108182310.3390/foods1008182334441599
    [Google Scholar]
  117. Barral-MartinezM. Fraga-CorralM. Garcia-PerezP. Simal-GandaraJ. PrietoM.A. Almond by-products: valorization for sustainability and competitiveness of the industry.Foods2021108179310.3390/foods1008179334441570
    [Google Scholar]
  118. CaltagironeC. PeanoC. SottileF. Post-harvest industrial processes of almond (Prunus dulcis L. mill) in sicily influence the nutraceutical properties of by-products at harvest and during storage.Front. Nutr.2021865937810.3389/fnut.2021.65937834150827
    [Google Scholar]
  119. KahlaouiM. Borotto Dalla VecchiaS. GiovineF. Ben Haj KbaierH. BouzouitaN. Barbosa PereiraL. ZeppaG. Characterization of polyphenolic compounds extracted from different varieties of almond hulls (Prunus dulcis L.).Antioxidants201981264710.3390/antiox812064731888206
    [Google Scholar]
  120. DammakM.I. ChakrounI. MzoughiZ. AmamouS. MansourH.B. Le CerfD. MajdoubH. Characterization of polysaccharides from Prunus amygdalus peels: Antioxidant and antiproliferative activities.Int. J. Biol. Macromol.201811919820610.1016/j.ijbiomac.2018.07.12530036629
    [Google Scholar]
  121. FabroniS. TrovatoA. BallistreriG. TortorelliS.A. FotiP. RomeoF.V. RapisardaP. Almond [Prunus dulcis (mill.) da webb] processing residual hull as a new source of bioactive compounds: phytochemical composition, radical scavenging and antimicrobial activities of extracts from italian cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’).Molecules202328260510.3390/molecules2802060536677662
    [Google Scholar]
  122. CostaJ. SilvaI. VicenteA.A. OliveiraM.B.P.P. MafraI. Pistachio nut allergy: An updated overview.Crit. Rev. Food Sci. Nutr.201959454656210.1080/10408398.2017.137994728925724
    [Google Scholar]
  123. TomainoA. MartoranaM. ArcoraciT. MonteleoneD. GiovinazzoC. SaijaA. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins.Biochimie20109291115112210.1016/j.biochi.2010.03.02720388531
    [Google Scholar]
  124. SeifaddinipourM. FarghadaniR. NamvarF. Bin MohamadJ. MuhamadN.A. In vitro and in vivo anticancer activity of the most cytotoxic fraction of pistachio hull extract in breast cancer.Molecules2020258177610.3390/molecules2508177632295069
    [Google Scholar]
  125. ErsözE. AydınM.S. HacanlıY. KankılıçN. Koyuncuİ. GüldürM.E. TemizE. ÇakmakY. EğiK. DikmeR. PadakM. Cardioprotective effect of Pistacia vera L. (green pistachio) hull extract in wistar albino rats with doxorubicin-induced cardiac damage.Anatol. J. Cardiol.202327313514510.14744/AnatolJCardiol.2022.245236856595
    [Google Scholar]
  126. D’ArrigoM. BisignanoC. IrreraP. SmeriglioA. ZagamiR. TrombettaD. RomeoO. MandalariG. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp.BMC Complement. Altern. Med.2019191610.1186/s12906‑018‑2425‑030612544
    [Google Scholar]
  127. Al-FarsiM.A. LeeC.Y. Nutritional and functional properties of dates: a review.Crit. Rev. Food Sci. Nutr.2008481087788710.1080/1040839070172426418949591
    [Google Scholar]
  128. ChouichaS. BoubekriA. MennoucheD. BouguetaiaH. BerrbeuhM.H. BouhafsS. RezzougW. Valorization study of treated deglet-nour dates by solar drying using three different solar driers.Energy Procedia20145090791610.1016/j.egypro.2014.06.109
    [Google Scholar]
  129. HazbaviE. KhoshtaghazaM.H. MostaanA. BanakarA. Effect of storage duration on some physical properties of date palm (cv. Stamaran).J. Saudi Soc. Agric. Sci.201514214014610.1016/j.jssas.2013.10.001
    [Google Scholar]
  130. ZhangC.R. AldosariS.A. VidyasagarP.S.P.V. ShuklaP. NairM.G. Health-benefits of date fruits produced in Saudi Arabia based on in vitro antioxidant, anti-inflammatory and human tumor cell proliferation inhibitory assays.J. Saudi Soc. Agric. Sci.201716328729310.1016/j.jssas.2015.09.004
    [Google Scholar]
  131. BesbesS. DriraL. BleckerC. DeroanneC. AttiaH. Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam.Food Chem.2009112240641110.1016/j.foodchem.2008.05.093
    [Google Scholar]
  132. KchaouW. AbbèsF. AttiaH. BesbesS. In vitro antioxidant activities of three selected dates from Tunisia (Phoenix dactylifera L.).J. Chem.2014367681
    [Google Scholar]
  133. KchaouW. AbbèsF. MansourR.B. BleckerC. AttiaH. BesbesS. Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.).Food Chem.20161941048105510.1016/j.foodchem.2015.08.12026471652
    [Google Scholar]
  134. PujariR.R. VyawahareN.S. KagatharaV.G. Evaluation of antioxidant and neuroprotective effect of date palm (Phoenix dactylifera L.) against bilateral common carotid artery occlusion in rats.Indian J. Exp. Biol.201149862763321870431
    [Google Scholar]
  135. El AremA. ZekriM. ThouriA. SaafiE.B. GhrairiF. AyedA. ZakhamaA. AchourL. Oxidative damage and alterations in antioxidant enzyme activities in the kidneys of rat exposed to trichloroacetic acid: protective role of date palm fruit.J. Physiol. Biochem.201470229730924338383
    [Google Scholar]
  136. El AremA. SaafiE.B. GhrairiF. ThouriA. ZekriM. AyedA. ZakhamaA. AchourL. Aqueous date fruit extract protects against lipid peroxidation and improves antioxidant status in the liver of rats subchronically exposed to trichloroacetic acid.J. Physiol. Biochem.201470245146410.1007/s13105‑014‑0323‑624573459
    [Google Scholar]
  137. BoghdadiG. MareiA. AliA. LotfyG. AbdulfattahM. SorourS. Immunological markers in allergic rhinitis patients treated with date palm immunotherapy.Inflamm. Res.201261771972410.1007/s00011‑012‑0464‑422456954
    [Google Scholar]
  138. Al-YahyaM. RaishM. AlSaidM.S. AhmadA. MothanaR.A. Al-SohaibaniM. Al-DosariM.S. ParvezM.K. RafatullahS. ‘Ajwa’ dates (Phoenix dactylifera L.) extract ameliorates isoproterenol-induced cardiomyopathy through downregulation of oxidative, inflammatory and apoptotic molecules in rodent model.Phytomedicine201623111240124810.1016/j.phymed.2015.10.01926776662
    [Google Scholar]
  139. El AbedH. ChakrounM. FendriI. MakniM. BouazizM. DriraN. MejdoubH. KhemakhemB. Extraction optimization and in vitro and in vivo anti-postprandial hyperglycemia effects of inhibitor from Phoenix dactylifera L. parthenocarpic fruit.Biomed. Pharmacother.20178883584310.1016/j.biopha.2017.01.12928167450
    [Google Scholar]
  140. EchegarayN. GullónB. PateiroM. AmarowiczR. MisihairabgwiJ.M. LorenzoJ.M. Date fruit and its by-products as promising source of bioactive components: A review.Food Rev. Int.2021122
    [Google Scholar]
  141. Muñoz-TebarN. Viuda-MartosM. LorenzoJ.M. Fernandez-LopezJ. Perez-AlvarezJ.A. Strategies for the valorization of date fruit and its co-products: a new ingredient in the development of value-added foods.Foods2023127145610.3390/foods1207145637048284
    [Google Scholar]
  142. BarakatH. AlfheeaidH.A. Date palm fruit (Phoenix dactylifera) and its promising potential in developing functional energy bars: review of chemical, nutritional, functional, and sensory attributes.Nutrients2023159213410.3390/nu1509213437432292
    [Google Scholar]
  143. El-NeweshyM.S. El-MaddawyZ.K. El-SayedY.S. Therapeutic effects of date palm (Phoenix dactylifera L.) pollen extract on cadmium-induced testicular toxicity.Andrologia201345636937810.1111/and.1202522998418
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309549240723054831
Loading
/content/journals/cmc/10.2174/0109298673309549240723054831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test